Abstract
Constraint Programming allows the resolution of complex problems, mainly combinatorial ones. These problems are defined by a set of variables that are subject to a domain of possible values and a set of constraints. The resolution of these problems is carried out by a constraint satisfaction solver which explores a search tree of potential solutions. This exploration is controlled by the enumeration strategy, which is responsible for choosing the order in which variables and values are selected to generate the potential solution. Autonomous Search provides the ability to the solver to self-tune its enumeration strategy in order to select the most appropriate one for each part of the search tree. This self-tuning process is commonly supported by an optimizer which attempts to maximize the quality of the search process, that is, to accelerate the resolution. In this work, we present a new optimizer for self-tuning in constraint programming based on artificial bee colonies. We report encouraging results where our autonomous tuning approach clearly improves the performance of the resolution process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences 192, 120–142 (2012)
Apt, K.R.: Principles of Constraint Programming. Cambridge University Press (2003)
Barták, R., Rudová, H.: Limited assignments: a new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)
Castro, C., Monfroy, E., Figueroa, C., Meneses, R.: An approach for dynamic split strategies in constraint solving. In: Gelbukh, A., de Albornoz, A., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 162–174. Springer, Heidelberg (2005)
Chandrasekaran, K., Hemamalini, S., Simon, S.P., Padhy, N.P.: Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electric Power Systems Research 84, 109–119 (2012)
Crawford, B., Soto, R., Castro, C., Monfroy, E.: A hyperheuristic approach for dynamic enumeration strategy selection in constraint satisfaction. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 295–304. Springer, Heidelberg (2011)
Crawford, B., Soto, R., Castro, C., Monfroy, E., Paredes, F.: An Extensible Autonomous Search Framework for Constraint Programming. Int. J. Phys. Sci. 6(14), 3369–3376 (2011)
Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using Particle Swarm Optimization. Expert Systems with Applications 40(5), 1690–1695 (2013)
Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)
Crawford, B., Soto, R., Montecinos, M., Castro, C., Monfroy, E.: A framework for autonomous search in the eclipse solver. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 79–84. Springer, Heidelberg (2011)
Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer (2012)
Karaboga, D., Basturk, B.: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. In: Proceedings of the 12th International Fuzzy Systems Association World Congress on Foundations of Fuzzy Logic and Soft Computing, pp. 789–798 (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Soft Computing 8, 687–697 (2008)
Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial bee colony programming for symbolic regression. Information Sciences 209, 1–15 (2012)
Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artificial Intelligence Review 42, 21–57 (2014)
Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)
Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., Figueroa, C.: A reactive and hybrid constraint solver. Journal of Experimental and Theoretical Artificial Intelligence 25(1), 1–22 (2013)
Crawford, B., Soto, R., Castro, C., Monfroy, E.: A hyperheuristic approach for dynamic enumeration strategy selection in constraint satisfaction. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 295–304. Springer, Heidelberg (2011)
Soto, R., Crawford, B., Monfroy, E., Bustos, V.: Using autonomous search for generating good enumeration strategy blends in constraint programming. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 607–617. Springer, Heidelberg (2012)
Yan, X., Zhu, Y., Zou, W., Wang, L.: A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97, 241–250 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Soto, R. et al. (2015). Autonomous Tuning for Constraint Programming via Artificial Bee Colony Optimization. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9155. Springer, Cham. https://doi.org/10.1007/978-3-319-21404-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-21404-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21403-0
Online ISBN: 978-3-319-21404-7
eBook Packages: Computer ScienceComputer Science (R0)