Skip to main content

The Maximum Similarity Partitioning Problem and its Application in the Transcriptome Reconstruction and Quantification Problem

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9155))

Included in the following conference series:

  • 1156 Accesses

Abstract

Reconstruct and quantify the RNA molecules in a cell at a given moment is an important problem in molecular biology that allows one to know which genes are being expressed and at which intensity level. Such problem is known as Transcriptome Reconstruction and Quantification Problem (TRQP). Although several approaches were already designed that solve the TRQP, none of them model it as a combinatorial optimization problem. In order to narrow this gap, we present here a new combinatorial optimization problem called Maximum Similarity Partitioning Problem (MSPP) that models the TRQP. In addition, we prove that the MSPP is NP-complete in the strong sense and present a greedy heuristic for it.

This work has been supported by FUNDECT-Brasil/MS (process number: 23/200, 500/2014. FUNDECT number: 185/2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, J.J., Jiang, C.R., Brown, J.B., Huang, H., Bicke, P.J.: Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proceedings of the National Academy of Sciences 108(50), 19 867–19 872 (2011)

    Article  Google Scholar 

  2. Schulz, M.H., Zerbino, D.R., Vingron, M., Birney, E.: Oases: robust de novo RNA-Seq assembly across the dynamic range of expression levels. Bioinformatics 28(8), 1086–1092 (2012)

    Article  Google Scholar 

  3. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature biotechnology 28(5), 511–515 (2010)

    Article  Google Scholar 

  4. Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M.J., Gnirke, A., Nusbaum, C., et al.: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature biotechnology 28(5), 503–510 (2010)

    Article  Google Scholar 

  5. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29(7), 644–652 (2011)

    Article  Google Scholar 

  6. Li, W., Feng, J., Jiang, T.: IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. Journal of Computational Biology 18(11), 1693–1707 (2011)

    Article  MathSciNet  Google Scholar 

  7. Mezlini, A.M., Smith, E.J., Fiume, M., Buske, O., Savich, G.L., Shah, S., Aparicio, S., Chiang, D.Y., Goldenberg, A., Brudno, M.: iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome research 23(3), 519–529 (2013)

    Article  Google Scholar 

  8. Behr, J., Kahles, A., Zhong, Y., Sreedharan, V.T., Drewe, P., R atsch, G.: MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples. Bioinformatics 29(20), 2529–2538 (2013)

    Article  Google Scholar 

  9. Martin, J., Bruno, V.M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M., Wang, Z.: Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC genomics 11(1), 663 (2010)

    Article  Google Scholar 

  10. de Lima, L. I. S.: O problema do alinhamento de segmentos: Master’s thesis, Universidade Federal de Mato Grosso do Sul, October (2013) (in portuguese)

    Google Scholar 

  11. Pevzner, P.: Computational molecular biology: an algorithmic approach. MIT press (2000)

    Google Scholar 

  12. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of books in the mathematical sciences. W.H. Freeman (1979)

    Google Scholar 

  13. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1), 57–63 (2009)

    Article  Google Scholar 

  14. Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic acids research 40(20), 10073–10083 (2012)

    Article  Google Scholar 

  15. Lu, B., Zeng, Z., Shi, T.: Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Science China Life Sciences 56(2), 143–155 (2013)

    Article  Google Scholar 

  16. Martin, J.A., Wang, Z.: Next-generation transcriptome assembly. Nature Reviews Genetics 12(10), 671–682 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Z. Zaccaron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zaccaron, A.Z., Adi, S.S., Higa, C.H.A., Araujo, E., Bluhm, B.H. (2015). The Maximum Similarity Partitioning Problem and its Application in the Transcriptome Reconstruction and Quantification Problem. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9155. Springer, Cham. https://doi.org/10.1007/978-3-319-21404-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21404-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21403-0

  • Online ISBN: 978-3-319-21404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics