Skip to main content

Moving Meshes to Fit Large Deformations Based on Centroidal Voronoi Tessellation (CVT)

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9155))

Included in the following conference series:

  • 1200 Accesses

Abstract

The essential criterion for stability and fast convergence of CFD-solvers (CFD - computational fluid dynamics) is a good quality of the mesh. Based on results of [30] in this paper we use the so-called centroidal Voronoi tessellation (CVT) not only for mesh generation and optimization. The CVT is applied to develop a new mesh motion method. The CVT provides an optimal distribution of generating points with respect to a cell density function. For a uniform cell density function the CVT results in high-quality isotropic meshes. The non-uniform cases lead to a trade-off between isotropy and fulfilling cell density function constraints. The idea of the proposed approach is to start with the CVT-mesh and apply for each time step of transient simulation the so-called Lloyd’s method in order to correct the mesh as a response to the boundary motion. This leads to the motion of the whole mesh as a reaction to movement. Furthermore, each step of Lloyd’s method provides a further optimization of the underlying mesh, thus the mesh remains close to the CVT-mesh. Experience has shown that it is usually sufficient to apply a few iterations of the Lloyd’s method per time step in order to achieve high-quality meshes during the whole transient simulation. In comparison to previous methods our method provides high-quality and nearly isotropic meshes even for large deformations of computational domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Foy, B., Dawes, W.: Unstructured pressure-correction solver based on a consistent discretization of the Poisson equation. International journal for numerical methods in fluids 34, 463–478 (1999)

    Article  Google Scholar 

  2. Farhat, C., Degand, C., Koobus, B., Lesoinne, M.: Torsional springs for twodimensional dynamic unstructured fluid meshes. Computer Methods in Applied Mechanics and Engineering 163(1–4), 231–245 (1998)

    Article  MATH  Google Scholar 

  3. Bottassoa, C.L., Detomib, D., Serra, R.: The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes. Computer Methods in Applied Mechanics and Engineering 194(39–41), 4244–4264 (2005)

    Article  Google Scholar 

  4. Degand, C., Farhat, C.: A three-dimensional torsional spring analogy method for unstructured dynamic meshes. Computers & Structures 80(3–4), 305–316 (2002)

    Article  Google Scholar 

  5. Eymard, R., Herard, J.-M.: Finite Volumes for Complex Applications V. Wiley (2008)

    Google Scholar 

  6. Zeng, D., Ethier, C.R.: A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Elements in Analysis and Design 41(11–12), 1118–1139 (2005)

    Article  Google Scholar 

  7. Wang, D., Qiang, D.: Mesh optimization based on the centroidal voronoi tessellation. International Journal of Numerical Analysis and Modeling 2, 100–113 (2005)

    MathSciNet  Google Scholar 

  8. Yan, D.-M., Wang, W., Levy, B., Liu, Y.: Efficient Computation of Clipped Voronoi Diagram for Mesh Generation. Computer-Aided Design 45, 843–852 (2013)

    Article  MathSciNet  Google Scholar 

  9. Lien, F.-S.: A pressure-based unstructured grid method for all-speed flows. International journal for numerical methods in fluids 33, 355–375 (1999)

    Article  Google Scholar 

  10. Markou, G.A., Mouroutis, Z.S., Charmpis, D.C., Papadrakakis, M.: The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems. Computer Methods in Applied Mechanics and Engineering 196(4–6), 747–765 (2007)

    Article  MATH  Google Scholar 

  11. Jasak, H., Tukovic, Z.: Automatic mesh motion for the unstructured finite volume method (November 2006)

    Google Scholar 

  12. Donea, J., Huerta, A., Ponthot, J.Ph., Rodriguez-Ferran, A.: In: Encyclopedia of Computational Mechanics, Chapter 14, Arbitrary Lagrangian-Eulerian Methods (2004)

    Google Scholar 

  13. Chen, L.: Mesh smoothing schemes based on optimal delaunay triangulations. Math Department, The Pennsylvania State University, State College

    Google Scholar 

  14. Ebeida, M.S., Mitchell, S.A.: Uniform random Voronoi meshes. In: Proceedings of the 20th International Meshing Roundtable, Paris, France, pp. 273–290. Sandia National Laboratories, Albuquerque (2011)

    Google Scholar 

  15. OpenFOAM C++ Documentation. http://foam.sourceforge.net/docs/cpp/

  16. Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M.: Variational Tetrahedral Meshing. ACM Transactions on Graphics. Proceedings of ACM SIGGRAPH 2005 24, 617–625 (2005)

    Google Scholar 

  17. Qiang, D., Wang, D.: Anisotropic centroidal voronoi tessellations and their applications. SIAM Journal on Scientific Computing 26(3), 737–761 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Qiang, D., Wang, D.: Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellation. International journal for numerical methods in engineering 56, 1355–1373 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Qiang, D., Emelianenko, M.: Acceleration schemes for computing centroidal Voronoi tessellations. Numerical linear algebra with applications 0, 1–19 (2005)

    Google Scholar 

  20. Qiang, D., Emelianenko, M., Lili, J.: Convergence of the Lloyd algorithm for computing centroidal voronoi tessellations. SIAM Journal Numerical Analysis 44(1), 102–119 (2006)

    Article  MATH  Google Scholar 

  21. Qiang, D., Gunzburger, M.D., Lili, J.: Constrained Centroidal Voronoi Tessellations For Surfaces. SIAM Journal on Scientific Computing 24(5), 1488–1506 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Qiang, D., Faber, V., Gunzburger, M.: Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM REVIEW 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Löhner, R., Yang, C.: Improved ALE mesh velocities for moving bodies. Communications in Numerical Methods in Engineering 12, 599–608 (1996)

    Article  MATH  Google Scholar 

  24. Rycroft, C.H.: Voro++: a three-dimensional Voronoi cell library in C++ (2009)

    Google Scholar 

  25. Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Computers & Fluids 36, 1119–1136 (2007)

    Article  MATH  Google Scholar 

  26. Menon, S., Schmidt, D.P.: Conservative interpolation on unstructured polyhedral meshes: An extension of the supermesh approach to cell-centered finite-volume variables. Computer Methods in Applied Mechanics and Engineering 200, 2797–2804 (2011)

    Article  MATH  Google Scholar 

  27. Arabi, S., Camarero, R., Guibault, F.: Unstructured meshes for large body motion using mapping operators. Mathematics and computers in simulation 106, 26–43 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X., Zhou, D., Bao, Y.: Mesh motion approach based on spring analogy method for unstructured meshes. Journal of Shanghai Jiaotong University 15, 138–146 (2010)

    Article  Google Scholar 

  29. Zhou, X., Li, S.: A new mesh deformation method based on disk relaxation algorithm with pre-displacement and post-smoothing. Journal of Computational Physics 235, 199–215 (2013)

    Article  MathSciNet  Google Scholar 

  30. Wambold, W., Bärwolff, G.: New mesh motion solver for large deformations based on CVT. Procedia Engineering 82, 390–402 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Bärwolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wambold, W., Bärwolff, G., Schwandt, H. (2015). Moving Meshes to Fit Large Deformations Based on Centroidal Voronoi Tessellation (CVT). In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9155. Springer, Cham. https://doi.org/10.1007/978-3-319-21404-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21404-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21403-0

  • Online ISBN: 978-3-319-21404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics