Abstract
In this paper, we consider a restricted covering problem, in which a convex polygon \({\mathcal{P}}\) with n vertices and an integer k are given, the objective is to cover the entire region of \({\mathcal{P}}\) using k congruent disks of minimum radius \(r_{opt}\), centered on the boundary of \({\mathcal{P}}\). For \({k\ge 7}\) and any \({\epsilon >0}\), we propose a \({(1+\frac{7}{k}+\frac{7\epsilon }{k}+\epsilon )}\)-factor approximation algorithm, which runs in \({O(n(n+k)(|{\log r_{opt}}|+\log \lceil \frac{1}{\epsilon }\rceil ))}\) time. The previous best known approximation factor in the literature for the same problem is 1.8841 [H. Du and Y. Xu: An approximation algorithm for k-center problem on a convex polygon, J. Comb. Optim. (2014), 27(3), 504-518].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Procopiuc, C.: Exact and approximation algorithms for clustering. Algorithmica 33, 201–226 (2002)
Agarwal, P.K., Sharir, M.: Efficient algorithm for geometric optimization. ACM Comp. Surv. 30, 412–458 (1998)
Brass, P., Knauer, C., Na, H.S., Shin, C.S.: Computing k-centers on a line. CoRR abs/ 0902.3282 (2009)
Bose, P., Toussaint, G.: Computing the constrained euclidean, geodesic and link center of a simple polygon with applications. In: Proc. of Pacific Graphics International, pp. 102–112 (1996)
Das, G.K., Roy, S., Das, S., Nandy, S.C.: Variations of base station placement problem on the boundary of a convex region. Int. J. Found. Comput. Sci. 19(2), 405–427 (2008)
Du, H., Xu, Y.: An approximation algorithm for k-center problem on a convex polygon. J. of Comb. Opt. 27(3), 504–518 (2014)
Halperin, D., Sharir, M., Goldberg, K.: The 2-center problem with obstacles. J. Algorithms 42, 109–134 (2002)
Hurtado, F., Sacriscan, V., Toussaint, G.: Facility location problems with constraints. Stud. Locat. Anal. 15, 17–35 (2000)
Hwang, R., Lee, R., Chang, R.: The generalized searching over separators strategy to solve some NP-hard problems in sub-exponential time. Algorithmica 9, 398–423 (1993)
Karmakar, A., Das, S., Nandy, S.C., Bhattacharya, B.K.: Some variations on constrained minimum enclosing circle problem. J. of Comb. Opt. 25(2), 176–190 (2013)
Kim, S.K., Shin, C.-S.: Efficient algorithms for two-center problems for a convex polygon. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 299–309. Springer, Heidelberg (2000)
Roy, S., Bardhan, D., Das, S.: Base station placement on boundary of a convex polygon. J. Parallel Distrib. Comput. 68, 265–273 (2008)
Suzuki, A., Drezner, Z.: The \(p\)-center location problem in area. Location Sci. 4, 69–82 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Basappa, M., Jallu, R.K., Das, G.K. (2015). Constrained k-Center Problem on a Convex Polygon. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9156. Springer, Cham. https://doi.org/10.1007/978-3-319-21407-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-21407-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21406-1
Online ISBN: 978-3-319-21407-8
eBook Packages: Computer ScienceComputer Science (R0)