Abstract
Simplicial partitions are suitable to divide a bounded area in branch and bound. In the iterative refinement process, a popular strategy is to divide simplices by their longest edge, thus avoiding needle-shaped simplices. A range of possibilities arises in higher dimensions where the number of longest edges in a simplex is greater than one. The behaviour of the search and the resulting binary search tree depend on the selected longest edge. In this work, we investigate different rules to select a longest edge and study the resulting efficiency of the branch and bound algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aparicio, G., Casado, L.G., Hendrix, E.M.T., García, I., Toth, B.G.: On computational aspects of a regular n-simplex bisection. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 513–518 (2013)
Baritompa, W.: Customizing methods for global optimization, a geometric viewpoint. Journal of Global Optimization 3(2), 193–212 (1993)
Casado, L.G., Hendrix, E.M.T., García, I.: Infeasibility spheres for finding robust solutions of blending problems with quadratic constraints. Journal of Global Optimization 39(4), 577–593 (2007)
Hannukainen, A., Korotov, S., Křížek, M.: On numerical regularity of the face-to-face longest-edge bisection algorithm for tetrahedral partitions. Science of Computer Programming 90, 34–41 (2014)
Hendrix, E.M.T., Casado, L.G., García, I.: The semi-continuous quadratic mixture design problem: Description and branch-and-bound approach. Eur. J. Oper. Res. 191(3), 803–815 (2008)
Hendrix, E.M.T., Casado, L.G., Amaral, P.: Global optimization simplex bisection revisited based on considerations by Reiner Horst. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 159–173. Springer, Heidelberg (2012)
Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., García, I.: On simplicial longest edge bisection in Lipschitz global optimization. In: Murgante, B., et al. (eds.) ICCSA 2014, Part II. LNCS, vol. 8580, pp. 104–114. Springer, Heidelberg (2014)
Horst, R., Tuy, H.: Global Optimization (Deterministic Approaches). Springer, Berlin (1990)
Jamil, M., Yang, X.: A literature survey of benchmark functions for global optimization problems. Int. Journal of Mathematical Modelling and Numerical Optimisation 4(2), 150–194 (2013)
Mladineo, R.H.: An algorithm for finding the global maximum of a multimodal multivariate function. Math. Program. 34, 188–200 (1986)
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer New York (2014)
Todd, M.J.: The computation of fixed points and applications. Lecture Notes in Economics and Mathematical Systems, vol. 24. Springer-Verlag (1976)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., García, I. (2015). Heuristics for Longest Edge Selection in Simplicial Branch and Bound. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9156. Springer, Cham. https://doi.org/10.1007/978-3-319-21407-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-21407-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21406-1
Online ISBN: 978-3-319-21407-8
eBook Packages: Computer ScienceComputer Science (R0)