Skip to main content

Heuristics for Longest Edge Selection in Simplicial Branch and Bound

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9156))

Included in the following conference series:

Abstract

Simplicial partitions are suitable to divide a bounded area in branch and bound. In the iterative refinement process, a popular strategy is to divide simplices by their longest edge, thus avoiding needle-shaped simplices. A range of possibilities arises in higher dimensions where the number of longest edges in a simplex is greater than one. The behaviour of the search and the resulting binary search tree depend on the selected longest edge. In this work, we investigate different rules to select a longest edge and study the resulting efficiency of the branch and bound algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aparicio, G., Casado, L.G., Hendrix, E.M.T., García, I., Toth, B.G.: On computational aspects of a regular n-simplex bisection. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 513–518 (2013)

    Google Scholar 

  2. Baritompa, W.: Customizing methods for global optimization, a geometric viewpoint. Journal of Global Optimization 3(2), 193–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Casado, L.G., Hendrix, E.M.T., García, I.: Infeasibility spheres for finding robust solutions of blending problems with quadratic constraints. Journal of Global Optimization 39(4), 577–593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hannukainen, A., Korotov, S., Křížek, M.: On numerical regularity of the face-to-face longest-edge bisection algorithm for tetrahedral partitions. Science of Computer Programming 90, 34–41 (2014)

    Article  Google Scholar 

  5. Hendrix, E.M.T., Casado, L.G., García, I.: The semi-continuous quadratic mixture design problem: Description and branch-and-bound approach. Eur. J. Oper. Res. 191(3), 803–815 (2008)

    Article  MATH  Google Scholar 

  6. Hendrix, E.M.T., Casado, L.G., Amaral, P.: Global optimization simplex bisection revisited based on considerations by Reiner Horst. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 159–173. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., García, I.: On simplicial longest edge bisection in Lipschitz global optimization. In: Murgante, B., et al. (eds.) ICCSA 2014, Part II. LNCS, vol. 8580, pp. 104–114. Springer, Heidelberg (2014)

    Google Scholar 

  8. Horst, R., Tuy, H.: Global Optimization (Deterministic Approaches). Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  9. Jamil, M., Yang, X.: A literature survey of benchmark functions for global optimization problems. Int. Journal of Mathematical Modelling and Numerical Optimisation 4(2), 150–194 (2013)

    Article  MATH  Google Scholar 

  10. Mladineo, R.H.: An algorithm for finding the global maximum of a multimodal multivariate function. Math. Program. 34, 188–200 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer New York (2014)

    Google Scholar 

  12. Todd, M.J.: The computation of fixed points and applications. Lecture Notes in Economics and Mathematical Systems, vol. 24. Springer-Verlag (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. R. Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., García, I. (2015). Heuristics for Longest Edge Selection in Simplicial Branch and Bound. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9156. Springer, Cham. https://doi.org/10.1007/978-3-319-21407-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21407-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21406-1

  • Online ISBN: 978-3-319-21407-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics