Abstract
A semi-Lagrangian semi-implicit scheme with additional vertical splitting is developed for nonhydrostatic atmospheric model. The essential elements of the scheme are solution of the trajectory equations for advective part, separation of the vertical normal modes in fast and slow processes with respect to gravity wave propagation speed for each mode, explicit and simpler approximation of slower vertical modes and implicit time differencing for faster modes. This approach allows us to choose the time step based on accuracy considerations and substitute 3D elliptic problems inherent for semi-implicit time differencing by a set of 2D elliptic problems. The performed numerical experiments show computational efficiency of the proposed scheme and accuracy of the predicted atmospheric fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anthes, R.A., Kuo, Y.H., Hsie, E.Y., Low-Nam, S., Bettge, T.W.: Estimation of skill and uncertainty in regional numerical models. Q. J. R. Meteorol. Soc. 115, 763–806 (1989)
Bandy, V., Sweet, R.: A set of three drivers for BOXMG: a black box multigrid solver. Comm. Appl. Num. Methods 8, 563–571 (1992)
Bates, J.R., Moorthi, S., Higgins, R.W.: A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part I: Adiabatic formulation, Mon. Wea. Rev. 121, 244–263 (1993)
Bourchtein, A.: Semi-Lagrangian semi-implicit space splitting regional baroclinic atmospheric model. Appl. Numer. Math. 41, 307–326 (2002)
Bourchtein, A., Bourchtein, L.: Semi-Lagrangian semi-implicit time-splitting scheme for a regional model of the atmosphere. J. Comput. Appl. Math. 227, 115–125 (2009)
Burridge, D.M.: A split semi-implicit reformulation of the Bushby-Timpson 10 level model. Quart. J. Roy. Meteor. Soc. 101, 777–792 (1975)
Côté, J., Gravel, S., Methot, A., Patoine, A., Roch, M., Staniforth, A.: The operational CMC-MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Wea. Rev. 126, 1373–1395 (1998)
Davies, T., Cullen, M.J.P., Malcolm, A.J., Mawson, M.H., Staniforths, A., White, A.A., Wood, N.: A new dynamical core for the Met Office’s global and regional modeling. Q. J. Roy. Met. Soc. 131, 1759–1782 (2005)
Dendy, J.E.: Black box multigrid. J. Comp. Phys. 48, 366–386 (1982)
Diamantakis, M., Davies, T., Wood, N.: An iterative time-stepping scheme for the Met Office’s semi-implicit semi-Lagrangian nonhydrostatic model. Q. J. Roy. Met. Soc. 133, 997–1011 (2007)
Dudhia, J., Bresch, J.F.: A global version of the PSU-NCAR mesoscale model. Mon. Wea. Rev. 130, 2989–3007 (2002)
Durran, D.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York (1999)
Holton, J.R.: An Introduction to Dynamic Meteorology. Academic Press, New York (2004)
Hortal, M.: The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Met. Soc. 128, 1671–1687 (2002)
Klemp, J., Wilhelmson, R.: The simulation of three-dimensional convective storm dynamics. J. Atm. Sci. 35, 1070–1096 (1978)
Klemp, J., Skamarock, W.C., Dudhia, J.: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev. 135, 2897–2913 (2007)
McDonald, A.: Accuracy of multiply upstream, semi-Lagrangian advective schemes. Mon. Wea. Rev. 112, 1267–1275 (1984)
Pudykiewicz, J., Benoit, R., Staniforth, A.: Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos.-Ocean 23, 267–303 (1985)
Saito, K., Ishida, J., Aranami, K., Hara, T., Segawa, T., Narita, M., Honda, Y.: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteorol. Soc. Japan 85, 271–304 (2007)
Skamarock, W.C., Klemp, J.B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comp. Phys. 227, 3465–3485 (2008)
Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models - A review. Mon. Wea. Rev. 119, 2206–2223 (1991)
Staniforth, A., Wood, N.: Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model. J. Comp. Phys. 227, 3445–3464 (2008)
Steppeler, J., Hess, R., Schattler, U., Bonaventura, L.: Review of numerical methods for nonhydrostatic weather prediction models. Met. Atm Phys. 82, 287–301 (2003)
Tanguay, M., Robert, A., Laprise, R.: A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev. 118, 1970–1980 (1990)
Temperton, C., Hortal, M., Simmons, A.J.: A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127, 111–126 (2001)
Yeh, K.S., Cote, J., Gravel, S., Methot, A., Patoine, A., Roch, M., Staniforth, A.: The CMC-MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev. 130, 339–356 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bourchtein, A. (2015). Semi-Lagrangian Semi-Implicit Vertically Splitting Scheme for Nonhydrostatic Atmospheric Model. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9156. Springer, Cham. https://doi.org/10.1007/978-3-319-21407-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-21407-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21406-1
Online ISBN: 978-3-319-21407-8
eBook Packages: Computer ScienceComputer Science (R0)