Skip to main content

Transfinite Lyndon Words

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9168))

Included in the following conference series:

  • 548 Accesses

Abstract

In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are locally decreasing, a relaxation of the condition used in the case of finite words.

In a second part, we prove that the factorization of a rational word has a special form and that it can be computed in polynomial time from a rational expression describing the word.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Büchi, J.R.: Transfinite automata recursions and weak second order theory of ordinals. In: Proc. Int. Congress Logic, Methodology, and Philosophy of Science, Jerusalem 1964, North Holland, pp. 2–23 (1965)

    Google Scholar 

  2. Carton, O., Choffrut, C.: Periodicity and roots of transfinite strings. Theoret. Informatics and Applications 35(6), 525–533 (2001)

    Article  MathSciNet  Google Scholar 

  3. Duval, J.P.: Mots de Lyndon et périodicité. RAIRO Informat. Théor. 14, 181–191 (1980)

    MathSciNet  Google Scholar 

  4. Knuth, D.E.: Combinatorial Algorithms, The Art of Computer Programming. Addison-Wesley Professional, vol. 4A (2011)

    Google Scholar 

  5. Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 17. Addison-Wesley, Reading (1983)

    Google Scholar 

  6. Lyndon, R.C.: On Burnside problem I. Trans. Am. Math. Soc. 77, 202–215 (1954)

    MathSciNet  Google Scholar 

  7. Lyndon, R.C.: On Burnside problem II. Trans. Am. Math. Soc. 78, 329–332 (1954)

    MathSciNet  Google Scholar 

  8. Melançon, G.: Lyndon factorization of infinite words. In: Puech, C., Reischuk, R. (eds.) STACS 96. LNCS, vol. 1046, pp. 147–154. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Melançon, G.: Viennot factorization of infinite words. Inf. Process. Lett. 60(2), 53–57 (1996)

    Article  Google Scholar 

  10. Rosenstein, J.G.: Linear Ordering. Academic Press, New York (1982)

    Google Scholar 

  11. Siromoney, R., Mathew, L., Dare, V.R., Subramanian, K.G.: Infinite Lyndon words. Inf. Process. Lett. 50(2), 101–104 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Carton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Boasson, L., Carton, O. (2015). Transfinite Lyndon Words. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21500-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21499-3

  • Online ISBN: 978-3-319-21500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics