
Logical Methods in Computer Science

Volume 16, Issue 4, 2020, pp. 9:1–9:38

https://lmcs.episciences.org/

Submitted Sep. 25, 2018

Published Nov. 10, 2020

TRANSFINITE LYNDON WORDS

LUC BOASSON AND OLIVIER CARTON

IRIF, Université de Paris
e-mail address: Luc.Boasson@gmail.com, Olivier.Carton@irif.fr

Abstract. In this paper, we extend the notion of Lyndon word to transfinite words. We
prove two main results. We first show that, given a transfinite word, there exists a unique
factorization in Lyndon words that are densely non-increasing, a relaxation of the condition
used in the case of finite words.

In the annex, we prove that the factorization of a rational word has a special form and
that it can be computed from a rational expression describing the word.

1. Introduction

Lyndon words were introduced by Lyndon in [9, 10] as standard lexicographic sequences in
the study of the derived series of the free group over some alphabet A. These words can
be used to construct a basis of the free Lie algebra over A, and their enumeration yields
Witt’s well-known formula for the dimension of the homogeneous component Ln(A) of this
free Lie algebra. Lyndon words turn out to be a powerful tool to prove results such as the
“Runs” theorem [1]. This theorem states that the number of maximal repetitions in a word
of length n is bounded by n, where a repetition is a factor which is at least twice as long as
its shortest period.

There are several equivalent definitions of these words, but they are usually defined as
those words that are primitive and minimal for the lexicographic ordering in their conjugacy
class. The nice properties they enjoy in linear algebra are actually closely related to their
properties in the free monoid. Lyndon words provide a nice factorization of the free monoid.

Lyndon words can be studied with the tools of combinatorics on words, leaving aside
the algebraic origin of these words. It then can be proved directly that each word w

of the free monoid A∗ has a unique decomposition as a product w = u1 · · · un of a non-
increasing sequence of Lyndon words u1 >lex · · · >lex un for the lexicographic ordering.
This uniqueness of the decomposition of each word is indeed remarkable. It led Knuth to
call Lyndon words prime words [7, p. 305], and we also use this terminology. As usual, such a
result raises the two following related questions: first, how to efficiently test whether a given
word is prime, and second — more ambitious — how to compute its prime factorization.
It has been shown that this factorization can be computed in linear time in the size of the
given word w [5].

Key words and phrases: Lyndon words, ordinals.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(4:9)2020

© L. Boasson and O. Carton
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

9:2 L. Boasson and O. Carton Vol. 16:4

Very often, in the field of combinatorics of words, classical results give rise to an at-
tempt at some generalization. This can be achieved by adapting the results to trees or to
infinite words. The notion of prime word does not constitute an exception: unique prime
decomposition has already been extended to ω-words by Siromoney et al. in [14], where it is
shown that any ω-word x can be uniquely factorized either as x = u0u1u2 · · · where (ui)i≥0
is a non-increasing sequence of finite prime words, or x = u0u1 · · · un where u0, . . . , un−1

is a non-increasing sequence of finite prime words and un is a prime ω-word such that
un−1 >lex un. Another characterization of prime ω-words is provided by [12, 11] where the
prime factorization of some well-known ω-words such as the Fibonacci word is given. The
prime factorization of automatic ω-words is still automatic [6].

The goal of this paper is to extend further such results to transfinite words, that is,
words indexed by countable ordinals. First we extend the factorization theorem to all
countable words, and second, we provide an algorithm that computes this factorization for
words that can be finitely described by a rational expression.

The first task is to find a suitable notion of transfinite prime words. This is not easy,
as the different equivalent definitions for finite prime words do not coincide any more on
transfinite words. Since the factorization property is presumably their most remarkable
one, it can be used as a gauge to measure the accuracy of a definition. If a definition
allows us to prove that each transfinite word has a unique decomposition in prime words, it
can be considered as the right one. The two main points are that the factorization should
always exist and that it should be unique. Of course, the definition should also satisfy the
following additional requirement: it has to be an extension of the classical one for finite
words, meaning that it must coincide with the classical definition for finite words. We
introduce such a definition. The existence and uniqueness of the factorization is obtained
by slightly relaxing the property of being non-increasing. It is replaced by the property of
being densely non-increasing (see Section 4 for the precise definition). As requested, the two
properties coincide for finite sequences. Our results extend the ones of Siromoney et al. [14],
as we get the same definition of prime words of length ω and the same decomposition for
words of length ω.

The second task is to extend the algorithmic property of the decomposition of a word
in prime words. Of course, it is not possible to compute the factorization of any transfinite
word, but we have focused on the so-called rational words, that is, words that can be
described from the letters using product and ω-operations (possibly nested). We prove
that the factorization of these rational words have a special form. It can be a transfinite
sequence of primes, but only finitely many different ones occur in it. Furthermore, all the
prime words occurring are also rational and the sequence is really non-increasing in that
case. We give an algorithm that computes the factorization of a rational word given by an
expression involving products and ω-operations.

The paper is organized as follows. Basic definitions of ordinals and transfinite words
are recalled in Section 2. The definition of prime words is given in Section 3, with a
few properties used in the rest of the paper. The existence and uniqueness of the prime
factorization is proved in Section 4. The Appendix A is devoted to rational words and to the
properties of their prime factorization. The algorithm to compute this prime factorization
is described and proved in Appendix B. A short version of this paper has been published
in the proceedings of DLT’2015 [2].

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:3

2. Preliminaries

In this section, we first recall the notion of an ordinal and the notion of a transfinite word,
that is, a sequence of letters indexed by an ordinal.

2.1. Ordinals. We give in this section a short introduction to ordinals but we assume that
the reader is already familiar with this notion. We do not define formally all notions. We
refer the reader to Rosenstein [13] for a complete introduction to the theory of ordinals. In
this paper, we only use countable ordinals. As an abuse of language, we use throughout
the paper the word ordinal for countable ordinal. An ordinal is an isomorphism class of
well-founded countable linear (that is total) orderings. The symbol ω denotes, as usual, (the
isomorphism class of) the ordering of the non-negative integers. Here we give a few examples
of ordinals. The ordinal ω · 2 is the ordering made of two copies of ω: 0, 2, 4, . . . , 1, 3, 5,
More generally, the ordinal ω · k is the ordinal made of k copies of ω. The ordinal ω2 is the
lexicographic ordering of pairs of non-negative integers: (m2,m1) < (m′

2,m
′
1) holds if either

m1 < m′
1 holds or both m1 = m′

1 and m2 < m′
2 hold. Note that the rightmost components

are compared first. This ordinal ω2 can be seen as ω copies of ω. More generally, the
ordinal ωk for a fixed k ≥ 0 is the lexicographic ordering of k-tuples (mk, . . . ,m1) of non-
negative integers. The ordering ωω is the ordering on k-tuples, (mk, . . . ,m1) for k ranging
over all non-negative integers, defined as follows. The relation (mk, . . . ,m1) < (m′

k′ , . . . ,m
′
1)

holds in ωω if either k < k′ holds or both k = k′ and (mk, . . . ,m1) < (m′
k, . . . ,m

′
1) holds

in ωk.
An ordinal α is said to be a successor if α = β + 1 for some ordinal β. An ordinal

is called limit if it is neither 0, nor a successor ordinal. As usual, we identify the linear
ordering on ordinals with membership: an ordinal α is then identified with the set of
ordinals smaller than α. In this paper, we mainly use ordinals to index sequences. Let α

be an ordinal. A sequence x of length α (or an α-sequence) of elements from a set E is
a function which maps any ordinal β smaller than α to an element of E. A sequence x is
usually denoted by x = (xβ)β<α

. A subset Ω of ordinals is called closed if it is closed under

taking limit: if α = sup {αn | n < ω} with αn ∈ Ω for each n < ω, then α ∈ Ω. Note that
any bounded closed subset of ordinals has a greatest element. This holds because we only
consider countable ordinals as already mentioned. Let γ and γ′ be two ordinals such that
γ ≤ γ′. There exists a unique ordinal denoted by γ′ − γ such that γ + (γ′ − γ) = γ′. We
let [γ, γ′) denote the interval {β | γ ≤ β < γ′}. It is empty if γ′ = γ and it only contains
γ if γ′ = γ + 1. If γ′ is a successor ordinal, that is, if γ′ = γ′′ + 1 for some ordinal γ′′, the
interval [γ, γ′) is also denoted by [γ, γ′′].

2.2. Words. Let A be a finite set called the alphabet equipped with a linear ordering <alp.
Its elements are called letters. In the examples, we often assume that A = {a, b} with
a <alp b. This ordering on A is necessary to define the lexicographic ordering on words. For
an ordinal α, an α-sequence of letters is also called a word of length α or an α-word over A.
The sequence of length 0 which has no element is called the empty word and it is denoted
by ε. The length of a word x is denoted by |x|. The set of all words of countable length
over A is denoted by A#.

Let x be a word (aβ)β<α
of length α. For any γ ≤ γ′ ≤ α, we let x[γ, γ′) denote the

word bββ<γ′−γ
of length γ′ − γ defined by bβ = aγ+β for any 0 ≤ β < γ′ − γ. It is the

9:4 L. Boasson and O. Carton Vol. 16:4

empty word if γ′ = γ and it is a single letter if γ′ = γ + 1. Such a word x[γ, γ′) is called a
factor of x. A word of the form x[0, γ) (resp., x[γ, α)) for 0 ≤ γ ≤ α is called a prefix (resp.,
suffix) of x. The prefix (resp., suffix) is called proper whenever 0 < γ < α. If x is the word
(ab)ω(bc)ω of length ω · 2, the prefix x[0, ω) is (ab)ω, the suffix x[ω, ω · 2) is (bc)ω and the
factor x[5, ω+2) is the word (ba)ωbc. Notice that a proper suffix of a word x may be equal
to x. For instance, the proper suffix x[4, ω · 2) of the word x = (ab)ω(bc)ω is equal to x.
Notice however that a proper prefix y of a word x cannot be equal to x, since it satisfies
|y| < |x|.

The concatenation, also called the product, of two words x = (aγ)γ<α
and y = (bγ)γ<β

of lengths α and β is the word z = (cγ)γ<α+β
of length α+β given by cγ = aγ if γ < α and

cγ = bγ−α if α ≤ γ < α+ β. This word is merely denoted by xy. Note that the product xy
may be equal to y even if x is non-empty: take for instance x = a and y = aω. Note that a
word x is a prefix (resp., suffix) of a word x′ if x′ = xy (resp., x′ = yx) for some word y. The
word x is a factor of a word x′ if x′ = yxz for two words y and z. Note that for any word x

and for any ordinals γ ≤ γ′ ≤ γ′′ ≤ |x|, the equality x[γ, γ′′) = x[γ, γ′)x[γ′, γ′′) holds.
More generally, let (xβ)β<α

be an α-sequence of words. The word obtained by concate-

nating the words of the sequence (xβ)β<α
is denoted by

∏
β<α xβ. Its length is the sum

∑
β<α |xβ |. The product

∏
n<ω x for a given word x is denoted by xω. An α-factorization

of a word x is a sequence (xβ)β<α
of words such that x =

∏
β<α xβ.

We write x 6pre x′ whenever x is a prefix of x′ and x <pre x′ whenever x is a prefix

of x′ different from x′. The relation <pre is an ordering on A#. The ordering <str is defined
by x <str x

′ if there exist two letters a <alp b and three words y, z and z′ such that x = yaz

and x′ = ybz′. The lexicographic ordering 6lex is finally defined by x 6lex x′ if x 6pre x
′ or

x <str x
′. We write x <lex x′ whenever x 6lex x′ and x 6= x′. The relation <lex is a linear

ordering on A#. Note that the ordering <alp is the restriction of <str to the alphabet.
Let (xn)n<ω be a sequence of words such that xn 6pre xn+1 for each n ≥ 0. By

definition, the limit of the sequence (xn)n<ω is the product
∏

n<ω un where u0 = x0 and
each word un+1 for n ≥ 0 is the unique word such xn+1 = xnun.

We mostly use Greek letters α, β, . . . to denote ordinals, letters a, b, . . ., to denote el-
ements of the alphabet, letters x, y, . . . to denote transfinite words and letters u, v, . . . to
denote prime transfinite words.

3. Prime words

In this section, we introduce the crucial definition of a prime transfinite word. We also
prove some basic properties of these words, as well as some closure properties. All these
preliminary results are helpful to prove the existence of the prime factorization. We start
with the classical definition of a primitive word.

A word x is primitive if it is not the power of another word, i.e., if the equality x = yα

for some ordinal α and some word y implies α = 1 and y = x. Note that any word x is
either primitive or the power yα of some primitive word y for some ordinal α ≥ 2 [4].

Definition 3.1. A word w is prime, also called Lyndon, if w is primitive and any proper
suffix x of w satisfies

The terminology prime is borrowed from [7, p. 305]. It is justified by Theorem 4.3,
which states that any word has a unique factorization in prime words which is almost
non-increasing (see Section 4 for a precise statement).

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:5

Example 3.2. Both finite words a2b and a2bab are prime. Both finite words aba and abab

are not prime. Indeed, the suffix a of aba satisfies a <lex aba and abab is not primitive. The
ω-words abω and abab2ab3ab4 · · · are prime. Both ω-words baω and (ab)ω are not prime.
Indeed, the suffix aω of baω satisfies aω <lex baω and the ω-word (ab)ω is not primitive.

Let us make some comments about this definition. First note that only proper suffixes
are considered, since the empty word ε is a suffix of any word w but does not satisfy w 6lex ε

(unless w = ε). Second each suffix x of a prime word w must satisfy w 6lex x, that is, either
w 6pre x or w <str x. Since the length of x is smaller than or equal to the length of w,
the relation w <pre x is impossible, since w <pre x would imply |w| < |x|. The relation
w 6pre x reduces then to w = x. Therefore, a word w is prime if it is primitive and any
proper suffix x of w satisfies either w = x or w <str x. This last remark is so frequently
used along the paper that it is not quoted.

Our definition of prime words coincides with the classical definition for finite words [8,
Chap. 5]. A finite word is a prime word if it is minimal in its conjugacy class or, equivalently,
if it is strictly smaller than any of its proper suffixes [8, Prop. 5.1.2]. A proper suffix of a
finite word cannot be equal to the whole word and therefore, it does not matter whether
it is required that any proper suffix is strictly smaller or just smaller than the whole word.
For transfinite words, it does matter, since some proper suffix might be equal to the whole
word. Our definition indeed allows a suffix of a prime word to be equal to the whole word.
The word w = aωb of length ω+1 is prime, but some of its proper suffixes such as w[1, ω+2)
or w[2, ω + 2) are equal to w.

Our definition also requires the word to be primitive. It is not needed for finite words,
since, in that case, being smaller than all its suffixes implies primitivity. Indeed, if the finite
word x is equal to yn for n ≥ 2, then y is a proper suffix of x that is strictly smaller than x.
Therefore, x cannot be prime. This argument no longer holds for transfinite words. Of
course, the ω-word x = aω is not primitive, but none of its proper suffixes is strictly smaller
than itself. Each proper suffix of x is actually equal to x. The same property holds for each
word of the form aα where α is a power of ω, that is, α = ωβ for some ordinal β ≥ 1.

Our definition of prime words also coincides with the definition for ω-words given in [14]
where an ω-word is called prime if it is the limit of finite prime words. It is also shown
in [14, Prop. 2.2] that an ω-word is prime if and only if it is strictly smaller than any of its
suffixes. Requiring that no suffix is equal to the whole ω-word prevents the ω-word from
being periodic, that is, of the form xω for some finite word x. These last words are the only
non-primitive ω-words. Let us now give a more involved example.

Example 3.3. Define the sequence (un)n<ω of words inductively by u0 = a and un+1 = uωnb.
The first words of the sequence are u1 = aωb and u2 = aωbωb. It can be proved by induction
on n that the length of un is ωn + 1 since (ωn + 1) · ω + 1 = ωn+1 + 1. Let uω be the
word u0u1u2 · · · of length ωω. Note that the equality unun+1 = un+1 holds for each n ≥ 0
and therefore the equality uω = unun+1un+2 · · · also holds for each n ≥ 0. The word uω is
actually the limit of the sequence (un)n<ω as defined in Section 2.2. The limit of ωn + 1 is
ωω, the length of uω and the prefix of length ωn + 1 of uω coincides with un. It is proved
later that each word un is prime and that their limit uω is also prime.

3.1. Properties of prime words. The following results are useful tools for proving that
a given word w is prime. The next lemma makes it easier to prove that w is primitive when
it has already been shown that w is smaller than each of its suffixes.

9:6 L. Boasson and O. Carton Vol. 16:4

Lemma 3.4. Let x be a word of the form yα for some word y and some ordinal α. If α is
not a power of ω, that is, if α 6= ωβ for any β ≥ 0 (with ω0 = 1), there exists a suffix z of x
such that z <pre x. If α is equal to ωβ for some β ≥ 1, then every non-empty suffix z of x
has a suffix equal to x.

Proof. Let α = ωβ1 + · · · + ωβn be the Cantor normal form of α where β1 ≥ · · · ≥ βn.

If α is not a power of ω, then n ≥ 2 and ωβn < α. It follows that the word z = yω
βn

is a proper suffix and a proper prefix of y. The last statement directly follows from the
following property of powers of ω: if α = ωβ and α = α1+α2, then either α2 = 0 or α2 = α.
The former case is excluded because z is non-empty and the result is trivial in the latter
case.

Lemma 3.5. Let u and v be two prime words such that u <lex v. Then v can be factorized
as v = uαxy for some ordinal α and words x and y such that |x| ≤ |u| and u <str x.

Proof. Let α be the greatest ordinal such that uα is a prefix of v. This ordinal does exist,
since the set of ordinals α such that uα is a prefix of v is closed. The word v is then equal
to uαz for some word z. Let us define the words x and y as follows: if |z| ≤ |u|, let x = z and
let y = ε. If |u| ≤ |z|, let x = z[0, |u|) and let y = z[|u|, |z|). Note that the two definitions
coincide if |u| = |z|. In both cases, the equality z = xy holds and x satisfies |x| ≤ |u|.
We claim that u <str x. It suffices to prove that u <lex x since |x| ≤ |u|. First note that
the equality u = x contradicts the definition of α and is therefore impossible. Suppose, by
contradiction, that x <lex u, that is, either x <pre u or x <str u. The case x <pre u only
occurs if |x| < |u|, that is, if |z| < |u|. In that case x is equal to z and is a suffix of v. If
α = 0, x is also a prefix of v. If α > 0, then u is a prefix of v and x <lex u. In both cases,
this is a contradiction since v is prime. If x <str u, the suffix xy of v satisfies xy <lex v, and
this is again a contradiction since v is prime.

Note that the hypothesis of the previous lemma can be weakened. Indeed, the only
required assumptions are that u <lex v and that each proper suffix of v is larger than v.

Corollary 3.6. Let u and v be two prime words such that u <lex v. Then uα <lex u
αv 6lex v

holds for every ordinal α.

Proof. The first relation uα <lex uαv is straightforward. By Lemma 3.5, the word v is equal
to uβxy for some ordinal β and some words x and y such that |x| ≤ |u| and u <str x. The
word uαv is then equal to uα+βxy. If α+β = β, then uαv = v. If α+β > β, then uαv <lex v

since u <str x.

3.2. Closure properties. In this section, we prove some results which state that, under
some hypothesis, the product of some words yields a prime word. To some extend, these
results generalize the classical results on finite words.

It is well-known that if two finite prime words u and v satisfy u <lex v, then the word uv

is prime and satisfies u <lex uv <lex v [8, Prop. 5.1.3]. It can easily be shown by induction
on n that unv is also prime for any integer n. The following proposition extends this result
to transfinite words.

Proposition 3.7. Let u and v be two prime words such that u <lex v. Then uαv is a prime
word for any ordinal α.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:7

Proof. We first prove that every proper suffix z of uαv satisfies uαv 6lex z. Such a suffix z is
either a suffix of v, or it has the form yuβv where y is a non-empty suffix of u and 0 ≤ β ≤ α.
In the former case, one has uαv 6lex v by Corollary 3.6 and v 6lex z, since v is prime and
z is a suffix of v. In the latter case, either y = u or u <str y because u is prime and y is a
suffix of u. If u = y, then z = u1+βv and the result follows from Corollary 3.6. If u <str y,
then uαv <str y 6lex yuβv.

We now prove that uαv is primitive. Suppose that uαv = zβ for some primitive word z

and some ordinal β ≥ 2. By Lemma 3.4 and by the first paragraph, the ordinal β is a power
of ω. Note that uα = zβ1 and v = zβ2 is impossible: since v is primitive, β2 = 1, z = v and
uα = zβ1 , which contradicts the fact that uα <lex uαv 6lex v. Then there exist two ordinals
β1 and β2 and two words z1 and z2 such that z = z1z2, u

α = zβ1z1 and v = z2z
β2 .

Since β = β1 + 1 + β2 and β is a power of ω, then β2 = β. Since β2 ≥ ω, β2 can be
written as β2 = ω + β′

2 where β′
2 is either 0 or a limit ordinal. The word v is then equal

to z2z
ω+β′

2 . Since uα = (z1z2)
β1z1, the word z1 is a prefix of uα. Therefore it satisfies

z1 6lex uα, and since uα <lex v by Corollary 3.6, it also satisfies z1 <lex v. If it satisfies
z1 <str v, the suffix z′ = zω+β′

2 = (z1z2)
ωzβ

′

2 of v satisfies z′ <lex v, and it contradicts the
fact that v is prime. It follows that z1 is a prefix of v and thus a prefix of z2z1. The equality

z1 = z2z1 is not possible. Otherwise, v is equal to z
ω+β′

2

1 and it is not primitive. Therefore

z2z1 is equal to z1z3 for some non-empty word z3. The suffix z′ = z3z2z
ω+β′

2 of v satisfies
v 6lex z′. It follows that z1v 6lex z1z

′ = v. Since z1v is equal to the suffix zω+β′

2 , the
equality v = zω+β′

2 must hold and v is not primitive.

Example 3.8. Consider again the sequence (un)n<ω of words defined by u0 = a and
un+1 = uωnb. It follows from the previous result that each word un is prime.

The following proposition is an extension to transfinite words of the statement of Propo-
sition 2.2 in [14] that the limit of finite prime words is a prime ω-word.

Proposition 3.9. Let (un)n<ω be an ω-sequence of words such that the product u0 · · · un is
prime for each n < ω. Then the ω-product u0u1u2 · · · is also prime.

Proof. Let u be the ω-product u0u1u2 · · · . We first prove that each suffix z of u satisfies
u 6lex z. A proper suffix z of u has the form z = u′kuk+1uk+2 · · · where k < ω and u′k is a
non-empty suffix of uk. Since u

′
k is a non-empty suffix of the prime word u0 · · · uk, it satisfies

either u0 · · · uk = u′k or u0 · · · uk <str u
′
k. In both cases, the suffix z satisfies u 6lex z.

We now prove that u is primitive. Suppose that u = yα for some ordinal α ≥ 2.
Since α ≥ 2, y is a proper prefix of u. There exists then an integer k such that y is a
proper prefix of u0 · · · uk: y <pre u0 · · · uk. Since u = yα, there exist an ordinal γ such that
u0 · · · uk is a prefix of yγ . Let γ be the least ordinal such that u0 · · · uk is a prefix of yγ :
y <pre u0 · · · uk 6pre yγ . Since u0 · · · uk is primitive, u0 · · · uk is not equal to yγ , that is,
y <pre u0 · · · uk <pre y

γ . We claim that the ordinal γ is a successor ordinal. For any ordinal

γ′ < γ, yγ
′

is a prefix of u, but u0 · · · uk is not a prefix of yγ
′

. It follows that yγ
′

is a prefix of
u0 · · · uk. The ordinal γ is then a successor ordinal, since the set Ω = {β | yβ 6pre u0 · · · uk}

is closed. The word u0 · · · uk is then equal to yγ
′

y′ where γ = γ′+1 and y′ is a proper prefix
of y. This word y′ is a suffix and a proper prefix of u0 · · · uk and this contradicts the fact
that u0 · · · uk is prime.

Example 3.10. Consider once again the sequence (un)n<ω of words defined by u0 = a and
un+1 = uωnb, and let uω be the word u0u1u2 · · · . Since each word un is prime and since
u0 · · · un = un, the limit word uω is also prime.

9:8 L. Boasson and O. Carton Vol. 16:4

Lemma 3.11. Let u and v be two prime words such that u <lex v and let α be an ordinal
such that uαv <lex v. The word uαvβ is prime for any ordinal β ≥ 1.

Note that the relation u <lex v implies uαv 6lex v by Corollary 3.6. Lemma 3.11 assumes
that uαv 6= v because otherwise uαvβ is equal to vβ and it is not primitive whenever β ≥ 2.

Proof. By Lemma 3.5, the word v is equal to uγxy for some ordinal γ where |x| ≤ |u|
and u <str x. If α + γ = γ, then uαv = uα+γxy = uγxy is equal to v and this is a
contradiction with the hypothesis uαv <lex v. Therefore, we may assume that α + γ > γ.
Then uαvβ = uαvvβ

′

= uα+γxyvβ
′

where β′ is either β − 1 is β < ω or β otherwise. It
follows that uαvβ <lex v holds for any ordinal β ≥ 1. The proof that the word uαvβ is prime
is then carried out by induction on β. The case β = 1 is the result of Proposition 3.7. If
β > 1, the result follows again from Proposition 3.7 if β is a successor ordinal and it follows
from Proposition 3.9 if β is a limit ordinal.

It can easily be shown by induction on n that if the finite sequence u1, . . . , un of prime
words satisfies u1 <lex · · · <lex un, then the product u1 · · · un is still prime. By Propo-
sition 3.9, this is also true for a sequence of length ω. This no longer holds for longer
sequences. Consider again the sequence (uα)α≤ω of length ω + 1 of prime words given in

Example 3.10. Their product
∏

α≤ω uα is equal to u2ω and it is not prime.

4. Factorization in prime words

In this section, we prove that any word has a unique factorization into prime words that is
almost non-increasing. The goal is to extend to transfinite words the classical result that
any finite word is the product of a non-increasing sequence of prime words [8, Thm 5.1.5].
It turns out that this extension is not straightforward, since some words are not equal
to a product of a non-increasing sequence of prime words. Let us consider the ω-word
x = aba2ba3 · · · and the (ω+1)-word xb. The word x can be factorized as x = ab·a2b·a3b · · ·
and the sequence (anb)n<ω is indeed a non-increasing sequence of prime words. The word
xb, however, cannot be factorized into a non-increasing sequence of prime words. A naive
attempt could be ab · a2b · a3b · · · b, but the sequence (un)n≤ω where un = an+1b for n < ω

and uω = b is not non-increasing since un <lex uω for each n < ω. This naive attempt
is the only possible one since, for finite words as well for ω-words [14], the first factor is
always the longest prime prefix. This property also holds in our case (see Proposition 4.16).
To cope with this difficulty, we introduce the notion of a densely non-increasing sequence.
This is a slightly weaker notion than the notion of a non-increasing sequence. A densely
non-increasing sequence (uβ)β<α

may have some γ < γ′ < α such that uγ <lex uγ′ , but this

may only happen if there exists a limit ordinal γ < γ′′ ≤ γ′ such that the sequence (uβ)β<α

is cofinally decreasing in γ′′. Roughly speaking, an increase is allowed if it comes after an
ω-sequence of strict decreases. The (ω + 1)-sequence (un)n≤ω where un = anb for n < ω

and uω = b is densely non-increasing. Indeed, one has un <lex uω, but also un >lex un+1 for
each n < ω.

We now introduce the formal definition of a densely non-increasing sequence. We
only use this notion for sequences of prime words lexicographically ordered, but we give the
definition for an arbitrary ordered set U . Let (U,<) be a linear ordering and let ū = (uβ)β<α

be a sequence of elements of U . The sequence ū is constant in the interval [γ, γ′) where

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:9

γ < γ′ ≤ α if uβ = uγ holds for any γ ≤ β < γ′. As usual, the sequence x is non-increasing
if for any β and β′, β < β′ < α implies uβ ≥ uβ′ .

Definition 4.1. It is densely non-increasing if for any interval [γ, γ′) where γ < γ′ ≤ α,
either it is constant in [γ, γ′) or there exist two ordinals γ ≤ β < β′ < γ′ such that uβ > uβ′ .

It is clear that a non-increasing sequence is also densely non-increasing. The converse
does not hold as it is shown by the already considered (ω + 1)-sequence (uβ)β≤ω

defined

by un = anb for n < ω and uω = b. The following proposition provides a characterization
of densely non-increasing sequences. It also gives some insight on the property of being
densely non-increasing.

Proposition 4.2. The sequence ū = (uβ)β<α
is densely non-increasing if and only if the

following two statements hold for any ordinals β′ < β < α.

• If β = β′ + 1, then uβ′ ≥ uβ.
• If β is a limit ordinal and ū is constant in [β′, β), then uβ′ ≥ uβ .

Proof. Applying the definition of densely non-increasing to the interval [β′, β] gives that the
two statements are obviously necessary.

Conversely we prove by transfinite induction on β that if the two hypothesis are satisfied,
then the restriction of ū to the interval [0, β] is densely non-increasing. The case β = 0 is
trivially true. The case β = β′ + 1 is handled by the first hypothesis and the case β being
a limit ordinal is handled by the second hypothesis.

As pointed out by a referee, a sequence is densely non-increasing if and only if it is
non-increasing on any interval where it is monotone.

The following theorem is the main result of the paper. It extends the classical result
that states that any finite word can be uniquely written as a non-increasing product of
prime words [8, Thm 5.1.5]. A prime factorization of a word x is a densely non-increasing
sequence (uβ)β<α

of prime words such that x =
∏

β<α uβ.

Theorem 4.3. For any word x ∈ A#, there exists a unique prime factorization of x.

Example 4.4. The prime factorization of the finite words aabab and abaab are aabab and
ab · aab since ab, aab and aabab are prime words. The prime factorization of the ω-words
x0 = aba2ba3b · · · and x1 = abab2ab3 · · · are x0 = ab · a2b · a3b · · · and x1 = abab2ab3 · · ·
since ab, a2b, a3b, . . . and x1 = abab2ab3 · · · are prime words.

The prime factorization of the (ω + 1)-word x2 = x0b is the (ω + 1)-sequence (uβ)β≤ω

given by un = an+1b for n < ω and uω = b. This factorization is not non-increasing since
u0 = ab <lex b = uω, but it is densely non-increasing.

The proof of the theorem is organized as follows. In the next section, we give a few
properties of densely non-increasing sequences. These properties are used in the next two
sections. We prove in Section 4.2 that the factorization in prime words always exists and
we prove in Section 4.3 that it is unique. Surprisingly, the uniqueness is useful in one of the
proofs of the existence.

9:10 L. Boasson and O. Carton Vol. 16:4

4.1. Properties of densely non-increasing sequences. In this section, we establish a
few properties of densely non-increasing sequences that are needed for the proof of Theo-
rem 4.3. In this section, all sequences are formed of elements from an arbitrary ordered
set U .

Definition 4.5. Let ū = (uβ)β<α
be a sequence and let γ be a limit ordinal such that

γ ≤ α. The sequence ū is ultimately constant in γ if there exists γ′ < γ such that it is
constant in the interval [γ′, γ).

If the sequence ū is densely non-increasing but not ultimately constant in γ, then for
any γ′ < γ, there exist two ordinals β and β′ such that γ′ ≤ β < β′ < γ and uβ > uβ′ .

Any sequence has a longest prefix that is non-decreasing. The following lemma states
that when the sequence is densely non-increasing, but not non-increasing, the length of this
longest prefix is a limit ordinal and the sequence is not ultimately constant at this ordinal.

Lemma 4.6. Let ū = (uβ)β<α
be a densely non-increasing sequence. If ū is not non-

increasing, there exists a greatest ordinal α′ < α such that (uβ)β<α′ is non-increasing. Fur-

thermore, this ordinal α′ is a limit ordinal and the sequence ū is not ultimately constant
in α′.

Proof. Let Ω be the set {γ ≤ α | (uβ)β<γ
is non-increasing}. Since this set of ordinals

is closed, it has a greatest element α′ that is strictly smaller than α since ū is not non-
increasing. We claim that this ordinal α′ is a limit ordinal. Suppose, by contradiction,
that α′ is a successor ordinal: α′ = α′′ + 1. Since ū is densely non-increasing, one has
uα′′ ≥ uα′ and this is a contradiction since α′ + 1 should belong to Ω. We now prove that
the sequence ū is not ultimately constant in α′. Suppose again, by contradiction, that the
sequence ū is ultimately constant in α′. There exists an ordinal γ < α′ such that uβ = uγ
for any γ ≤ β < α′. If uγ < uα′ , the sequence ū is not densely non-increasing. Therefore
uα′ ≤ uγ and this is again a contradiction since α′ + 1 should again belong to Ω.

The range of a sequence ū = (uβ)β<α
is the set of values that occur in the sequence.

More formally, it is the set {uβ | β < α}.

Corollary 4.7. Let ū = (uβ)β<α
be a densely non-increasing sequence. If the range of ū is

finite, it is non-increasing.

Proof. Suppose that the sequence ū is not constant. By Lemma 4.6, there exists a greatest
ordinal α′ < α such that ū′ = (uβ)β<α′ is non-increasing. Furthermore, the sequence ū′ is

not ultimately constant in α′. This implies that the range of ū′ is infinite.

Lemma 4.8. Let ū = (uβ)β<α
be a sequence. If the range of ū is infinite, there exists a

limit ordinal α′ ≤ α such that the sequence ū is not ultimately constant in α′.

Proof. Let α′ be the least ordinal such that the range of (uβ)β<α′ is infinite. This ordinal α
′

is a limit ordinal: indeed, if it is a successor ordinal, that is, α′ = α′′ + 1, the range of the
sequence (uβ)β<α′′ is still infinite and this is a contradiction with the definition of α′. It is

also clear that ū cannot be ultimately constant in α′. Indeed, if ū is ultimately constant
in α′, there exists an ordinal α′′ < α such that the range of the sequence (uβ)β<α′′ is still

infinite and this is again a contradiction with the definition of α′.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:11

Lemma 4.9. Let ū = (uβ)β<α
be a densely non-increasing sequence. If the range of ū is

infinite, it can be uniquely factorized as ū = v̄w̄ where the length γ of v̄ is a limit ordinal, v̄
is not ultimately constant in γ and the range of w̄ is finite.

Note that if the range of ū is finite, it also has a degenerate factorization ū = v̄w̄ where
v̄ is the empty sequence and w̄ = ū has a finite range.

Proof. Let Ω be the set of limit ordinals given by

Ω = {α′ ≤ α | α′ limit ordinal and ū is not ultimately constant in α′}.

By the previous lemma, the set Ω is non-empty. We claim that it is closed. Suppose
β = sup{βn|n < ω} where each βn is an element of Ω. Since each βn is a limit ordinal, so is
β. Suppose by contradiction that β does not belong to Ω. The sequence ū is thus ultimately
constant in β. There is an interval to the left of β where ū is constant. Each ordinal in this
interval is not in Ω and this is a contradiction with the definition of β. Hence Ω is closed
and let γ be its greatest element. Let v̄ be the sequence (uβ)β<γ

and let w̄ be the unique

sequence such that ū = v̄w̄. The length of v̄ is the limit ordinal γ and the sequence v̄ is not
ultimately constant in α′. It remains to prove that the range of w̄ is finite. If the range of w̄
is infinite, there exists, by the previous lemma, a limit ordinal γ′ where w̄ is not ultimately
constant. This contradicts the definition of γ. The factorization is unique since γ must be
the greatest limit ordinal where ū is not ultimately constant.

4.2. Existence of the factorization. We prove in this section that any transfinite word
has a prime factorization. We actually give two proofs of the existence of the prime fac-
torization. The first one is based on Zorn’s lemma and the second one uses a transfinite
induction on the length of words. The former one is shorter, but the latter one provides a
much better insight. The latter one needs the uniqueness of the factorization. The proof of
this uniqueness is given in the next section and it does not use the existence. We first sketch
the proof based on Zorn’s lemma and then we detail the proof by transfinite induction.

We now sketch the proof based on Zorn’s lemma. Let x be a fixed word. Let X be
the set of sequences ū = (uβ)β<α

of prime words such that x =
∏

β<α uβ. Note that it is

not assumed that the sequence ū is densely non-increasing. We define an ordering < on
the sequences of words as follows. Two sequences ū = (uβ)β<α

and ū′ = (u′β)β<α′
satisfy

ū < ū′ if ū refines ū′. This means that there exists a sequence (γβ)β<α′ of ordinals such that

u′β =
∏

γβ≤η<γβ+1
uη for each β < α′. For any totally ordered non-empty subset Y of X,

there exists a least upper bound ū = (uβ)β<α
which is constructed as follows. Two symbols

aγ and aγ′ of x end up in the same factor uβ as soon as they are in the same factor of at least
one factorization in Y . It can be observed that each word uβ either occurs in some sequence
of Y or is the limit of words occurring in sequences of Y . In the former case, the word uβ is
prime by definition of X and in the latter case, it is prime by Proposition 3.9. This shows
that each word uβ is prime and that the sequence ū = (uβ)β<α

belongs to X. This allows us

to apply Zorn’s lemma: the set X has a maximal element v̄ = (vβ)β<α
. It remains to show

that this sequence v̄ is indeed densely non-increasing. Suppose by contradiction that it is
not. By Proposition 4.2, there is an ordinal β such that either β = β′+1 and vβ′ <lex vβ or
β is a limit ordinal where v̄ is constant in [β′, β) and vβ′ <lex vβ. In the former case, vβ′vβ

9:12 L. Boasson and O. Carton Vol. 16:4

is prime by Proposition 3.7 and in the latter case v
β−β′

β′ vβ is also prime by Proposition 3.7.

In both cases, this is a contradiction with the maximality of v̄.
We now give the second proof of the existence. We start with an easy lemma on ordinals

which states that any sequence of ordinals contains a non-decreasing sub-sequence. It is
used in the proof of the main result of this section, namely Proposition 4.14.

Lemma 4.10. For any sequence (αn)n<ω of ordinals, there exists a non-decreasing sub-
sequence (αkn)n<ω (where (kn)n<ω is an increasing sequence of integers).

The proof follows from the fact that the ordering of countable ordinals is a linear well
quasi ordering.

The following lemma is an easy consequence of Corollary 3.6 and Lemma 3.11. It is
stated because the same reasoning is used several time.

Lemma 4.11. Let u and v be two prime words such that u 6lex v and let α and β be two
non-zero ordinals. The word uαvβ is equal to wγ where the word w is prime and γ is an
ordinal. Furthermore, either w = v and γ ∈ {β, α + β} or w = uαvβ and γ = 1.

Proof. If u = v, the word uαvβ is equal to vα+β : set w = v and γ = α+β. We now suppose
that u <lex v and thus uαv 6lex v by Corollary 3.6. If uαv = v, the word uαvβ is equal to
vβ: set w = v and γ = β. We finally suppose that uαv <lex v. The word uαvβ is prime by
Lemma 3.11: set w = uαvβ and γ = 1.

The following lemma is obtained by repeatedly applying Lemma 4.11. This lemma
states that if a word is already factorized as powers of prime words, its prime factorization
is obtained by grouping these powers of prime words using Lemma 4.11.

Lemma 4.12. A word x = uα1

1 · · · u
αm
m where each word ui is prime and each αi is an

ordinal, has a prime factorization x = v
β1

1 · · · v
βn
n where m ≥ n, v1 >lex · · · >lex vn and each

prime word vj is either a word ui or a product uαi

i · · · u
αk

k for 1 ≤ i < k ≤ n.

Proof. The proof is by induction on the integer m. The result is clear if m = 1: just set
n = 1 and v1 = u1. The result is also clear if u1 >lex · · · >lex um: just set n = m and
vi = ui for 1 ≤ i ≤ n. We now suppose that there exists an integer 1 ≤ i < m such that
ui 6lex ui+1. By Lemma 4.11, the word uαi

i u
αi+1

i+1 is equal to wγ for some prime word w

and some ordinal γ. The word x is then equal to uα1

1 · · · u
αi−1

i−1 wγu
αi+2

i+2 · · · u
αm
m and the result

follows from the induction hypothesis.

A slightly different version of Lemma 4.12 is stated below although it is not needed
until Appendix A. Its proof is a straightforward adaptation of the proof given just above.

Lemma 4.13. Given prime factorizations of two words x = uα1

1 · · · u
αm
m and y = v

β1

1 · · · v
βn
n .

Then xy has a prime factorization of the form xy = uα1

1 · · · u
αi

i wγv
βj

j · · · v
βn
n where 1 ≤ i ≤ m,

1 ≤ j ≤ n and w is a prime word.

The following proposition states that any word has a prime factorization.

Proposition 4.14. For any word x ∈ A#, there exists a densely non-increasing sequence
(uβ)β<α

of prime words such that x =
∏

β<α uβ.

Before giving the formal proof of the proposition, we give a sketch of the proof. The
existence of the factorization of x is proved by induction on the length of x. If this length
is a successor ordinal (case A in the formal proof), the result follows by directly using some

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:13

lemmas given previously in the paper. The difficult part turns out to be when the length
of x is a limit ordinal (case B in the formal proof below). This case requires the uniqueness
of the factorization proved in the next section. In order to help the reader, we roughly
describe what is going on in this case.

First we work with a sequence of words xn converging to x; these words have increasing
lengths γn converging to the length γ of x. The induction hypothesis allows the use of the
factorizations of each xn and the aim is to show how these factorizations, in some sense,
converge to the desired factorization of x. To make clear the difficulty, consider first x = aω.
Suppose then that xn = an. The factorization of xn is exactly a.a. . . . a and it gives rise to
the desired factorization of x in a.a. . . . a.

Now consider x = abω and suppose xn = abn. The factorization of xn reduces to a
single factor xn itself. Then the limit obtained is x.

This shows that two different situations may occur:
We first compute the number of factors in the factorization of xn and get the supremum

of these numbers α.
Situation 1: when we fix any ordinal number of factors in the factorizations of the words

xn (less than α and for a large enough ordinal n), the length of the prefix obtained by this
number of factors is always the same (case B1 of the formal proof). This is what happens
for x = aω: if we fix the number of factors to k, we cover a prefix of length k for all words
xn. Then we show that these first factors are always the same and that the factorization
of x is obtained by concatenating all these factors.

Situation 2: we can find an ordinal β ≤ α, such that when we fix the number of factors
to β in the factorization of the words xn (for a large enough ordinal n), the lengths of the
prefixes obtained increase as n increases (case B2 of the formal proof). First we prove that
this length grows and converges to γ. Then this case splits again into two sub-cases:

• β is a limit ordinal (case B2a of the formal proof)
• β is a successor ordinal (case B2b of the formal proof); this is what happens for abω where
β = 1 ≤ α = 1 and the length of the covered prefix of xn is (n+ 1).

In each sub-case, we describe the limit factorization obtained for x.
We now turn to the formal proof of Proposition 4.14.

Proof. The proof is by induction on the length |x| of x. The result is obvious if |x| = 1,
that is, if x = a for some letter a since a is a prime word. We now suppose that the length
|x| of x satisfies |x| ≥ 2. We distinguish two cases depending on whether |x| is a successor
or a limit ordinal.

Case A: |x| is a successor ordinal. We first suppose that |x| is a successor ordinal γ+1.
The word x is then equal to x′a where x′ is a word of length γ and a is a letter. By
the induction hypothesis, there exists a densely non-increasing sequence (uβ)β<α′ of prime

words such that x′ =
∏

β<α′ uβ. We distinguish then two sub-cases depending on whether
the range of this sequence is finite or infinite.

If the range of (uβ)β<α′ is finite, this sequence is non-increasing by Corollary 4.7 and

the result follows then from Lemma 4.12.
If the range of the sequence y = (uβ)β<α′ is infinite, it can be decomposed, by Lemma 4.9,

as the concatenation of two sequences y1 and y2 where y1 has length δ which is a limit ordi-
nal and where it is not ultimately constant and the range of y2 is finite. This decomposition

9:14 L. Boasson and O. Carton Vol. 16:4

y = y1y2 corresponds to a factorization x′ = x1x2. By Lemma 4.12, there exists a non-
increasing sequence of prime words y′2 whose product is the word x2a. Since the sequence y1
is not ultimately constant in δ = |y1|, the sequence y1y

′
2 is also densely non-increasing. This

sequence is a prime factorization of the word x = x′a.

Case B: |x| is a limit ordinal. We now suppose that |x| is a limit ordinal γ. There
exists then an increasing sequence (γn)n<ω of ordinals such that γ = supn γn. Let xn be
the prefix of x of length γn. By the induction hypothesis, there exists, for each integer n,
a densely non-increasing sequence (un,β)β<αn

of prime words such that xn =
∏

β<αn
un,β.

By Lemma 4.10, we may suppose that the sequence (αn)n<ω is non-decreasing. Let α be
the ordinal supn αn. By definition of α, there exists, for any ordinal β < α, an integer N

such that αN+1 > β. Note that n > N implies αn > β since the sequence (αk)k<ω is
non-decreasing. We let Nβ denote the least integer such that αn > β holds for any n > Nβ.
Note that if β < β′ < α, then Nβ ≤ Nβ′ . For n > Nβ, the prime factorization of xn has
length αn ≥ β. This means that the factor un,β exists for n > Nβ. For any β < α and
any Nβ < n < ω, define the ordinal λn,β by λn,β =

∑
β′<β |un,β′ |. The ordinal λn,β is the

length of the prefix of x covered by the first β factors of the prime factorization of xn. Note
that λn,β ≤ γn = |xn| and that the equality λn,β = γn holds whenever β = αn. Note that
the sequence (un,β′)

β′<β
is a prime factorization of the prefix x[0, λn,β) of x which is also a

prefix of xn since λn,β < γn.
We claim that the ordinals λn,β have the following two properties. Let β < α be an

ordinal and let m and n be two integers such that Nβ < m < n.

(i) If λm,β = λn,β, the equality λm,β′ = λn,β′ also holds for any β′ < β.
(ii) If λm,β 6= λn,β, then λm,β < γm < λn,β.

We first prove Claim (i). Suppose that the equality λm,β = λn,β holds. The sequences
(um,δ)δ<β

and (un,δ)δ<β
are two densely non-increasing sequences of prime words. If λm,β =

λn,β, their products are equal to the prefix x[0, λm,β) of length λm,β. Since this factorization
is unique by Corollary 4.17 (see below), the sequences must coincide and this proves λm,β′ =
λn,β′ for each β′ < β. This proves Claim (i).

Now we prove Claim (ii). Note that the relation λm,β < γm always holds by definition
of λm,β. It remains to show that γm < λn,β. If λm,β 6= λn,β, there exists β′ < β such
that um,β′ 6= un,β′ . Let β′ be the least ordinal such that um,β′ 6= un,β′ . By definition
of β′, one has λm,β′ = λn,β′ . Since γm < γn, the word xm is a prefix of xn: the word xn
is equal to xmz for some word z. By Proposition 4.16, the words um,β′ and un,β′ are
respectively the longest prefix of the suffix xm[λm,β′ , γm) xn[λn,β′ , γn) of xm and xn starting
at position λm,β′ = λn,β′ . If they are not equal, un,β′ cannot be a prefix of xm. This shows
that λn,β′ + |un,β′ | = λn,β′+1 > |xm| = γm. It follows that λn,β ≥ λn,β′+1 > γm since
β ≥ β′ + 1. This proves Claim (ii).

Let β be an ordinal such that β < α. The ordinals λn,β are defined for any n > Nβ.
Note that claim (ii) implies that the sequence (λn,β)n<ω

is non-decreasing. By Claim (i),

also the sequence (λn,β′)
n<ω

is ultimately constant in ω for any ordinal β′ < β. If no

such integer N ′
β exists, for any integer n, there exists, by Claim (ii), an integer m such

that λm,β ≥ γn. Thus, the sequence (λn,β)n<ω
converges to γ when n goes to ω. We

distinguish two sub-cases depending on whether there exists, or not, an ordinal β < α such
that (λn,β)n<ω

is not ultimately constant in ω.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:15

Case B1: We first suppose that for each β < α, the sequence (λn,β)n<ω
is ultimately

constant in ω. For each β < α, there exists an integer N ′
β and an ordinal λβ such that,

for any n > N ′
β , λn,β = λβ. For any β′ < β < α, it follows from λn,β′ < λn,β for each

n > Nβ that λβ′ < λβ. Let (uβ)β<α
be the sequence of words defined by uβ = x[λβ, λβ+1).

We claim that the sequence (uβ)β<α
is a prime factorization of x. We first prove that

supβ λβ = γ = |x|. Let δ be an ordinal such that δ < γ. The result is obtained as soon as
there exists β < α such that λβ > δ. Since γ = supn γn, there exists an integer n such that
|xn| = γn > δ. Since |xn| > δ, there exists an ordinal β ≤ αn such that λn,β > δ. Since the
sequence (λn,β)n<ω

is non-decreasing, one has λβ > δ. This proves that supβ λβ = γ = |x|

and that (uβ)β<α
is indeed a factorization of x. For n > N ′

β, one has, by Claim (i),

λn,β′ = λβ′ for any β′ < β and thus un,β′ = uβ′ . This means that the sequence (uβ′)
β′<β

is

a prime factorization of the prefix x[0, λβ). Since this is true for each β < α, the sequence
(uβ′)

β′<α
is a prime factorization of x.

Case B2: We now suppose that there exists, at least, one ordinal β < α such that the
sequence (λn,β)n<ω

is not ultimately constant in ω. Let β be the least ordinal such that
(λn,β)n<ω

is not ultimately constant in ω. Note that β > 0 since λn,0 = 0 for any n < ω

and the sequence (λn,0)n<ω
is ultimately constant in ω. By definition of β, for each β′ < β,

the sequence (λn,β′)
n<ω

is ultimately constant in ω: there exists an integer N ′
β′ and an

ordinal λβ′ such that, for any n > N ′
β′ , λn,β′ = λβ′ . We consider then two sub-cases

depending on whether the ordinal β is a successor or a limit ordinal.

Case B2a: Let us suppose first that β is a limit ordinal. For each ordinal β′ < β, let us
define the word uβ′ by uβ′ = x[λβ′ , λβ′+1). We claim that the sequence (uβ′)

β′<β
is a prime

factorization of x. It must be checked that sup{λβ′ | β′ < β} is equal to the length γ of x.
But this follows from the equalities γ = sup{λn,β | n < ω} and λn,β = sup{λn,β′ | β′ < β}
for each n < ω. Each word uβ′ for β′ < β is prime since it occurs in the prime factorization
of xn for n > Nβ. For n > Nβ, λn,β′+1 is equal to λβ′+1. The sequence (uβ′)

β′<β
is densely

non-increasing since each of its initial segments (uβ′)
β′<β̄

for β̄ < β is densely non-increasing.

Case B2b: Let us now suppose that β is a successor ordinal β = β̄ + 1. For β′ < β̄, let
us define the word uβ′ by uβ′ = x[λβ′ , λβ′+1). Define also the word uβ̄ by uβ̄ = x[γβ̄ , γ)

where γ is the length of x. We claim that the sequence (uβ′)
β′<β

is a prime factorization

of x. As in the previous case, each word uβ′ for β′ < β̄ is prime since it occurs in the
prime factorization of xn for n > Nβ′ . The last word uβ̄ is prime by Proposition 3.9 since

each word xn[λβ̄ , λn,β) is prime for n great enough. The sequence (uβ′)
β′<β̄

without the

last word uβ̄ is densely non-increasing since it is the prime factorization of xn[0, λβ̄) for
n > Nβ̄.

4.3. Uniqueness of the factorization. In this section, we prove that any word has at
most one prime factorization. It is quite surprising that the uniqueness of the factorization
has been used in the proof of the existence. We start with a technical lemma used for the
proof of the crucial Proposition 4.16.

9:16 L. Boasson and O. Carton Vol. 16:4

Lemma 4.15. Let ū = (uβ)β<α
be a non-increasing sequence of prime words. If α ≥ 2, the

product
∏

β<α uβ is not prime.

Proof. Let u be the product
∏

β<α uβ. If the sequence ū is constant, that is, if uβ = u0 for
any β < α, the word u = uα0 with α ≥ 2 is not primitive and thus it is not prime.

Now suppose that the sequence ū is not constant. If α is a successor ordinal α′ + 1,
the last word uα′ of the sequence is a suffix of u. This suffix satisfies uα′ <lex u0 because ū

is non-increasing and not constant and since u0 <lex u, it satisfies uα′ <lex u. This proves
that u is not prime.

Now suppose that α is a limit ordinal. Suppose first that the sequence is ultimately
constant in α. There exists then some ordinal γ < α such that for any γ < β < α,
uβ = uγ holds. The word u

α−γ
γ is a suffix of u and it satisfies u

α−γ
γ <lex u. Indeed,

one has uγ <lex u0 since ū is non-decreasing, but not constant and thus u
α−γ
γ <lex u0

by Corollary 3.6. Combining this relation with u0 <lex u since u0 is a prefix of u, yields
u
α−γ
γ <lex u. Therefore, the word u is not prime.

Now suppose that the sequence is not ultimately constant. For any ordinal γ < α, there
exist γ < β < β′ < α such that uβ >lex uβ′ . We claim that there is an ordinal γ such that
uγ <str u0. Otherwise each word uβ satisfies uβ 6pre u0. Since each word uβ is a prefix
of the same word u0, the relation uγ >lex uγ′ implies |uγ | > |uγ′ |. Since the lengths of the
words uβ cannot strictly decrease infinitely often by the fundamental property of ordinals,
there is a contradiction and there exists then an ordinal γ < α such that uγ <str u0. Then
the suffix v =

∏
γ≤β<α uβ of u satisfies v <lex u0 <lex u and the word u is not prime.

The following proposition is the key property used to establish the uniqueness of the
factorization in prime words. It characterizes the first prime word of the factorization as
the longest prime prefix. It extends the classical result for finite words to transfinite words
(see proof of [8, Thm 5.1.5]).

Proposition 4.16. Let ū = (uβ)β<α
be a densely non-increasing sequence of prime words.

The word u0 is the longest prime prefix of the product
∏

β<α uβ.

Proof. Let u be the product
∏

β<α uβ. The word u0 is clearly a prime prefix of u. It remains
to prove that any prefix w of u such that u0 <pre w is not prime.

We first suppose that the sequence (uβ)β<α
of prime words is non-increasing. Let x be

a prefix of u such that u0 <pre x. This prefix x is equal to a product (
∏

β<γ uβ)u
′ where

1 ≤ γ < α and u′ is a prefix of uγ different from uγ . If u′ is empty, then γ ≥ 2, and the
product

∏
β<γ uβ cannot be prime by Lemma 4.15. If u′ is not empty, it is a suffix of x.

Suppose that x is prime. One has u0 <lex x since u0 <pre x, x 6lex u′ since x is prime
and u′ is a suffix of x, u′ <lex uγ since u′ <pre uγ and uγ 6lex u0 since ū is non-increasing.
Combining all these relations yields u0 <lex u0 and this is a contradiction. Therefore x is
not prime.

We now suppose that the sequence (uβ)β<α
of prime words is not non-increasing. By

Lemma 4.6, there exists a greatest ordinal α′ such that (uβ)β<α′ is non-increasing. Further-

more, the ordinal α′ is limit and the sequence (uβ)β<α
is not ultimately constant in α′.

If x is a prefix of the product u′ =
∏

β<α′ uβ , then the result follows from the previous

case. We now suppose that u′ is a prefix of x. We claim that there exists an ordinal γ < α′

such that uγ <str u0. Indeed, if uβ 6pre u0 holds for any β < α′, the length |uβ| must
decrease infinitely often before α′ since (uβ)β<α

is not ultimately constant in α′. This is a

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:17

contradiction with the fundamental property of ordinals. There exists then some ordinal
γ < α′ such that uγ <str u0.

Since u′ 6pre x, the suffix v of x such that x = (
∏

β<γ uβ)v satisfies uγ <pre v. It follows
from uγ <str u0 that v <str u0 <lex x and the word x is not prime.

The next corollary uses the previous proposition to prove the uniqueness of the factor-
ization.

Corollary 4.17. For any word x, there exists at most one densely non-increasing sequence
(uβ)β<α

of prime words such that x =
∏

β<α uβ.

Proof. Suppose there exist two distinct densely non-increasing sequences (uβ)β<α
and (u′β)β<α′

such that x =
∏

β<α uβ =
∏

β<α′ u′β. Let γ be the least ordinal such that uγ 6= u′γ . Let the

ordinal δ be equal to the sum
∏

β<γ |uβ| =
∏

β<γ |u
′
β|. By the previous proposition both

uγ and u′γ are the longest prime prefix of the suffix x[δ, |x|) of x starting at position δ. It

follows that uγ = u′γ and this is a contradiction.

In the case of finite words, it can be shown [8, Prop. 5.1.6] that the last prime word of
the prime factorization of a word x is the least suffix (for the lexicographic ordering) of x.
A similar result does not hold for transfinite words. Since the lexicographic ordering is not
well founded, a word may not have a least suffix. Consider, for instance, the ω-word x0 =
aba2ba3b · · · . It does not have a least suffix and its prime factorization x0 = ab ·a2b ·a3b · · ·
does not have a last factor. Even when the prime factorization of a word x has a last prime
factor, the word x may not have a least suffix. Consider the (ω + 1)-word x2 = x0b. The
prime factorization x2 = ab ·a2b ·a3b · · · b has a last factor b, but this word x2 does not have
a least suffix.

Combining Corollary 4.17 and Proposition 4.14 gives Theorem 4.3.

Conclusion

To conclude, let us sketch a few problems that are raised by our work.
In order to obtain a prime factorization for each transfinite word, we have only required

the sequence of prime words to be densely non-increasing. It seems interesting to charac-
terize those words that have a decreasing factorization. We prove in Theorem A.1 that
rational words do have such a factorization, but they are not the only ones. The ω-word
x = aba2ba3b · · · has also the decreasing factorization x = ab · a2b · a3b · · · .

The algorithm given in the Appendix B outputs the factorization of a rational word
given by an expression e by inserting markers in the duplicated expression τ(e). Even if
the complexity of this algorithm is polynomial in the size of τ(e), the algorithm is indeed
exponential in the size of the expression e. This is due to the exponential blow up generated
by the duplication. It could then be interesting to design a better algorithm: this new
algorithm could determine which parts of the expression e have to be duplicated in order
to get a better complexity. In particular, it would be interesting to know whether the
exponential blow up is really needed. Along the same lines, it seems that it is possible to
design an algorithm such that, given an expression e, it decides if the expression can be used
to describe the factorization of the corresponding rational word without any duplication.

We thank both referees for their constructive and helpful comments which help us to
improve the presentation of the paper.

9:18 L. Boasson and O. Carton Vol. 16:4

Acknowledgements

Carton is a member of the Laboratoire International Associé SINFIN, CONICET/Universidad
de Buenos Aires–CNRS/Université de Paris and he is supported by the ECOS project
PA17C04. Carton is also partially funded by the DeLTA project (ANR-16-CE40-0007).

The authors are very grateful to the anonymous referees for reading the first version
of this paper with exceptional accurateness and for making many suggestions for possible
improvements.

References

[1] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The “Runs” theorem. SIAM

J. Comput., 46(5):1501–1514, 2017.
[2] L. Boasson and O. Carton. Transfinite Lyndon words. In DLT’2015, pages 179–190, 2015.
[3] J. R. Büchi. Transfinite automata recursions and weak second order theory of ordinals. In Proc. Int.

Congress Logic, Methodology, and Philosophy of Science, Jerusalem 1964, pages 2–23. North Holland,
1965.

[4] O. Carton and Ch. Choffrut. Periodicity and roots of transfinite strings. Theoret. Informatics and

Applications, 35(6):525–533, 2001.
[5] J.-P. Duval. Mots de Lyndon et périodicité. RAIRO Informat. Théor., 14:181–191, 1980.
[6] D. Goč, K. Saari, and J. Shallit. Primitive words and Lyndon words in automatic and linearly recurrent

sequences. In LATA’2013, volume 7810 of Lecture Notes in Computer Science, pages 311–322. Springer,
2013.

[7] D. E. Knuth. Combinatorial Algorithms, volume 4A of The Art of Computer Programming. Addison-
Wesley Professional, 2011.

[8] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and its Applications.
Addison-Wesley, Reading, MA, 1983.

[9] R. C. Lyndon. On Burnside’s problem I. Trans. Am. Math. Soc., 77:202–215, 1954.
[10] R. C. Lyndon. On Burnside’s problem II. Trans. Am. Math. Soc., 78:329–332, 1955.
[11] G. Melançon. Lyndon factorization of infinite words. In STACS’96, volume 1046 of Lecture Notes in

Computer Science, pages 147–154. Springer, 1996.
[12] G. Melançon. Viennot factorization of infinite words. Inf. Process. Lett., 60(2):53–57, 1996.
[13] J. G. Rosenstein. Linear Ordering. Academic Press, New York, 1982.
[14] R. Siromoney, L. Mathew, V. Rajkumar Dare, and K. G. Subramanian. Infinite Lyndon words. Inf.

Process. Lett., 50(2):101–104, 1994.

Appendix A. Rational words

The appendices are devoted to prove that, for a special kind of transfinite words, the prime
factorization can be effectively computed. The result is proved in Appendix B whence
this section introduces these special words called rational words. First some elementary
properties of their prime factorization are proved in Section A.1. After the introduction of
the notion of cut in Section A.2 used to define positions in a rational word, a description of
any rational word by a generalized finite automaton is presented in Sections A.3 and A.4.
Then a last technical transformation, the duplication operation, is defined in Section A.5.
This transformation is applied to the given expression before computing the associated
automaton and processing it with the algorithm presented in Appendix B. This algorithm
is first described and an example of its execution is presented in Section B.1. Before proving
the algorithm, some necessary auxiliary results are proved in Section B.2. Finally, five
invariants are shown to hold in Section B.3, which then allow us to prove the correctness of
the algorithm and its complexity in Section B.4.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:19

The class of rational words is the smallest class of words that contains the empty word ε

and the letters and that is closed under product and the iteration ω. This means that each
letter a is a rational word and that if u and v are two rational words, then both words uv
and uω are also rational. A rational word is a word that can be described by a rational
expression using only concatenation and the ω operator.

All finite words are rational. The word (aωbωb)ω(ab)ω whose length is (ω ·2+1) ·ω+ω =
ω2 + ω is rational, but the ω-word aba2ba3 · · · is not rational. Notice that the length of a
rational word is always less than ωω.

A.1. Factorization of rational words. The following theorem states that the prime fac-
torization of a rational word has a very special form, namely it has a finite range made of
rational words.

Consider for instance the rational word x = (aωb)ωaω. Its prime factorization is x =
uω1u

ω
2 where u1 = aωb and u2 = a. There are only two distinct prime factors and each of

them is rational.

Theorem A.1. For any rational word x, there exists a finite decreasing sequence of ra-
tional prime words u1 >lex · · · >lex un and ordinals α1, . . . , αn less than ωω such that
x = uα1

1 · · · u
αn
n .

Let us make a few comments before proving the theorem. Let x be a rational word and
let (uβ)β<α

be its prime factorization. The previous theorem states first that the sequence

(uβ)β<α
has a finite range and is non-increasing. Note that the second property is actually

implied by the first one by Corollary 4.7. The theorem also states that each word occurring
in (uβ)β<α

is also rational. The fact that the exponents α1, . . . , αn are less than ωω follows

from the fact that the length of each rational word is less than ωω.
In order to prove that the prime factorization of a rational word has always the form

given in Theorem A.1, it is sufficient to prove that this form is preserved by product and ω-
iteration. The preservation by product is already given by Lemma 4.13. The preservation
by ω-iteration is stated in Lemma A.4 below. The statement of this lemma is actually
stronger than what is really needed for the proof of Theorem A.1, but this stronger version
is used later in the Appendix B. Lemma A.2 is used to prove Lemma A.3 which is, in turn,
used to prove Lemma A.4.

Lemma A.2. Given n ordinal powers of prime words uα1

1 , . . . , uαn
n such that the product

uα1

1 · · · u
αn
n is a power vβ of a prime word v, then either v = un or uαn

n is a suffix of v.

Proof. The proof is by induction on n. If n = 1, v = u1 and the result is obvious. Now
assume that n > 1. If for each integer 1 ≤ i ≤ n − 1, ui >lex ui+1, then vβ and uα1

1 · · · u
αn
n

are two prime factorizations of the same word, which is impossible. Hence, there exists
an integer 1 ≤ i ≤ n − 1 such that ui 6lex ui+1. By Lemma 4.11, the word uαi

i u
αi+1

i+1
is equal to wγ for a prime word w. Moreover, by the same lemma, either w = ui+1 and
γ ∈ {αi+1, αi+αi+1} or w = uαi

i u
αi+1

i+1 and γ = 1. If i ≤ n−2, then the induction hypothesis

gives obviously the result. If i = n − 1, then wγ is equal to u
αn−1

n−1 uαn
n with either w = un

and γ ∈ {αn, αn−1 + αn} or w = u
αn−1

n−1 uαn
n and γ = 1. On the other hand, the hypothesis

can be written uα1

1 · · · u
αn−2

n−2 wγ = vβ . By the induction hypothesis, either v = w or wγ is a
suffix of v. This gives rise to four cases that we consider.

If w = un and v = w, then v = un trivially. If w = un and wγ is a suffix of v, the
ordinal γ is either αn or αn−1 + αn. Therefore uαn

n is a suffix of v. If w = u
αn−1

n−1 uαn
n and

9:20 L. Boasson and O. Carton Vol. 16:4

v = w, then uαn
n is a suffix of v trivially. Finally if w = u

αn−1

n−1 uαn
n and wγ is a suffix of v,

the ordinal γ is then 1 and uαn
n is a suffix of v.

Lemma A.3. Given n ordinal powers of prime words uα1

1 , . . . , uαn
n there exists an integer

1 ≤ k ≤ n, a prime word v and an ordinal β such that vβ = u
αk+1

k+1 · · · u
αn
n uα1

1 · · · u
αk

k and
v 6lex uk. Furthermore, if each ui is rational and each αi < ωω, then v is also rational and
β < ωω.

Proof. We first prove by induction on n that there exist an integer 1 ≤ k ≤ n, a prime word
v and an ordinal β such that vβ = u

αk+1

k+1 · · · u
αn
n uα1

1 · · · u
αk

k . If n = 1, the result is clear with
v = u1 and β = α1.

Now let n > 1. If u1 = · · · = un, it suffices to take v = u1 and β = α1 + · · · + αn.
Otherwise, there exist an integer 1 ≤ i ≤ n such that ui <lex ui+1 where n + 1 should be
understood as 1. By Lemma 4.11, the word uαi

i u
αi+1

i+1 is equal to wγ where w is a prime

word. The induction hypothesis is now applied to uα1

1 , . . . , u
αi−1

i−1 , wγ , u
αi+1

i+1 , . . . , uαn
n if i < n

and to wγ , uα2

2 , . . . , u
αn−1

n−1 if i = n.
We now prove the second part, namely that the word v satisfies v 6lex uk. This

is a direct consequence of Lemma A.2: assume, by contradiction, that uk <lex v. By
Corollary 3.6, uαk

k <lex v which is impossible since v is prime.
The fact that v is rational and β < ωω under the given assumptions is obvious from

the constructions of v and β.

Lemma A.4. Let x = uα1

1 · · · u
αn
n be the prime factorization of the word x. There exist an

integer 1 ≤ k ≤ n − 1 (k = 1 if n = 1) such that the prime factorization of xω is either
uα1

1 · · · u
αk

k vβω or uα1

1 · · · u
αk−1

k−1 vαk+βω (uα1ω
1 if n = 1) where vβ = u

αk+1

k+1 · · · u
αn
n uα1

1 · · · u
αk

k .
Furthermore, if each ui is rational and each αi < ωω, then v is also rational and β < ωω.

Proof. The result for n = 1 is obvious. We now assume that n ≥ 2. We apply Lemma A.3 to
the sequence uα1

1 , . . . , uαn
n to obtain an integer 1 ≤ k ≤ n, an ordinal β, and a prime word v

such that vβ = u
αk+1

k+1 · · · u
αn
n uα1

1 · · · u
αk

k . The case k = n would give two prime factorizations

uα1

1 · · · u
αn
n and vβ of the word x, which is impossible since n ≥ 2. By Lemma A.3, the

word v satisfies v 6lex uk.
If v <lex uk, then uα1

1 · · · u
αk

k vβω is indeed the prime factorization of xω. If v = uk, then

uα1

1 · · · u
αk−1

k−1 vαk+βω is the prime factorization of xω.
The fact that v is rational and β < ωω under the given assumptions follows from

Lemma A.3.

By a similar argument, it could be proved that the prime factorization of xm for an
integer m has either the form xm = uα1

1 · · · u
αk

k vβ(m−1)u
αk+1

k+1 · · · u
αn
n or the form xm =

uα1

1 · · · u
αk−1

k−1 vαk+β(m−1)u
αk+1

k+1 · · · u
αn
n .

We now come to the proof of Theorem A.1.

Proof of Theorem A.1. Each word of length 1 is prime. It suffices then to prove that if the
rational words x and y have a prime factorization of the required form, then the words xy
and xω also have a prime factorization of the required form. The result for xy follows from
Lemma 4.12 and the result for xω follows from Lemma A.4.

The following lemma is used in Section B.3 to prove one invariant of the algorithm.

Lemma A.5. Let x and y be two words. If the word xy2 is prime, then the word xyω is
also prime.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:21

Proof. Let u be the prime word xy2. The word xyω is equal to uyω. We first verify that
each suffix z of uyω satisfies uyω 6lex z. Such a suffix is either of the form x′yω where x′ is
a suffix of x or of the form y′yω where y′ is a suffix of y. If z is equal to x′yω, then x′y2 is a
suffix of u. Since u is prime, then either u <str x

′y2 or u = x′y2 holds. If u <str x
′y2, then

uyω <str x
′yω and if u = x′y2, then uyω = x′yω. Thus, in any case, uyω 6lex z. If z is equal

to y′yω, then y′y is a suffix of u. Since u is prime, then either u <str y
′y or u = y′y holds.

If u <str y
′y, then uyω <str y

′yω and if u = y′y, then uyω = y′yω.
It remains to show that xyω is primitive. If xyω is not primitive, it is equal, by

Lemma 3.4, to zα for some word z and some limit ordinal α. We first claim that xy2

is a prefix of z. If xy2 is not prefix of z, there exist two words z1 and z2 and two ordinals
α1 and α2 such that z = z1z2 and α = α1 + 1 + α2 and xy2 = zα1z1 and yω = z2z

α2 . If
α1 ≥ 1, the word z1 is a suffix of u = xy2 and a proper prefix of u. This contradicts the
fact that u is prime. The word z1 is thus equal to u, and this proves the claim that xy2 is
a prefix of z. Note that |z1| ≥ |y| · 2 since z1 = xy2. Since yω = z2z

α2 , the first occurrence
of z in yω has a prefix of the form y′y where y′ is a suffix of y. If follows that y′y is also a
prefix of u since u = z1. This contradicts again the fact that u is prime.

A.2. Cuts. We now introduce the notion of a cut of a word. This notion is used to describe
the prime factorization of a word. A cut of a word x is a factorization x = x1x2 into two
factors. It is merely denoted by a dot between the two factors as in x = x1 · x2. The
trivial cuts are the two factorizations x = ε · x and x = x · ε where one of the two factors
is empty. Since each factorization is characterized by the length of the prefix x1, the cuts
of x can be identified with ordinals between 0 and |x|. The trivial cuts correspond to
the ordinals 0 and |x|. For instance, consider again the word x = (aωb)ωaω. The cut

x = (aωb)3aω · b(aωb)ωaω corresponds to the ordinal (ω + 1)3 + ω = ω · 4.
Given the prime factorization x = uα1

1 · · · u
αn
n of a rational word, we introduce two

kinds of particular cuts of x. Intuitively, main cuts are between two different prime factors
and secondary cuts are between two occurrences of the same prime factor. Formally, each
factorization x = x1 · x2 with x1 = uα1

1 · · · u
αk

k and x2 = u
αk+1

k+1 · · · u
αn
n for some 1 ≤ k ≤

n − 1 is called a main cut of x. By convention, the two trivial factorizations ε · x and

x · ε are considered as main cuts. A factorization x = x1 · x2 with x1 = uα1

1 · · · u
β1

k and

x2 = u
β2

k u
αk+1

k+1 · · · u
αn
n where αk = β1 + β2 and β1, β2 6= 0 is called a secondary cut of x.

We illustrate the notion of cuts by two examples. Let x be the word (bba)ωa. Its
prime factorization is x = u21u

ω
2u3 where u1 = b, u2 = abb and u3 = a. Hence, the

two factorizations x = b2 · (abb)ωa and b2(abb)ω · a are main cuts. The two factorizations

x = b · b(abb)ωa and x = b2(abb)3 · (abb)ωa are secondary cuts. Note that the cut x =

(bba)2b · b(abb)ωa is neither main nor secondary.
The next example is used later to illustrate the algorithm. The prime factorization of

(aωb)ωaω is uω1u
ω
2 where u1 = aωb and u2 = a. Hence, the factorization x = (aωb)ω · aω is

a main cut. The factorization x = (aωb)3 · (aωb)ωaω is a secondary cut. Note that the cut

x = (aωb)3aω · b(aωb)ωaω is neither main nor secondary.
We can now rephrase Lemmas 4.13 and A.4 in terms of cuts.

Corollary A.6. Given two rational words x and y, the main cuts of xy are main cuts of
x or y. Secondary cuts of xy are main or secondary cuts of x or y.

9:22 L. Boasson and O. Carton Vol. 16:4

The statement of the previous corollary means that if u · v is a main of xy then there
exists a main cut u · v′ of x with v = v′y or there exists a main cut u′ · v of y with u = xu′.
Note that some main cuts of x and y may not give rise to cuts of xy. A similar comment
could be made after the following corollary.

Corollary A.7. Given a rational word y, the main cuts of yω are main cuts of y. Fur-
thermore, all occur within the prefix y. Secondary cuts of yω are main or secondary cuts
of y.

A.3. Automata. We introduce automata accepting transfinite words which generalize usual
automata accepting finite words. In the next section, we consider such automata that accept
a single transfinite word. It turns out that the accepted word is then a rational word. More
precisely, a transfinite word is rational if and only if there exists an automaton accepting
this word and no other word. The automaton is then a finite representation of the rational
transfinite word. We design an algorithm computing the prime factorization working on
the automaton accepting the rational word.

Büchi automata [3] on transfinite words are a generalization of usual (Kleene) automata
on finite words, with an additional special transition function for limit ordinals. States
reached at limit points depend only on states reached before.

An automaton A is a 5-tuple (Q,A,E, I, F) where Q is the finite set of states, A the
finite alphabet, E ⊆ (Q×A×Q) ∪ (2Q ×Q) the set of transitions, I ⊆ Q the set of initial
states and F ⊆ Q the set of final states.

Transitions are either of the form (q, a, q′) or of the form (P, q) where P is a subset of Q.
A transition of the former case is called a successor transition and it is denoted by p

a−→ q.
These are the usual transitions. A transition of the latter case is called a limit transition
and it is denoted by P → q. These are the additional transitions. All automata that we
consider are deterministic: for each pair (p, a) in Q × A, there exists at most one state q

such that p a−→ q is a successor transition and for each subset P ⊆ Q, there exists at most
one state q such that P → q is a limit transition.

We now explain how these automata accept transfinite words. Before describing a run
in an automaton, we define the cofinal set of a sequence at some limit point.

Let c = (qγ)γ<α
be an α-sequence of states and let β ≤ α be a limit ordinal. The limit

set of c at β is the set of states that occur cofinally before the limit ordinal β. It is formally
defined as follows.

lim((qγ)γ<β
) = {q ∈ Q | ∀ β′ < β ∃γ β′ < γ < β ∧ q = qγ}

Let A = (Q,A,E, I, F) be an automaton. A run c labeled by a word x = (aγ)γ<α
of

length α from p to q in A is an (α+ 1)-sequence of states c = (qγ)γ≤α
such that:

(1) q0 = p and qα = q;
(2) for any ordinal β < α, qβ

aβ−→ qβ+1 is a successor transition of A;
(3) for any limit ordinal β ≤ α, lim((qγ)γ<β

)→ qβ is a limit transition of A.

The word x = (aγ)γ<α
is called the label of the run c. The run is successful if and only if

p is initial (p ∈ I) and q is final (q ∈ F). A word is accepted by the automaton if and only
if it is the label of a successful run. As already mentioned, the cuts of a word x can be
identified with the ordinals between 0 and |x|. Therefore, a run maps each cut to a state.
We illustrate the definition of a run with the following example.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:23

0 1 2

a, b

a, b

{0} → 1

{0, 1} → 2

Figure 1: Automaton accepting words of length ω2

Example A.8. The deterministic automaton pictured in Figure 1 accepts words of length ω2.
Indeed let u be a ω2-word (cβ)β<ω2 where cβ ∈ {a, b}. A run accepting u is the ω2 + 1-

sequence (qβ)β≤ω2 where qβ = 0 if β = ω · k1 + k0 with k0 6= 0 or k1 = 0, qβ = 1 if β = ω · k1
with k1 6= 0 and qω2 = 2.

As usual, a loop in such an automaton is a run from a state q to the same state q.

A.4. Automata for a single word. For a given rational expression e denoting a single
word x, we describe the construction of an automaton Ae which accepts x but no other
word. This automaton depends on the expression e. Two different expressions denoting
the same word may yield different automata. We describe the construction on an example.
The general case is straightforward.

Consider the rational expression (aωb)ωaω. It is first flatten to give the word (aωb)ωaω
over the extended alphabet A ∪ {(,), ω}. Let n be the number occurrences of letters in
A ∪ {ω} in this word. In our example, this number n is equal to 6. The integers from 0 to
n−1 are then inserted before the letters in A∪{ω} and the integer n is added at the end of
the word to obtain the word (0a1ω2b)3ω4a5ω6 over the alphabet A∪{(,), ω}∪{0, 1, . . . , n}.

This allows to directly get an automaton in the following way. The integers from 0 to n

are its states. The state 0 is the initial one and n is the unique final state. We now describe
its successor and limit transitions.

There is no transition from state n. Each integer 0 ≤ i ≤ n−1 has been inserted before
a letter which is either a letter a ∈ A or ω. If i lies just before a letter a ∈ A, there is a
successor transition i

a−→ (i+1). If i lies before a symbol ω, there are a successor transition
from i and a limit transition defined as follows. Let j − 1 be the integer just before the
first letter of the sub-expression under this ω and let this letter be a. Note that j satisfies
j ≤ i. The successor transition is then the transition i

a−→ j and the limit transition is
{j, j +1, . . . , i} → (i+1). Note that both transitions (j − 1) a−→ j and i

a−→ j enter the same
state j and have the same label.

Applying this construction to the expression (aωb)ωaω gives the automaton pictured in
Figure 2.

0 1 2 3 4 5 6
a

a

b

a

a

a

{1} → 2 {1, 2, 3} → 4 {5} → 6

Figure 2: Automaton for (aωb)ωaω

9:24 L. Boasson and O. Carton Vol. 16:4

The automata constructed by the algorithm given above have special properties that
we now give. It has n + 1 states, namely {0, . . . , n} where n is the total number of letters
in A and ωs in the expression.

• The initial state is 0 and the unique final state is n.
• There is no successor transition leaving state n and for any state 0 ≤ i ≤ n − 1, there is
exactly one transition i

a−→ j leaving i. This unique state j is denoted, as usual, by i · a.
Furthermore the state j satisfies j ≤ i+ 1. A transition i

a−→ (i + 1) is called a forwards
transition and a transition i

a−→ j where j ≤ i is called a backwards transition. For any
backwards transition i

a−→ j, there exists also a transition (j − 1) a−→ j. Therefore all
transitions entering a given state have the same label.
• Each limit transition has the form {j, j + 1, . . . , i} → i+ 1 where 1 ≤ j ≤ i ≤ n− 1 and
there exists such a transition if and only if there exists a backwards transition i

a−→ j.
• For any two limit transitions P → (i + 1) and P ′ → (i′ + 1) where P = {j, . . . , i} and
P ′ = {j′, . . . , i′}, then either P and P ′ are disjoint, that is, P ∩P ′ = ∅, or one is contained
in the other, that is, P ⊆ P ′ or P ′ ⊆ P . This means that the cycles are well-nested.
• If there is a limit transition P → (i + 1), there is neither another limit transition P ′ →
(i+ 1) nor a successor transition j → (i+ 1).
• Given a state i, and two runs ρ and ρ′ starting from i, either ρ is a prefix of ρ′ or ρ′

is a prefix of ρ. This is due to the strong determinism of the automaton: there is a
single successor transition from any state and for any subset P , there is at most one limit
transition of the form P → (i+ 1).
• Given a state i, either it is reached by successor transitions or by a single limit transition
but never by both types of transitions. In the former case, all successor transitions have
the same label.

The last remark is derived by looking at the letter preceding state i. This letter is either
a letter a or ω. In the former case, all transitions reaching i are successor and labeled by
the letter a. In the latter, it is reached by a unique limit transition. Obviously only one of
these two possibilities may happen. Moreover, the initial state 0 is the only state that is
not reached by any transition.

Recall that a run of an automaton A labelled by a (transfinite) word x is the sequence of
states visited by the automaton while processing x. For instance, on the word x = (aωb)ωaω,
the run ρ of the automata given Figure 2 is 0(1ω23)ω45ω6. In such a run, as soon as the
automaton visits twice the same state, there is a loop. The entry state of a loop is the state
that is accessible from the initial state 0 by the shortest run. This is well-defined since any
two runs from 0 are prefix of each other. This is also the first state of the loop that is
visited by the run from 0 to the final state. Due to the way the states of the automaton are
numbered, the entry state of a loop is always the smallest state that belongs to the cycle.

The rest of the section is devoted to properties of the automaton Ae obtained from a
rational expression e. Such an expression e is assumed to be fixed, and the automaton Ae

is merely denoted by A until the end of the section. We start with a first property of loops
in A.

Lemma A.9. Let P be a loop of A and let p0 be its entry state. Then the label of P

from p0 to p0 has a last letter a and can be factorized as ya. The word x accepted by A can
be factorized as x = x1a(ya)

ωx2 where the run of A on x reaches p0 after x1a.

Proof. Consider a loop P in which the set of visited states is {p0, p1, . . . , pk}. Note that this
set coincides with {p0, p0 + 1, . . . , p0 + k}. Moreover, the greatest state pk = p0 + k goes

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:25

back to p0 using a successor transition labeled by a letter a. The label of the loop is then a
word of the form ya for some word y. Then due to the way the automaton A is built, the
state p0 is reached from the state p0 − 1 by the successor transition (p0 − 1) a−→ p0 which
proves the result.

Given the automaton A, we now introduce two families of automata iAj and iA
#
j built

from A. Let 0 ≤ i < j ≤ n be two states such that there exists no backwards transition
k

a−→ k′ with k′ ≤ i ≤ k. This means that i is not contained in any loop of A. We then

build two new automata iAj and iA
#
j . The latter one is obtained from the former one.

The automaton iAj is obtained by erasing the unique successor transition leaving j if
j < n. In this automaton, i is the initial state and j is the unique final state; it accepts a
unique transfinite rational word denoted by ixj . The automaton iAj only uses states in the
interval [i, j]. Indeed, it does not use any state k′ < i since there is no backwards transition
k

a−→ k′ with k′ ≤ i ≤ k. It does not use any state k′ > j since the successor transition
leaving j has been removed. Note that A = 0An.

We now come to iA
#
j . It is built by adding to iAj two transitions: a successor one

and a limit one. The additional successor transition is j
a−→ (i + 1) where a is the label

of the transition i
a−→ (i + 1). The additional limit transition is {i + 1, . . . , j} → j. The

new automaton is of a new type: it does not accept a single word because there is now a
successor transition leaving the final state. It accepts actually all powers of ixj, that is the

set ix
#
j = {ix

α
j | α ordinal}. Such an automaton is used in parallel with the automaton iAn

to detect powers of a prime word. An example of an automaton iA
#
j is pictured in Figure 7

below.
In order to detect powers of ixj, we consider the product automaton iAn × iA

#
j . As

in iAn, two runs starting in the same state are prefix of each other. Therefore, there is a

unique maximal run in iAn × iA
#
j . It is labelled by the longest prefix of ixn of the form

(ixj)
βy where β is an ordinal and y is a prefix of ixj . The algorithm uses this maximal run.

Now consider a loop in iAn× iA
#
j . The entry state of such a loop is then defined as the

state of the loop that is the first one reached in the maximal run. The strong determinism
of the first component ensures that, if a state (q, q′) is reached from (k, k′) by a forward
successor transition, in the run, each occurrence of the state (q, q′) occurs just after an
occurrence of the state (k, k′). Similarly, if the state (k, k′) is in a loop, in the run, the entry
state of the loop occurs before each occurrence of (k, k′).

It is easy to check that an entry state (p, p′) of a loop in iAn × iA
#
j satisfies that p

or p′ is the entry state of a loop in the corresponding automaton. Indeed, to have a state

(q, q′) belonging to a loop of iAn × iA
#
j , it is needed that q and q′ do belong to loops of

each component. The automaton reaches such a state for the first time when, for the first
time, this condition on the two states is satisfied. This implies that one or the other is an
entry state. Exactly as it happened for loops of 0An, given the entry state (p, p′) of a loop

of iAn × iA
#
j , the loop can be described by the finite sequence of states visited in the loop.

The label of the loop is a transfinite word. This word is a finite power of the word labeling

the loop over p in iAn, as well as of the word labeling the loop over p′ in iA
#
j .

We now show that the automaton iAn× iA
#
j satisfies that a state either is reached by a

successor transition or is reached by a limit one, but never by both. Observe first that iAn

does satisfy this property. Then if the state (r, r′) is reached by a successor transition, r is

9:26 L. Boasson and O. Carton Vol. 16:4

reached by such a transition in iAn and if the state (r, r′) is reached by a limit transition,
r is reached by such a transition in iAn. As for r it cannot be that both cases happen, we
get the desired result. Using the same argument, we show that if a state (r, r′) is reached
by a limit transition, it cannot be reached by any successor transition.

0 1
a

a

{1} → 1

Figure 3: The special automaton for a#

We now state three lemmas. The first one is used in the proof of the second one and
the two last ones are used to prove the correctness of the algorithm.

Lemma A.10. An entry state of a loop of the automaton iAn × iA
#
j cannot be reached by

a limit transition.

Proof. Note first that an entry state of a loop of the automaton iAn cannot be reached by a
limit transition. This is because Lemma A.9 just above ensures that such a state is reached
by a successor transition labeled by the letter a and a state of iAn cannot be reached by
both types of transitions. The same holds for the automata iAj, but not always for the

automata iA
#
j . In this latter machine, the added limit transition is the only one that may

violate the property. This transition reaches the state j which could be the entry state of
a loop. But, the successor transition leaving j reaches i + 1 so that, for j to be the entry
point of a loop, it is necessary that j = i + 1. Then the automaton is said to be special.

It accepts the set a# for a letter a and it is pictured in Figure 3. In all other cases, iA
#
j

satisfies that an entry state of a loop cannot be reached by a limit transition.

Consider then the Cartesian product iAn × iA
#
j . If a state (k, k′) is reached by a limit

transition, then k and k′ are reached by limit transitions in iAn and iA
#
j . If iA

#
j is not

special, in each automaton such states are not reached by any successor transition. Hence,
neither k nor k′ are entry states of loops. On the other hand, the entry state (p, p′) of a

loop in iAn × iA
#
j satisfies either p or p′ is an entry state of a loop in the corresponding

automaton. So, the result is proved if iA
#
j is not special. If it is special, then the Cartesian

product is merely a copy of iAn and the result follows immediately.

We now introduce the notion of a trace. Given a run ρ of the automaton iAn × iA
#
j ,

the trace τ of the run is defined as follows: each state used in the run occurs in the trace
when it occurs in the run for the first time. It then follows that such a trace is always finite
because it does not contain twice the same state. The strong determinism of the automaton

iAn × iA
#
j implies that if a state (k, k′) occurs in a loop, then the entry state of the loop

occurs in the trace of the run before (k, k′). Similarly, if the state (q, q′) is reached from
(k, k′) by a forward successor transition, then the state (q, q′) occurs just after (k, k′) in the
trace of the run. These two remarks directly follow from the corresponding ones made just

above about occurrences of states in the run of iAn × iA
#
j .

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:27

We first prove a technical lemma.

Lemma A.11. Given a word x and a letter a. Let ρ be the run of the automaton iAn× iA
#
j

on x and τ be the trace of this run. Assume that both ρ and τ have the same last state (k, k′).

Let (q, q′) = (k · a, k′ · a) be the state of iAn × iA
#
j reached when reading the letter a. Then

either the state (q, q′) is not in τ or it is the entry state of a loop. In this latter case, the
state reached by the limit transition associated to the loop is not in τ .

Proof. Assume (q, q′) is indeed in the trace τ . Then the run ρ loops over (q, q′). Moreover,
if (q, q′) is not the entry state of the loop, this entry state (p, p′) occurs in τ before (q, q′)
and all states of the loop occur in τ after (p, p′). In particular, in τ , the state that occurs
just before (q, q′) has to be (k, k′). This is impossible as soon as the state (k, k′) should then
occur in τ twice: once just before (q, q′) and then at the end of τ . This proves that (q, q′)
is the entry state of the loop. This loop gives rise to a limit transition reaching state (l, l′).
If this state occurs in the trace τ , the same argument than the one used for (q, q′) shows
that (l, l′) has to be the entry state of a loop. This is impossible by Lemma A.10.

We end this paragraph by a technical lemma on the trace of a run. This lemma is used
later to show that the algorithm indeed terminates.

Lemma A.12. Assume that state i is not in a loop and assume that a state (q, q′) occurs

in the trace τ of the run of iAn × iA
#
j . Then for each i ≤ p ≤ q there exists at least one

state p′ of iA
#
j such that (p, p′) occurs in the trace τ .

Proof. If a state q occurs in the run of A, so does all states p < q. This comes from the
way the automaton A has been built. On the other hand, if the state i does not occur in a
loop, all states accessible from i are greater than i. Hence, if q in a run of iAn, all states
p such that i ≤ p ≤ q also occurs in the run. The projection on the first component of the

run iAn × iA
#
j is the run of iAn. Hence, for each i ≤ p ≤ q, there exists a state p′ of iA

#
j

such that (p, p′) occurs in the run iAn× iA
#
j before (q, q′). As the same is true for the trace

of the run, the lemma is proved.

A.5. Duplication transformation. We define here a transformation τ on regular expres-
sions. Given a regular expression e, τ(e) is another regular expression which defines the
same word. This new expression permits the description of the prime factorization. The
transformation τ is defined by induction on the expression as follows.

τ(a) = a

τ(ee′) = τ(e)τ(e′)

τ(eω) = τ(e)τ(e)ω

We give below the result of the duplication transformation on the rational expressions
(ab)ω and (aωb)ωaω.

9:28 L. Boasson and O. Carton Vol. 16:4

Example A.13.

τ((ab)ω) = τ(ab)(τ(ab))ω = ab(ab)ω

τ((aωb)ωaω) = τ((aωb)ω)τ(aω)

= τ(aωb)τ(aωb)ωτ(a)τ(a)ω

= τ(aω)τ(b)(τ(aω)τ(b))ωaaω

= aaωb(aaωb)ωaaω

We let |e| denote the size of a regular expression. This size is actually the number of
letters in A ∪ {ω} used in the expression. We let also dp(e) denote its depth, that is, the
maximum number of nested ω in e. More formally, the size and the depth are inductively
defined as follows.

|a| = 1 dp(a) = 0

|ee′| = |e|+ |e′| dp(ee′) = max(dp(e),dp(e′))

|eω| = 1 + |e| dp(eω) = 1 + dp(e)

Note that if n is the size of an expression e, then n + 1 is the number of states of the
automaton Ae constructed in Section A.4.

Proposition A.14. For any regular expression e, the relation |τ(e)| ≤ 2dp(e)|e| holds.

Proof. The proof is carried out by induction on the regular expression. If e = a, then
τ(e) = a, |e| = |τ(e)| = 1 and dp(e) = 0 and the result holds. If e = e′e′′, then τ(e) =
τ(e′)τ(e′′) and dp(e) = max(dp(e′),dp(e′′)). It follows from the induction hypothesis that

|τ(e′)| ≤ 2dp(e
′)|e′| ≤ 2dp(e)|e′| and similarly |τ(e′′)| ≤ 2dp(e)|e′′|. Therefore |τ(e)| = |τ(e′)|+

|τ(e′′)| ≤ 2dp(e)(|e′| + |e′′|) = 2dp(e)|e|. If e = e′ω, then |τ(e)| = τ(e′)τ(e′)ω and thus

|τ(e)| = 1 + 2|τ(e′)| ≤ 1 + 21+dp(e′)|e′| = 2dp(e)|e|.

Note that the bound given by the previous proposition is almost sharp. Consider the
expressions (en)n<ω defined by induction on n by e0 = a and en+1 = eωn. It can be easily
shown by induction on n that |en| = n+ 1, dp(en) = n and |τ(en)| = 2n − 1.

Appendix B. Algorithm

In this section, we present an algorithm that computes the prime factorization of a rational
word x. Such a word is given by a rational expression e. It turns out that the duplicated
expression τ(e) can be used to describe the prime factorization of x by marking main and
secondary cuts of x in τ(e). Let us illustrate this on the following example. Consider the
word x given by the expression e = (bba)ω. Then the duplicated expression τ(e) is bba(bba)ω.
The prime factorization of x is b2(abb)ω, that is, x = u21u

ω
2 where the two prime factors are

u1 = b and u2 = abb. It can be given by inserting a marker || (resp., |) at main (resp.,
secondary) cuts in the expression τ(e) as ||b|b||a(bb|a)ω||. Note that such a marking cannot
be done in the expression e.

The algorithm given below works actually on the automaton Aτ(e) associated to the
expression τ(e). Rather than inserting markers in the expression, it distinguishes two subsets
QM and QS of states of the automaton Aτ(e). These subsets QM and QS correspond to main
and secondary cuts respectively. As the states of Aτ(e) are in one-to-one correspondence
with the positions in τ(e), distinguishing states is the same as inserting markers. Consider

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:29

again the expression e = (bba)ω. The automaton Ae is pictured in Figure 4 where as the
automaton Aτ(e) is pictured in Figure 5.

0 1 2 3
b b

a

{0, 1, 2} → 3

Figure 4: Automaton for (bba)ω

0 1 2 3 4 5 6
b b a b b

a

{3, 4, 5} → 6

QM = {0, 2, 6} QS = {1, 5}

Figure 5: Automaton for τ((bba)ω) = bba(bba)ω

The algorithm works on the second automaton. The subsetsQM andQS are respectively
QM = {0, 2, 6} and QS = {1, 5}. States 0 and 6 are visited at the two trivial cuts ε · (bba)ω

and (bba)ω · ε. State 2 is visited at the main cut b2 · (abb)ω. The unique visit of state 1
occurs at the secondary cut b · b(abb)ω. Visits of state 5 occur at secondary cuts of the form
b2(abb)n · (abb)ω for an integer n. States 3 and 4 are always visited at cuts that are neither
main nor secondary. It should be noted that such a separation between states cannot be
done on the first automaton. Indeed, in the first automaton, the first visit of state 1 occurs
at the secondary cut b ·b(abb)ω. All the other visits occur at cuts of the form (bba)nb · (bab)ω

which are not secondary. This is why the duplication operator τ has been introduced. It
can be easily seen that distinguishing states of Aτ(e) is indeed the same as inserting markers
in the expression τ(e). The main result is that what happens on the example is general:
some states of the automaton Aτ(e) correspond to main cuts and some of them correspond
to secondary cuts. The algorithm computes the two subsets QM and QS. We can now state
the main result of this section.

Theorem B.1. Given a rational word x denoted by a regular expression e, there are two
subsets QM and QS of states of Aτ(e) such that the main and secondary cuts are exactly
those mapped to states in QM and QS by the run labeled by x. Furthermore, these subsets
can be computed in polynomial time in the size of τ(e).

B.1. Description. The algorithm is essentially inspired by its counterpart used in the
classical case of finite words [5]. In this case, three variables i, j and k representing positions
in the word are used. The variable i contains a position such that the prefix of the finite
word ending at this position is already factorized. The variable j contains a position greater
than i such that the factor between positions given by i and j is the possible next prime
factor. The variable k is greater than j and contains the current position in the finite word.
Moreover, to make the classical algorithm easier to understand, a fourth variable k′ can be

9:30 L. Boasson and O. Carton Vol. 16:4

introduced. It contains a position in the possible next prime factor, this position ranges
between the positions i and j. The classical algorithm is then directed by the comparison
of the letters just after the positions k and k′.

Given a rational word x represented by an expression e, the algorithm presented here
works on the automaton Aτ(e) denoted A. It also uses four variables i, j, k and k′. Theses
variables do not contain positions in the word x, but rather states of A for the first three

ones and a state of iA
#
j for the last one k′. The algorithm produces two subsets of states

of A, the first one QM contains states corresponding to main cuts and the second one QS

contains states corresponding to secondary cuts. It also uses a list of states of the Cartesian
product called the history. This history is written below using angle brackets. It is the
trace of the run of the product automaton on the the factor ixk. The algorithm is directed

by the state of iAn× iA
#
j given by the last state of the history. This pair of states is called

the leading pair. It is formed of the states contained in the variables k and k′. As in the
finite case, the algorithm is directed by the comparison of the letters labeling the unique

successor transition leaving k in iAn and k′ in iA
#
j . This leads to the three cases described

below according to the fact that the two letters are the same (case 1), or the first is greater
than the second (case 2) or the first is smaller than the second (case 3). In case 2, the

content of variable j is changed and a new automaton iA
#
j is considered. In case 3, the

next prime factor is found and variables i, j, k and k′ are reinitialized to new values and a

new automaton iA
#
j is considered. Moreover, both sets QM and QS are updated.

The algorithm starts with i = 0, j = 1, k = 1 and k′ = 0. The history is just the list
〈(k, k′)〉, so that the leading pair is (k, k′) = (1, 0). The sets QM and QS are initialized to
QM = {0} and QS = ∅. Now assume that variables i, j, k and k′ are known and that the
history, ending with (k, k′), is known as well. Assume too that the sets QS and QM are
known. Then, as announced just above, the behavior of the algorithm falls in one of the
three cases given below.

Both automata iAn and iA
#
j are strongly deterministic. From any state, there is unique

successor transition leaving it. In the description below, its label is called the letter leaving
the state. Moreover, it is assumed that a fake end-maker, which is smaller than any other
letter, is the letter leaving the accepting state n of 0An.

Case 1: The letters leaving k and k′ are the same letter a. Compute the new pair (k ·a, k′ ·a)
The case now splits in three sub-cases.

Case 1a: The new pair is not in the history. Then it is just added to the history and the
algorithm goes on.

Case 1b: The new pair is in the history and the loop in iA
#
j from k′ · a to k′ · a does not

visit state j. The trace correspond to two loops P and P ′ in iAn and iA
#
j . The pair

(1 + maxP, 1 + maxP ′) is then added to the history and the algorithm goes on.

Case 1c: The new pair is in the history and the loop in iA
#
j from k′ · a to k′ · a visits

state j. The trace correspond to two loops P and P ′ in iAn and iA
#
j where P ′ contains

j. The pair (1 + maxP, j) is then added to the history and the algorithm goes on.

Note that Case 1c is similar to case 1b with the convention that j = j + 1 in iA
#
j .

Case 2: The letter b leaving k is greater than the letter a leaving k′. The possible next
prime factor has to be changed.

There are two cases.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:31

Case 2a: If k · b does not occur in the history, j is set to k · b and the leading pair is (i, j).
The variable k is set to j and k′ is set to i. The history is erased and reset to the list
reduced to (k, k′).

Case 2b: If k · b occurs in the history, let m be the largest state in the history. Then the
variable j is set to m + 1. The variable k is set to j and k′ is set to i. The history is
erased and reset to the list reduced to (k, k′).

The automaton iA
#
j is reconstructed and the algorithm goes on.

Note that in both cases, the new value of j is greater than the previous one, due to
Lemma A.12.

Case 3: The letter a leaving k is smaller than the letter b leaving k′. This case includes the
case where k is the accepting state n and a the fake end-marker.

State j and all states q such that (q, j) occurs in the history are added to QS . The
greatest added state is removed from QS and added to QM and variable i is set to this
state.

Let c be the label of the unique successor transition from this new i. The indices j and k

are set to i · c. The variable k′ is set to i. The leading pair is then (k = i · c, k′ = i). The

history is reset to the list reduced to the pair (k, k′). The automaton iA
#
j is reconstructed

and the algorithm goes on.

The algorithm stops when i is the accepting state n of 0An. A formal description of the
algorithm is given below, after the following example.

0 1 2 3 4 5 6 7 8 9 10 11 12
a a

a

b a a

a

b

a

a a

a

{2} → 3 {6} → 7 {5, 6, 7, 8} → 9 {11} → 12

Figure 6: Automaton for aaωb(aaωb)ωaaω

We now give the execution of the algorithm on the expression e = (aωb)ωaω. As seen
before, its duplication transformation τ(e) is equal to aaωb(aaωb)ωaaω. The corresponding
automaton has 13 states and is pictured in Figure 6. In the sequel, all descriptions of the

automata iA
#
j but 0A

#
4 are skipped. The automaton 0A

#
4 is pictured in Figure 7.

0 1 2 3 4
a a

a

b

a

{2} → 3 {1, 2, 3, 4} → 4

Figure 7: Automaton 0A
#
4

The algorithm starts with i = 0, j = k = 1 and k′ = 0. The history is just the list
〈(1, 0)〉 made of this single pair and thus the leading pair is thus (1, 0). The sets QM and QS

are QM = {0} and QS = ∅.

9:32 L. Boasson and O. Carton Vol. 16:4

The letter leaving states k = 1 and k′ = 0 is the letter a. Hence, this is case 1. The pair

(k · a, k′ · a) is the pair (2, 1), since k′ is a state of 0A
#
1 pictured in Figure 3. Since this pair

does not occur in the history, this is case 1a and the history becomes 〈(1, 0), (2, 1)〉. The
new leading pair is the pair (2, 1).

The letter leaving states k = 2 and k′ = 1 is the letter a. Hence, this is again case 1.
The pair (k · a, k′ · a) is the pair (2, 1) that already occurs in the history, detecting a loop
visiting state j = 1. Hence, this is case 1c. The pair added to the history is (3, 1). The
history becomes 〈(1, 0), (2, 1), (3, 1)〉.

The letter leaving states k = 3 and k′ = 1 are respectively the letters b and a. This is
case 2. As 4 = k · b does not occur in the history, this is case 2a. Then j is set to k · b = 4.
Variable k is set to 4 and k′ is reset to 0. The history is reset to 〈(4, 0)〉. The algorithm

uses the automaton 0A
#
4 pictured in Figure 7.

The letter leaving states k = 4 and k′ = 0 is the letter a giving rise to the pair (5, 1).
This is case 1a and this history becomes 〈(4, 0), (5, 1)〉.

The letter leaving states k = 5 and k′ = 1 is the letter a giving rise to the pair (6, 2).
This is case 1a and this history becomes 〈(4, 0), (5, 1), (6, 2)〉.

The letter leaving states k = 6 and k′ = 2 is the letter a giving rise to the pair (6, 2)
which is already in the history. State j = 4 is not visited in the loop. This is case 1b. The
new pair is then (7, 3) and this history becomes 〈(4, 0), (5, 1), (6, 2), (7, 3)〉.

The letter leaving states 7 and 3 is the same letter b giving rise to the pair (8, 4) which
is added to the history. This history is then 〈(4, 0), (5, 1), (6, 2), (7, 3), (8, 4)〉.

The letter leaving k = 8 is the letter a. The letter leaving k′ = 4 in the automaton

0A
#
4 is also the letter a: state 4 simulates state 0 (see Figure 7). This gives rise to the new

pair (5, 1). There is a loop since (5, 1) already occurs in the history. State j = 4 is indeed
visited by the pair (8, 4) in the history. Thus, this is case 1c. Hence the new pair is (9, 4).
This history becomes 〈(4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (9, 4)〉.

The letter leaving states 9 and 4 is the same letter a giving rise to the pair (10, 1) which
is added to the history. This history is then

〈(4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (9, 4), (10, 1)〉.

The letter leaving states 10 and 1 is the same letter a giving rise to the pair (11, 2) which
is added to the history. This history is then

〈(4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (9, 4), (10, 1), (11, 2)〉.

The letter leaving states k = 11 and k′ = 2 is the letter a giving rise to the pair (11, 2)
which is already in the history. State j = 4 is not visited in the loop. This is case 1b. The
new pair is then (12, 3) and this history becomes

〈(4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (9, 4), (10, 1), (11, 2), (12, 3)〉.

Due to the convention, the letter leaving state 12 is the fake right-end marker which is
smaller than all other letters. This is thus Case 3. States 4, 8 and 9 are added to QS and
9 is removed from QS and added to QM . So QM = {0, 9} and QS = {4, 8}. Variables i

and k are set to 9 and variables j and k′ are set to 10. The history is reset to 〈(10, 9)〉.

The algorithm uses the automaton 9A
#
10 which is similar to the automaton 0A

#
1 pictured in

Figure 3.
The letter leaving states 10 and 9 is the same letter a giving rise to the pair (11, 10)

which is added to the history. This history is then 〈(10, 9), (11, 10)〉.

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:33

The letter leaving states k = 11 and k′ = 10 is the letter a giving rise to the same pair
(11, 10). As j = 10 is visited in the loop, this is case 1c. The pair (12, 10) is added to the
history which becomes 〈(10, 9), (11, 10), (12, 10)〉.

Due to the convention, the letter leaving state 12 is the fake right-end marker which
is smaller than all other letters. This is thus Case 3. State j = 10 and states 11 and 12
are added to QS . State 12 is removed from QS and added to QM . So QM = {0, 9, 12}
and QS = {4, 8, 10, 11}. Finally variable i is set to 12 and the algorithm stops. This gives
the factorization of the word in uω1u

ω
2 where the primes words u1 and u2 are u1 = aωb and

u2 = a.
This example shows that several points have to be proved. We give here three such

points. Each time a state is added to QM or QS, all visits of that state occur at main or
secondary cuts. As soon as a state q is added to QM , all states visited after q are greater
than q. The algorithm terminates and computes the prime factorization of the word.

1: Input: automaton ({0, . . . , n}, A,E, {0}, {n}).
2: i← 0, j ← 1, k ← 1, k′ ← 0, H = (i, j) = (0, 1), QM ← {0}, QS ← ∅

3: while k < n do

4: if ak = ak′ then

5: k ← k · ak in A and k′ ← k′ · ak′ in iA
#
j

6: if (k, k′) occurs in H then

7: if j does not occur since the previous visit of (k, k′) then
8: k ← max{q | ∃q′ (q, q′) occurs in H after (k, k′)}
9: k′ ← max{q′ | ∃q (q, q′) occurs in H after (k, k′)}

10: else

11: k ← max{q | ∃q′ (q, q′) occurs in H after (k, k′)}
12: k′ ← j

13: H ← H · (k, k′)
14: else if ak >alp ak′ then

15: if k · ak does not occur in H then

16: j ← k · ak
17: else

18: j ← max{q | ∃q′ (q, q′) ∈ H}+ 1
19: k ← j, k′ ← i, H ← (i, j)
20: else

21: QS ← QS ∪ {j} ∪ {q | (q, j) ∈ H}.
22: i← maxQS , QS ← QS \ {i}, QM ← QM ∪ {i}
23: j ← i · ai, k ← j, k′ ← i, H ← (i, j)
24: Output QM and QS

Algorithm 1: LyndonFactorize

B.2. Additional properties of prime words. We first state three properties on prime
words that are used to prove that the algorithm given just above is correct.

Lemma B.2. Let u be a prime word and let xa be a prefix of u where x is a word and a is
a letter. If b is a letter such that a <alp b, then the word xb is prime and satisfies u <lex xb.

9:34 L. Boasson and O. Carton Vol. 16:4

Proof. Since xa is a prefix of u, there exists a word y such that u = xay. We first show
that any suffix of xb is greater than xb. A suffix of vb is either the letter b or has the form
x′b where x′ is a non-empty suffix of x. In the former case, since a occurs in u, the first
letter a′ of u must satisfy a′ <alp a. Otherwise the suffix ay would satisfy ay <str u and
this would contradict the fact that u is prime. It follows then that u <str b. In the latter
case, note that |x′| ≤ |x| since x′ is a suffix of x. The case x′ = x is trivial and we assume
therefore that x′ 6= x. Since u is prime, the suffix x′ay of u satisfies u 6lex x′ay, that is,
either u <str x

′ay or u = x′ay. This implies that either x′a <pre u or u <str x
′a. In both

cases, one has u <str x
′b and thus yb <str x

′b since |x′| ≤ |x|.
It remains to show that xb is primitive. If xb is not primitive, by Lemma 3.4, it is equal

to zα for some word z and some ordinal α which is a power of ω. This is not possible since
xb has a last letter.

The following corollary is directly obtained by combining the previous lemma with
Proposition 3.7.

Corollary B.3. Given a prime word u = xay and a letter b such a <alp b, the word uαxb

is prime for any ordinal α.

The next lemma states that given a prime word u and a word x such that x <str u, the
prime factorization of uαx is made of α copies of u followed by the prime factorization of x.

Lemma B.4. Let u be a prime word and let x a be a word such that x <str u. For any
ordinal α, the prime factorization of the word uαx has the form uαξ where ξ is the prime
factorization of x.

Proof. Since the prime factorization is unique by Theorem 4.3, it suffices to show that the
sequence uαξ is indeed a densely non-increasing sequence of prime words. It is clear that
this sequence only contains prime words. Let v0 the first prime word that occurs in the
prime factorization ξ of x. We claim that this word v0 satisfies v0 6lex u. Since x <str u,
there exist words y, u′ and x′ and letters a and b such that x = yax′, u = ybu′ and a <alp b.
Note that v0 is a prefix of x. If |v0| ≤ |y|, then v0 is a prefix of y and thus a prefix of u
which implies v0 6lex u. If |v0| > |y|, then ya is a prefix of v0 and thus v0 <str u which
implies v0 6lex u.

Since v0 6lex u, the sequence uαξ is indeed densely non-increasing and it is then the
prime factorization of uαx.

B.3. Invariants. In order to prove that the algorithm is correct, we prove that the following
six invariants always hold during its execution. The main invariant is the first one that
guarantees the correctness of the algorithm. The five others are more technical invariants
used to prove the first one.

(1) The prime factorization of 0xi is 0xi = uα1

1 · · · u
αr
r . Its main cuts are exactly those

mapped to states in QM . Its secondary cuts are exactly those mapped to states in QS.
(2) The state i is not in a loop.
(3) The prime word ur satisfies ur >lex ixn.
(4) The word ixj is prime.

(5) Let (i,i)x(k,k′) be the word labelling the run in iAn × iA
#
j from (i, i) to (k, k′) without

visiting (k, k′). Then (i,i)x(k,k′) = ix
β
j y with y <pre ixj .

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:35

(6) The history H contains the trace of a run in iAn× iA
#
j and thus contains no repetition.

We now show that these six invariants do hold. Notice that Invariants 1,2 and 3 only
depend on i and not on j and k. Similarly, Invariant 4 only depends on i and j and not
on k.

At the beginning of the algorithm, i = 0 and j = k = 1. The invariants 1 and 3 hold
by vacuity. Invariant 2 is true since i = 0. Invariant 4 holds since 0xi = ixj is just the first
letter of x. Invariants 5 and 6 are also trivially true.

Now assume that the variables i, j, k and k′ and the history H are known. The last
pair in H is the leading pair (k, k′).

We prove that after each iteration of the main while loop of the algorithm, the six
invariants still hold. Each iteration falls in one of the three cases already described. We
now consider each case.

Case 1. In this case, neither i nor j are changed. Hence, Invariants 1,2,3 and 4 remain
obviously true.

The two automata iAn and iA
#
j are in states k and k′ and both successor transitions

leaving k and k′ are labelled the same letter a. Then this is either case 1a, 1b or 1c.
case 1a: the new pair (k · a, k′ · a) is not in the history. Then it is added to it. The

history remains the trace of the run. The suffix y becomes ya which is still a prefix of ixj.
If k′ · a = j, then ya = ixj, the exponent β is increased by 1, and y becomes the empty
word. Hence, Invariants 5 and 6 hold.

case 1b: the new pair (k·a, k′ ·a) is already in the historyH and, after its first occurrence,
state j does not occur as a first component of a pair. Note that, then, its sure that k′ ·a 6= j.

An internal loop of iA
#
j has been reached, that is, a loop that is already a loop of iAj (i.e.

using none of the two added transitions). This loop is also a loop of iAn. The repetition
ω times of the two loops leads to a use of limit transitions in the two automata. Let q

and q′ be the two states reached by these two limit transitions. Then the word ixj can be
factorized as ixj = x1x

ω
2x3 where x2 is the label of the loop. The new read prefix is then of

the form yxω2 . Then Invariant 5 holds. The only invariant possibly violated is Invariant 6:
it remains to be shown that the new pair (q, q′) added to the history does not already occur
in it. This is guaranteed by Lemma A.11.

case 1c: the new pair (k·a, k′ ·a) is already in the historyH and, after its first occurrence,
state j does occur as a second component of a pair. This means that a loop labeled by a

power γ of a conjugate the word ixj has been read in iAn× iA
#
j . Then this leads to the use

a limit transition in iAn and to the use of the added limit transition in iA
#
j . The reached

state in iAn is ℓ where ℓ− 1 is the maximum state in the loop of iAn and the reached state

in iA
#
j is state j. The new prefix read is then of the form ixj

β+λ·ω and y becomes empty.
As in case 1b, Invariant 5 holds and the only invariant possibly violated is then invariant 6.
It remains to be shown that the new pair (q, j) added to the history do not already occur
in it. Again Lemma A.11 gives the result.

Case 2. In this case, i is not changed. Hence, Invariants 1,2 and 3 remain obviously true.

The two automata iAn and iA
#
j are in states k and k′. Let b (respectively a) be the

letter labelling the successor transition leaving k (respectively k′) with a <alp b. Let q and
q′ be the states k ·b and k′ ·a. The word ixj can be factorized ixj = x1ax2 where x1 = y and

9:36 L. Boasson and O. Carton Vol. 16:4

the word (i,i)x(k,k′) is followed by letter b. By Corollary B.3, the word (x1ax2)
βx1b is prime.

Let j′ be the state k · b. Depending on the value of j′, this is either Case 2a or Case 2b.
Case 2a: the state j′ never occurred up to now in the run performed by iAn. Then

variable j is set to j′. Invariant 4 holds since (x1ax2)
βx1b is prime. Invariant 5 trivially

holds. Since the history is reset to the single pair 〈(i, j)〉 = 〈(k, k′)〉, Invariant 6 holds.
Case 2b: the state j′ already occurred in the run performed by iAn. This means

that this automaton has entered a loop. Let ℓ − 1 be the largest state visited in the loop.
The automaton iAn can use a limit transition to reach state ℓ. As in case 2a, the word

(x1ax2)
βx1b is prime. This word ends with a due to the loop over j′ and the duplication.

By Lemma A.5, the word ixp is prime. This ensures that Invariant 4 holds as j is set to q.
Invariant 5 trivially holds. Since the history is reset to the single pair 〈(i, ℓ)〉 = 〈(k, k′)〉,
Invariant 6 holds.

Case 3. The two automata iAn and iA
#
j are in states k and k′. Let a (respectively b) be

the letter labelling the successor transition leaving k (respectively k′) with a <alp b. Let q
and q′ be the states k ·a and k′ · b. During the proof of the invariants, we let i and i′ denote
respectively the old and new values of the variable i. Let us recall that i′ is the largest state
in {j} ∪ {q | (q, j) ∈ H}.

We begin with Invariant 3. The word ixj is the prime factor ur+1. It can be factorized
as ur+1 = x1bx2 where x1 = y and the word (i,i)x(k,k′) is followed by letter a. This ensures
that ur+1 >lex x1a >lex i′xn. This proves Invariant 3.

We continue with the first part Invariant 1, namely that the prime factorized of 0xi′ is
uα1

1 · · · u
αr
r u

αr+1

r+1 . The word ur+1 is a prefix of ixn. It satisfies therefore ur+1 <lex ixn <lex ur
by Invariant 1 applied to the old value i. This ensures that the prime factorization of 0xi′

is 0xi′ = uα1

1 · · · u
αr
r u

αr+1

r+1 where αr+1 = β.
We now prove Invariant 2, namely that i′ is not in a loop. The proof is by contradiction.

So, assume i′ is in a loop of the automaton 0An. The loop has an entry state p and is labeled
by a word z′. By Lemma A.9, z′ has a last letter c and can be factorized as z′ = zc and
x = x1c(zc)

ωx2. Moreover, due to the duplication, x can be factorized as x = x1czc(zc)
ωx2

so that the loop is entered at the cut x1czc · (zc)
ωx2. As i′ is in the loop, it gives rise to

a cut of the form x1czcy1 · y2(zc)
ωy3, so that the cut associated to i′ do not occur in the

occurrence of cz which follows the prefix x1. But, by Corollaries A.6 and A.7, all main cuts
of x must occur either in the prefix x1cz or in the suffix x2 and this is a contradiction.

We come back to Invariant 1. From Invariant 2, the state i′ occurs only once in the run
and therefore there is only one cut mapped to i′ and it is indeed a main cut. In order to
prove Invariant 1, it remains to prove that secondary cuts are exactly those mapped to states
in QS . As any secondary cut is mapped to a state in QS , it is enough to prove that any cut
mapped to a state in QS is secondary. Consider then a state p ∈ QS . If p is not in a loop, it
occurs only once in the run and the result is immediate. So, from now on, state p is assumed
to be in a loop labelled by z′. Then we first prove that the first cut of 0xi′ mapped to p is a
secondary cut of 0xi′ . Consider a cut 0xi′ = x1 ·x2 mapped to p. Then 0xi′ can be factorized
as 0xi′ = y1z

′ωy2. Then, just as above, z′ has a last letter c such that z′ = zc and due to
the duplication and to Lemma A.9, the factorization can be written 0xi′ = y1czc(zc)

ωy2.
On the other hand, zc can be factorized as zc = z1z2c such that the label z2cz1 loops on
p. Then the factorization of 0xi′ can be now written 0xi′ = y1czcz1(z2cz1)

ωy2 where the
first cut associated to state p is the cut y1czcz1 · (z2cz1)

ωy2. Assume that this cut is not
secondary. Then there is a secondary cut of the form y1czcz1(z2cz1)

n · (z2cz1)
ωy2 for some

Vol. 16:4 TRANSFINITE LYNDON WORDS 9:37

n ≥ 1. But, by Lemmas 4.13 and A.4, either there is no secondary cut within z′ω or the
first one occurs before the cut y1c1z2cz1 · (z2cz1)

ωy2 and this is a contradiction.
So, we have proved that the first cut of 0xi′ mapped to p is a secondary cut. We

now show that each time the run reaches again p in the loop, the corresponding cut is a
secondary cut as well. Let z be the label of the loop including p. It follows that x can be
factorized as x = y1z

ωy2. Due to the duplication, the state p does not occur in the run

on the prefix y1z. Let z = v
β1

1 · · · v
βk

k be the prime factorization of z. By Lemma A.4, the

prime factorization of zω is zω = v
β1

1 · · · v
βj

j vγ where a power of v is a conjugate of z. Note

that, in this factorization, the secondary cuts of the form y1zz
′ · z′′y2 with z′z′′ = zω occur

in cuts of vω of the form v
β1

1 · · · v
βi

i vγ1 · vγ2 where γ1 + γ2 = γ. By Lemma 4.13, in the
prime factorization of 0xi′ , either v is a prime factor or vω is a factor of a prime factor.
In the latter case, no cut of the form y1zz

′ · z′′y2 would be secondary. This is impossible
because the cut responsible of the addition of p in QS is such a cut. So, the prime word v

is a factor of the prime factorization of 0xi′ and, each cut mapped to p is a cut of zω of the

form v
β1

1 · · · v
βi

i vγ1 · vγ2 which is indeed a secondary cut. Hence, the secondary cuts exactly
correspond to the cuts mapped to a state in QS . Invariant 1 is satisfied.

Invariants 5 and 6 are trivial because the situation is the same than when the algorithm
started: the history is reduced to a single pair and the word (i′,i′)x(k,k′) is a single letter.

B.4. Correctness and complexity. We call step of the algorithm one execution the main
while loop. Each step falls in one three cases listed above. We first show that the algorithm
terminates in at most n4 steps where n is the number of states of Aτ(e). In cases 1 and 2,
the variable i remains unchanged and, in case 3, this variable is always updated to a greater
values due to Invariant 6. This shows that case 3 cannot happen more than n times.
Between two occurrences of case 3, variable j remains unchanged in case 1 and is updated
to a greater value in case 2 due to Lemma A.12. This shows that case 2 cannot happen more
that n times between two consecutive occurrences of case 3. Each step using case 1 adds a
new pair to the history. Therefore, case 1 cannot happen more that n2 times consecutively.
Putting everything together yields the result.

We now show that the number of steps of the algorithm is at most n3. To prove this,
it is enough to remark the following fact. Each value of the variable j is greater than the
current value of i and less that the next value of i. This shows that the numbers of values
of the pair (i, j) is less than n. Therefore, the total number of steps using cases 2 and 3 is
at most n. This yields that the number of steps is at most n3.

We now show that the algorithm is correct. This means that a cut is a main (resp.,
secondary) cut if and only if it is mapped to a state in QM (resp., QS) in the run of x
in Aτ(e). Invariant 1 ensures that the prime factorization of x is x = uα1

1 · · · u
αk

k where each
main cut is mapped to a state in QM . Invariant 6 ensures that states in QM never occur
in a loop of Aτ(e). This implies that each of them occurs once in the run. This proves that
other cut is mapped to a state in QM .

We now prove that the cuts mapped to a state in QS are exactly the secondary cuts.
By invariant 1, secondary cuts are mapped to states in QS . The converse remains to be
proved. The proof is carried out in two steps. First we show that, given q ∈ QS, the first
cut mapped to q is secondary. Second we show that all cuts mapped to q are secondary. If
q is not in a loop, q occurs only once in the run and the result is obvious. Now assume that
q belongs to a loop whose entry state is p.

9:38 L. Boasson and O. Carton Vol. 16:4

Now consider a cut x = x1x2 mapped to q. Let z be the label of the run from p to p.
This word z can be factorized as z = z1z2 where z2z1 is the label of the run from q to q. Then
x can be factorized as x = y1(z1z2)

ωy2. Due to the duplication, the first occurrence of q
in the run is just before the second occurrence of z2. Consider then the corresponding cut
y1z1z2z1 · (z2z1)

ωy2 and suppose that it is not secondary. Then the secondary cut x = x1x2
can be written x1 = y1z1(z2z1)

n for n ≥ 2 and x2 = (z2z1)
ωy2. Hence, we have a secondary

cut of x lying after the second occurrence of z in x = y1z
ωy2. By Corollaries A.6 and A.7,

this not possible. So, we have proved that the first time the run of Aτ(e) reaches state q

in the loop, it corresponds to a position in x which is indeed a secondary cut. We now
show that each time the run reaches again q in the loop, the corresponding position is a
secondary cut as well. The label of the loop including q is z = z1z2 and we know that

x can be factorized as x = y1z
ωy2. The label z has a prime factorization z = v

β1

1 · · · v
βk

k .

By Lemma A.4, zω has the prime factorization z = v
β1

1 · · · v
βi

i vβ where a power of v is a
conjugate of z. Note that, in this factorization, the secondary cuts that are not within the

first occurrence of z exactly occur in cuts of the form v
β1

1 · · · v
βi

i vn · vβ. By Lemma 4.13, we
know that in the prime factorization of x, either v is a prime factor or vω is a factor of a
largest prime factor. If the second case was to happen, then no secondary cut would occur
within zω. This is impossible because we already have such a cut in the second occurrence
of z. So, the prime word v is a factor of the prime factorization of x and, each time the

run of Aτ(e) reaches state q, it is associated to a cut of the form v
β1

1 · · · v
βi

i vn · vβ which is
indeed a secondary cut. Hence, the secondary cuts exactly correspond to the cuts mapped
to a state in QS.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Ordinals
	2.2. Words

	3. Prime words
	3.1. Properties of prime words
	3.2. Closure properties

	4. Factorization in prime words
	4.1. Properties of densely non-increasing sequences
	4.2. Existence of the factorization
	4.3. Uniqueness of the factorization

	Conclusion
	Acknowledgements
	References
	Appendix A. Rational words
	A.1. Factorization of rational words
	A.2. Cuts
	A.3. Automata
	A.4. Automata for a single word
	A.5. Duplication transformation

	Appendix B. Algorithm
	B.1. Description
	B.2. Additional properties of prime words
	B.3. Invariants
	B.4. Correctness and complexity

