Abstract
We present several enumeration results holding in sets of words called neutral and which satisfy restrictive conditions on the set of possible extensions of nonempty words. These formulae concern return words and bifix codes. They generalize formulae previously known for Sturmian sets or more generally for tree sets. We also give a geometric example of this class of sets, namely the natural coding of some interval exchange transformations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balková, Ĺ., Pelantová, E., Steiner, W.: Sequences with constant number of return words. Monatsh. Math. 155(3–4), 251–263 (2008)
Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and Sturmian words. J. Algebra 369, 146–202 (2012)
Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press (2009)
Berthé, V., De Felice, C., Delecroix, V., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Specular sets. In: Preparation (2015). (http://arxiv.org/abs/1505.00707)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Acyclic, connected and tree sets. Monatsh. Math. 176(4), 521–550 (2015)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and interval exchanges. J. Pure Appl. Algebra 219(7), 2781–2798 (2015)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Maximal bifix decoding. Discrete Math (2015)
Berthé, V., Delecroix, V., Dolce, F., Perrin, D., Reutenauer, C., Rindone, G.: Return words of linear involutions and fundamental groups (2015). (http://arxiv.org/abs/1405.3529)
Berthé, V., Rigo, M.: Combinatorics, automata and number theory. Encyclopedia Math. Appl., vol. 135. Cambridge Univ. Press, Cambridge (2010)
Massé, A.B., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of codings of rotations. Theoret. Comput. Sci. 412(46), 6455–6463 (2011)
Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4(1), 67–88 (1997). Journées Montoises (Mons, 1994)
Justin, J., Vuillon, L.: Return words in Sturmian and episturmian words. Theor. Inform. Appl. 34(5), 343–356 (2000)
Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)
Nogueira, A., Pires, B., Troubetzkoy, S.: Orbit structure of interval exchange transformations with flip. Nonlinearity 26(2), 525–537 (2013)
Vuillon, L.: On the number of return words in infinite words constructed by interval exchange transformations. Pure Math. Appl. (PU.M.A.) 18(3–4), 345–355 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dolce, F., Perrin, D. (2015). Enumeration Formulæ in Neutral Sets. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-21500-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21499-3
Online ISBN: 978-3-319-21500-6
eBook Packages: Computer ScienceComputer Science (R0)