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GARSIDE AND QUADRATIC NORMALISATION: A SURVEY

PATRICK DEHORNOY

Abstract. Starting from the seminal example of the greedy normal norm
in braid monoids, we analyze the mechanism of the normal form in a Garside
monoid and explain how it extends to the more general framework of Garside
families. Extending the viewpoint even more, we then consider general
quadratic normalisation procedures and characterise Garside normalisation
among them.

This text is an essentially self-contained survey of a general approach of nor-
malisation in monoids developed in recent years in collaboration with several co-
authors and building on the seminal example of the greedy normal form of braids
independently introduced by S. Adjan [1] and by M. El-Rifai and H. Morton [22].
The main references are the book [17], written with F. Digne, E. Godelle, D. Kram-
mer, and J. Michel, the recent preprint [19], written with Y. Guiraud, and, for
algorithmic aspects, the article [16], written with V. Gebhardt.

If M is a monoid (or a semigroup), and S is a generating subfamily of M ,
then, by definition, every element of M is the evaluation of some S-word. A
normal form for M with respect to S is a map that assigns to each element
of M a distinguished representative S-word, hence a (set theoretic) section for
the evaluation map from S∗ to M . The interest of normal forms is obvious,
since they provide a unambiguous way of specifying the elements of M and, from
there, for working with them in practice. As can be expected, the complexity of
a normal form is a significant element. It can be defined either by considering
the complexity of the language of normal words (regular, algebraic, etc.), or that
of the associated normalisation map, that is, the procedure that transforms an
arbitrary word into an equivalent normal word (linear, polynomial, etc.).

A huge number of normal forms appear in literature, based on quite different
initial approaches, and it is certainly difficult to establish nontrivial results uni-
fying all possible types. In this text, we concentrate on some families of normal
forms that turn out to be simple in terms of complexity measures, and whose
main specificity is to satisfy some locality assumptions, meaning that both the
property of being normal and the procedure that transforms an arbitrary word
into an equivalent normal word only involve factors of a bounded length, here
factors of length two (and that is why we call them “quadratic”). As we shall
see, several well-known classes of normalisation processes enter this framework,
for instance the seminal example of the greedy normal form in Artin’s braid
monoids [1, 22, 23] but also the normal forms in Artin–Tits monoids based on
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2 PATRICK DEHORNOY

rewriting systems as in [25] or, in a very different context, the normal form in
plactic monoids based on Young tableaux and the Robinson–Schenstedt algo-
rithm [5, 6].

The current introductory text is organised in four sections, going from the
particular to the general. In Sec. 1, we analyze two motivating examples of
greedy normal forms, involving free abelian monoids, a toy case that already
contains the main ideas, and braid monoids, a more complicated case. Extending
these examples, we describe in Sec. 2 the mechanism of the ∆-normal form in
the now classical framework of Garside monoids. Next, in Sec. 3, we explain
how most of the results can be generalized and, at the same time, simplified,
using the notion of an S-normal form derived from a Garside family. Finally, in
Sec. 4, we introduce quadratic normalisations, which provide a natural unifying
framework for the normal forms we are interested in. Having defined a complexity
measure called the class, we characterise Garside normalisations among quadratic
normalisations, and mention (positive and negative) termination results for the
rewriting systems naturally associated with quadratic normalisations.

Most proofs are omitted or only sketched. However, it turns out that some
arguments, mainly in Sec. 2 and 3, are very elementary, and then we included
them, hopefully making this text both more informative and thought-provoking.

Excepte in concluding remarks at the end of sections, we exclusively consider
monoids. A number of results, in particular most of those involving Garside
normalisation, can be extended to groups of fractions. Also, the whole approach
extends to categories, viewed as monoids with a partial multiplication.

Our notation is standard. We use Z for the set of integers, N for the set of
nonnegative integers. If S is a set, we denote by S∗ the free monoid over S
and call its elements S-words, or simply words. In this context, S is also called
alphabet, and its elements letters. We write ‖w‖ for the length of w, and S[p]

for the set of all S-words of length p. We use w|w′ for the concatenation of two
S-words w and w′. We say that w′ is a factor of w if there exist u, v satisfying
w = u|w′|v. If M is a monoid generated by a set S, we say that an S-word
s1| ··· |sp is a S-decomposition for an element g of M if g = s1 ···sp holds in M .

1. Two examples

We shall describe a specific type of normal form often called the “greedy normal
form”. Before describing it in full generality, we begin here with two examples:
a very simple one involving free abelian monoids, and then the seminal example
of Artin’s braid monoids as investigated after Garside.

1.1. Free abelian monoids. Our first example, free abelian monoids, is partic-
ularly simple, but it is fundamental as it can serve as a model for the sequel: our
goal will be to obtain for more complicated monoids counterparts of the results
that are trivial here.

Consider the free abelian monoid (N,+)n with n > 1, simply denoted by N
n.

We shall see the elements of N
n as sequences of nonnegative integers indexed

by {1, ... , n}, thus writing g(k) for the kth entry of an element g, and use a
multiplicative notation: fg = h means ∀k (f(k) + g(k) = h(k)). Let An be the
family {a1, ... , an}, where ai is defined by ai(k) = 1 for k = i, and 0 otherwise.
Then An is a basis of Nn as an abelian monoid.
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It is straightforward to obtain a normal form nfLex for N
n with respect to An

by fixing a linear ordering on An, for instance a1 < ··· < an, and, for g in N
n,

defining nfLex(g) to be the lexicographically smallest word representing g.
We shall be interested here in another normal form, connected with another

generating family. In this basic example, the construction may seem uselessly
intricate, but we shall see that it nicely extends to less trivial cases, which is not
the case of the above lexicographical normal form. Let us put

(1.1) Sn := {s ∈ N
n | s(k) ∈ {0, 1} for k = 1, ... , n}.

For f, g in N
n, define f 4 g to mean ∀k (f(k) 6 g(k)), and write f ≺ g for f 4 g

with f 6= g. The relation 4 is a partial order, connected with the operation
of Nn, since f 4 g is equivalent to ∃g′∈Nn (fg′ = g), that is, f divides g in N

n.
Then Sn consists of the 2n divisors of the element ∆n defined by

(1.2) ∆n(k) := 1 for k = 1, ... , n.

We recall that, if M is a (left-cancellative) monoid generated by a family S,
the Cayley graph of M with respect to S is the S-labeled oriented graph with
vertex set M and, for g, h in M and s in S, there is an s-labeled edge from g to h
if, and only if, gs = h holds in M . Then, the Cayley graph of Nn with respect
to An is an n-dimensional grid, and Sn corresponds to the n-dimensional cube
that is the elementary tile of the grid, see Fig. 1.

Proposition 1.3. Every element of N
n admits a unique decomposition of the

form s1| ··· |sp with s1, ... , sp in Sn satisfying sp 6= 1, and, for every i < p,

(1.4) ∀s∈Sn ( si ≺ s ⇒ s 64 sisi+1 ···sp ).

Condition (1.4) is a maximality statement. It says that s1 contains as much
of g as possible in order to remain in Sn and that, for every i, the entry si similarly
contains as much of the right chunk si ···sp as possible to remain in Sn: when we
try to replace si with a larger element s of Sn, then we quit the divisors of si ···sp.
This should make it clear why the decomposition s1| ··· |sp of g is usually called
greedy.

Example 1.5. Assume n = 3 and consider g = a3bc2, that is, g = (3, 1, 2) (we
write a, b, c for a1, a2, a3). The maximal element of S3 that divides g is ∆3, with
g = ∆3 · a2c. Then, the maximal element of S3 that divides a2c is ac, with
a2c = ac · a. The latter element left-divides ∆3. So the greedy decomposition
of g as provided by Prop. 1.3 is the length-three S3-word ∆3|ac|a, see Fig. 1.

Prop. 1.3 is easy. It can be derived from the following (obvious) observation:

Lemma 1.6. For every n, the divisibility relation of Nn is a lattice order, and
Sn is a finite sublattice formed by the divisors of ∆n, which are 2n in number.

We recall that a lattice order is a partial order in which every pair of elements
admits a greatest lower bound and a lowest upper bound. When considering
a divisibility relation, it is natural to use “least common multiple” (lcm) and
“greatest common divisor” (gcd) for the least upper and greatest lower bounds.

Once Lemma 1.6 is available, Prop. 1.3 easily follows: indeed, starting from g,
if g is not 1, there exists a maximal element s1 of Sn dividing g, namely the
left-gcd of g and ∆n. So there exists g′ satisfying g = s1g

′. If g′ is not 1, we



4 PATRICK DEHORNOY

1 a

b

c

∆ a3bc2

Figure 1. The Cayley graph of Nn with respect to An, here for
n = 3; we write a, b, c for a1, a2, a3, and ∆ for ∆3. The dark
grey cube corresponds to the 8 elements of S3. Then, the greedy
decomposition of a3bc2 corresponds to the dashed path: among
the many possible ways of going from 1 to a3bc2, we choose
at each step the largest possible element of S3 that divides the
considered element, thus remaining in the light grey domain,
which corresponds to the divisors of a3bc2.

repeat with g′, finding a maximal element s2 of Sn dividing g′, etc. The sequence
s1|s2| ··· so obtained then satisfies the maximality condition of (1.4).

Remark 1.7. Let Z
n be the rank n free abelian group. Then Z

n is a group of
(left) fractions for the monoid N

n, meaning that every element of Zn admits an
expression f−1g with f, g in N

n. It is easy to extend the greedy normal form
of Prop. 1.3 into a unique normal form on the group Z

n: indeed, every element
of Z

n can be expressed as ∆m
n g with m in Z and g in N

n, hence it admits a
decomposition ∆m

n |s1| ··· |sp with s1, ... , sp in Sn satisfying (1.4). The latter is
not unique in general, but it is if, in addition, one requires s1 6= ∆n.

1.2. Braid monoids. Much less trivial, our second example involves braid monoids
as investigated by F.A. Garside in [24]. For our current purpose, it is convenient
to start with a presentation of the braid monoid B+

n , namely

(1.8) B+

n =

〈
σ1, ... , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉+
.

The braid group Bn is the group which, as a group, admits the presentation (1.8).
As shown by E. Artin in [3] (see, for instance, [7] or [18]), Bn interprets as the
group of isotopy classes of n-strand braid diagrams, which are planar diagrams
obtained by concatenating diagrams of the type

σi :

and σ−1
i :

1 i i+1 n

··· ···

··· ···

with 1 6 i 6 n− 1. When an n-strand braid diagram is viewed as the projection
of n nonintersecting curves in a cylinder D2×R as in Fig. 2, the relations of (1.8)
correspond to the natural notion of a deformation, or ambient isotopy. Then, the
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monoid B+

n corresponds to isotopy classes of positive braid diagrams, meaning
those diagrams in which all crossings have the orientation of σi.

σ1
σ3
σ−1
2

σ−1
1

σ2

Figure 2. Viewing an n-strand braid diagram (here n = 4) as
the plane projection of a 3D-figure in a cylinder; on the right,
by decomposing the diagram into elementary diagrams involving
only one crossing, with two possible orientations, one obtains an
encoding of an n-braid diagram by a word in the alphabet
{σ±1

1 , ... , σ±1
n−1}.

Defining unique normal forms for the elements of the monoid B+

n (called pos-
itive n-strand braids) is both easy and difficult. Indeed, by definition, every
positive n-strand admits decompositions in terms of the letters σ1, ... , σn−1, and,
as in Subsec. 1.1, we obtain a distinguished expression by considering the lexico-
graphically smallest expression. This, however, is not a good idea: the normal
form so obtained is almost useless (nevertheless, see [2], building on unpublished
work by Bronfman, for an application in combinatorics), mainly because there
is no simple rule for obtaining the normal form of σig or gσi from that of σi. In
other words, one cannot compute the normal form easily.

A much better normal form can be obtained as follows. For each n, let ∆n be
the positive n-strand braid inductively defined by

(1.9) ∆1 := 1, ∆n := ∆n−1 σn−1 ···σ2σ1 for n > 2,

corresponding to a (positive) half-turn of the whole family of n strands:

∆1 ∆2

∆3

∆4

Next, let us call a positive braid simple if it can be represented by a positive
diagram in which any two strands cross at most once. One shows that the latter
property does not depend on the choice of the diagram. By definition, the trivial
braid 1, and every braid σi is simple. We see above that ∆n is also simple. Let Sn

be the family of all simple n-strand braids.
As in Subsec. 1.1, let 4 be the left -divisibility relation of the monoid B+

n : so
f 4 g holds if, and only if, there exists g′ (in B+

n ) satisfying fg′ = g. For n > 3,
the monoid B+

n is not abelian, so left-divisibility does not coincide in general with
right-divisibility, defined symmetrically by ∃g′ (g′f = g).

Then, we have the following counterpart of Lemma 1.6:
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Lemma 1.10. [24] For every n, the left-divisibility relation of the monoid B+

n

is a lattice order, and Sn is a finite sublattice formed by the left-divisors of ∆n,
which are n! in number.

Contrasting with Lemma 1.6, the proof of Lemma 1.10 is far from trivial. Why
n! appears here is easy to explain. Every n-strand braid g induces a well-defined
permutation π(g) of {1, ... , n}, where π(g)(i) is the initial position of the strand
that finishes at position i in any diagram representing g. In this way, one obtains
a surjective homomorphism from Bn to the symmetric group Sn. It turns out
that, for every permutation f of {1, ... , n}, there exists exactly one simple n-
strand braid whose permutation is f : so simple braids (also called “permutation
braids”) provide a (set-theoretic) section for the projection of Bn to Sn, and they
are n! in number, see Fig. 3.

1

∆n

Figure 3. The lattice (Div(∆n),4) formed by the n! left-
divisors of the braid ∆n in the monoid B+

n , here in the case
n = 4: a copy of the n-permutahedron associated with the sym-
metric group Sn equipped with what is called the weak order,
see for instance [9]; topologically, this is an n−2-sphere tessel-
lated by hexagons and squares which correspond to the relations
of (1.8).

Once Lemma 1.10 is available, repeating the argument of Subsec. 1.1 (with
some care) easily leads to

Proposition 1.11. [1, 22] Every element of B+

n admits a unique decomposition
of the form s1| ··· |sp with s1, ... , sp in Sn satisfying sp 6= 1, and, for every i < p,

(1.12) ∀s∈Sn ( si ≺ s ⇒ s 64 sisi+1 ···sp ).

In other words, we obtain for every positive braid a unique greedy decompo-
sition exactly similar to the one of Prop. 1.3.

Example 1.13. Consider g = σ2σ3σ2σ2σ1σ2σ3σ3 in B+

4 . First, by cutting when
two strands that already crossed are about to cross for the second time, we
obtain a decomposition into then three simple chunks σ2σ3σ2|σ2σ1σ2σ3 |σ3. Next,
we push the crossings upwards as much as possible, we obtain σ2σ3σ2σ1|σ2σ1σ3 |σ3,
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and finally σ1σ2σ3σ2σ1 |σ2σ1σ3, as in the diagram below. with only two entries.

We cannot go farther, so the decomposition is greedy.

Remark 1.14. Here again, the greedy normal form extends from the monoid to
the group. It turns out that Bn is a group of fractions for B+

n , and that ∆n is a
sort of universal denominator for the elements of the group, meaning that every
element of Bn can be expressed as ∆m

n g with m in Z and g in B+

n . As above,
it follows that every element of Bn admits a unique decomposition ∆m

n |s1| ··· |sp
with m in Z, s1, ... , sp in Sn satisfying (1.4) and, in addition, s1 6= ∆n.

2. The ∆-normal form in a Garside monoid

In the direction of more generality, we now explain how to unify the examples
of Sec. 1 into the notion of a ∆-normal form associated with a Garside element
in what is now classically called a Garside monoid.

2.1. Garside monoids. The greedy normal form of the braid monoid B+

n has
been extended to other similar monoids a long time ago. Typically, an Artin–
Tits monoid, which, by definition, is a monoid defined by relations of the form
stst... = tsts... where both sides have the same length, is called spherical if
the Coxeter group obtained by making all generators involutive, that is, adding
s2 = 1 for each generator s, is finite. For instance, (1.8) shows that B+

n is an
Artin–Tits monoid, whose associated Coxeter group is the finite group Sn, so B+

n

is spherical. Then, building on [10], it was shown in [12] that all properties of the
greedy normal form of braid monoids extend to spherical Artin–Tits monoids.

A further extension came with the notion of a Garside monoid (and of a
Garside group) introduced in [14] and slightly generalised in [13]. Recall that a
monoid M is left-cancellative (resp. right-cancellative) if fg = fg′ (resp. gf =
g′f) implies g = g′, and cancellative if it is both left- and right-cancellative. As
above, for f, g in M , we say that f is a left-divisor of g, or, equivalently, that g
is a right-multiple of f , written f 4 g, if there exists g′ in M satisfying fg′ = g.
We write f ≺ g for f 4 g with g 64 f (which amounts to f 6= g if M has no
nontrivial invertible element). For g′f = g, we symmetrically say that f is a
right-divisor of g, or, equivalently, that g is a left-multiple of f . Note that the
set gM of all right-multiples of g is the right-ideal generated by g, and, similarly,
the set Mg of all right-multiples of g is the left-ideal generated by g, as involved
in the definition of Green’s relations of M , see for instance [28].
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Definition 2.1. A Garside monoid is a pair (M,∆), where M is a cancellative
monoid satisfying the following conditions:

(i) There exists λ : M → N satisfying, for all f, g,

λ(fg) > λ(f) + λ(g) and g 6= 1 ⇒ λ(g) 6= 0.

(ii) Any two elements of M admit left- and right-lcms and gcds.
(iii) ∆ is a Garside element of M , meaning that the left- and right-divisors

of ∆ coincide and generate M ,
(iv) The family Div(∆) of all divisors of ∆ in M is finite.

Note that condition (i) in Def. 2.1 implies in particular that the monoid M
has no nontrivial invertible element (meaning: not equal to 1): indeed, λ(1) =
λ(1 ·1) > λ(1)+λ(1) implies λ(1) = 0, so fg = 1 implies 0 > λ(f)+λ(g), whence
f = g = 1.

Example 2.2. For every n, the pair (Nn,∆n), with ∆n as defined in (1.2),
is a Garside monoid. Indeed, N

n is cancellative, we can define λ(g) to be the
common length of all An-words representing an element g of Nn and, according
to Lemma 1.6, the left- and right-divisibility relations (which coincide since N

n

is abelian) are lattice orders. Finally, ∆n is a Garside element, since its divisors
include An, and the family Div(∆n) is finite, since it has 2n elements.

Similarly, the pairs (B+

n ,∆n), with ∆n now defined by (1.9), is a Garside
monoid as well. That B+

n is cancellative is proved in [24], for λ(g) we can take
again the common length of all braid words representing g, and Lemma 1.10
provides the remaining conditions.

In the same vein, it can be shown that, if M is a spherical Artin–Tits monoid
and ∆ is the lifting of the longest element w0 of the associated finite Coxeter
group, then (M,∆) is a Garside monoid. Actually, many more examples are
known. Let us mention two.

Example 2.3. First, let B∗+
n , the dual braid monoid, be the submonoid of the

braid group Bn generated by the n(n− 1)/2 braids

ai,j := σj−1 ···σi+1σiσ
−1
i+1 ···σ

−1
j−1 with 1 6 i < j 6 n,

and let ∆∗
n := a1,2a2,3 ···an−1,n [8]. Then (B∗+

n ,∆∗
n) is a Garside monoid, and Bn

is its group of fractions (which shows that a group may be the group of fractions
of several Garside monoids). Note that B∗+

n includes B+

n , since σi = ai,i+1 holds.
The inclusion is strict for n > 3, since a1,3 is not a positive braid. The lattice of

the divisors of ∆∗
n has 1

n+1

(
2n
n

)
elements, which are in one–one correspondence

with the noncrossing partitions of {1, ... , n} [4].
Second, for n > 1 and e1, ... , en > 2, let

T+
e1,... ,en

:= 〈a1, ... , an | ae11 = a
e2
2 = ··· = a

en
n 〉+.

Define ∆ to be the common value of aeii for all i. Then (T+
e1,... ,en

,∆) is a Garside
monoid. The lattice Div(∆) has e1+ ···+ en−n+2 elements and it consists of n
disjoint chains of lengths e1, ... , en connecting 1 to ∆.
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As one can expect, a greedy normal form exists in every Garside monoid:

Proposition 2.4. Assume that (M,∆) is a Garside monoid. Say that a Div(∆)-
word s1| ··· |sp is ∆-normal if, for every i < p, we have

(2.5) ∀s∈Div(∆) ( si ≺ s ⇒ s 64 sisi+1 ···sp ),

and that it is strict if, in addition, sp 6= 1 holds. Then every element of M
admits a unique strict ∆-normal decomposition.

Proof. We show, using induction on ℓ, that every element g of M satisfying
λ(g) 6 ℓ admits a strict ∆-normal decomposition. For ℓ = 0, the only possibility
is g = 1, and then the empty sequence is a ∆-normal decomposition of g. Assume
ℓ > 1, and let g satisfy λ(g) 6 ℓ. The case g = 1 has already been considered, so
we can assume g 6= 1. Let s1 be the left-gcd of g and ∆. As Div(∆) generates M ,
some nontrivial divisor of ∆ must left-divide g, so s1 6= 1 holds. As M is left-
cancellative, there is a unique element g′ satisfying g = s1g

′. By assumption, one
has λ(g′) 6 λ(g) − λ(s1) < ℓ. Then, by the induction hypothesis, g′ admits a
strict ∆-normal decomposition s2| ··· |sp. Then one easily checks that s1|s2| ··· |sp
is a strict ∆-normal decomposition for g.

As for uniqueness, it is easy to see that the first entry of any greedy decom-
position of g must be s1, and then we apply the induction hypothesis again.

�

Note that, by definition, if s1| ··· |sp is a ∆-normal word, then so is every word
of the form s1| ··· |sp|1| ··· |1: uniqueness is guaranteed only when we forbid final
entries 1.

2.2. Computing the ∆-normal form. Prop. 2.4 is an existential statement,
which does not directly solves the question of practically computing a ∆-normal
decomposition of an element given by an arbitrary Div(∆)-word. It turns out that
simple incremental methods exist, which explains the interest of the ∆-normal
form.

We begin with preliminary results. Their proofs are not very difficult and we
give them as they are typical of what can be called the “Garside approach”.

Lemma 2.6. Assume that (M,∆) is a Garside monoid. For g in M , define H(g)
to be the left-gcd of g and ∆. Then, for all s1, ... , sp in Div(∆), the following
conditions are equivalent:

(i) The sequence s1| ··· |sp is ∆-normal.
(ii) For every i < p, one has si = H(sisi+1 ···sp).
(iii) For every i < p, one has si = H(sisi+1).

Proof. Assume that s1| ··· |sp is ∆ -normal. By definition, we have si 4 ∆ and
si 4 sisi+ ···sp, whence si 4 H(sisi+1 ···sp) by the definition of a left-gcd. Con-
versely, let s be the right-lcm of si and H(sisi+1 ···sp). As we have si 4 ∆ and
H(sisi+1 ···sp) 4 ∆, the definition of a right-lcm implies s 4 ∆. Hence, we have
s1 4 s ∈ Div(∆) and s 4 sisi+1 ···sp, so (2.5) implies that si ≺ s is impossible.
Therefore, we must have s = si, meaning that H(sisi+1 ···sp) left-divides si. We
deduce si = H(sisi+1 ···sp). Therefore, (i) implies (ii).

The proof that (i) implies (iii) is exactly similar, replacing si ···sp with sisi+1.
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Conversely, (ii) implies ∀s∈Div(∆) (s 4 sisi+1 ···sp ⇒ s 4 si), whence a
fortiori ∀s∈Div(∆) (s 4 sisi+1 ···sp ⇒ si 6≺ s), which is equivalent to (2.5). So
(i) and (ii) are equivalent.

Next, by the definition of the left-gcd, si 4 H(sisi+1) 4 H(sisi+1 ···sp) is
always true, so (ii) implies (iii).

Finally, let us assume (iii) and prove (ii). We give the argument for p = 3,
the general case then follows by an induction on p. So, we assume s1 = H(s1s2)
and s2 = H(s2s3), and want to prove s1 = H(s1s2s3). The nontrivial argument
uses the right-complement operation. By assumption, any two elements f, g
of M admit a right-lcm, say h. Let us denote by f\g and g\f the (unique)
elements satisfying f(f\g) = g(g\f) = h. Using the associativity of the right-
lcm operation, one checks that the right-complement operation \ obeys the law

(2.7) (gh)\f = (g\f)\h.

Now, let s be an element of Div(∆) left-dividing s1s2s3. Our aim is to show
that s left-divides s1. By assumption, the right-lcm of s and s1s2s3 is s1s2s3,
so we have (s1s2s3)\s = 1. Applying (2.7) with f = s, g = s1, and h = s2s3,
we deduce (s1\s)\(s2s3) = 1, which means that s1\s left-divides s2s3. Because
s1 and s divide ∆, so does their right-lcm t, hence so does also their right-
complement s1\s, which is a right-divisor of t. So we have s1\s 4 s2s3, and the
assumption s2 = H(s2s3) then implies s1\s 4 s2. Arguing back, we deduce that
s1s2 is the right-lcm of s and s1s2, that is, that s left-divides s1s2. From there,
the assumption s1 = H(s1s2) implies that s left-divides s1, as expected. �

Lemma 2.6 is not yet sufficient to compute a ∆-normal decomposition for an
arbitrary element, but it already implies an important property:

Proposition 2.8. If (M,∆) is a Garside monoid, then ∆-normal words form a
regular language.

Proof. By assumption, the family Div(∆) is finite. Moreover, by Lemma 2.6,
a word s1| ··· |sp is ∆-normal if, and only if, each length-two factor si|si+1 is
∆-normal. Hence, the language of all ∆-normal words is defined over the alpha-
bet Div(∆) by the exclusion of finitely many patterns, namely the pairs si|si+1

satisfying si 6= H(sisi+1). Hence it is a regular language. �

We now specifically consider the normalisation of Div(∆)-words of length two.

Lemma 2.9. If (M,∆) is a Garside monoid, then, for all s1, s2 in Div(∆), the
element s1s2 has a unique ∆-normal decomposition of length two.

Proof. Let s1, s2 belong to Div(∆). Let s′1 := H(s1s2). As M is left-cancellative,
there exists a unique element s′2 satisfying s′1s

′
2 = s1s2. By construction, s1

left-divides s′1, which implies that s′2 right-divides s2, hence a fortiori ∆. So s′2
lies in Div(∆). By construction, the Div(∆)-word s′1|s

′
2 is ∆-normal, and it is a

decomposition of s1s2. Three cases are possible: if s′2 is not 1, then s′1|s
′
2 is a

strict ∆-normal decomposition of s1s2 (which is then said to have ∆-length two);
otherwise, s1s2 is a divisor of ∆, so s′1 is a strict ∆-normal decomposition of s1s2
(which is then said to have ∆-length one), unless s′1 is also 1, corresponding to
s1 = s2 = 1, where the strict ∆-normal decomposition is empty (and s1s2, which
is 1, is said to have ∆-length zero). �
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The previous result and the subsequent arguments become (much) more easily
understandable when illustrated with diagrams. To this end, we associate to
every element g of the considered monoid a g-labeled edge g .
We then associate with a product the concatenation of the corre-
sponding edges (which amounts to viewing the ambient monoid
as a category), and represent equalities in the ambient monoid
using commutative diagrams: for instance, the square on the
right illustrates an equality fg = f ′g′.

f

g

f ′

g′

Next, assuming that a set of elements S is given and some distinguished sub-
set L of S[2] has been fixed, typically length-two normal words of some sort, we
shall indicate that a length-two S-word s1|s2 belongs to L (that is, “is normal”)
by connecting

the corresponding edges with a small arc, as in s1 s2 .
Then, Lemma 2.9 is illustrated in the diagram on the right: it
says that, for all given s1, s2 in Div(∆) (solid arrows), there ex-
ist s′1, s

′
2 in Div(∆) (dashed arrows) such that s′1|s

′
2 is ∆-normal

and the diagram is commutative.

s1

s2

s′1

s′2

The second ingredient needed for computing the normal form involves what
the call the (left) domino rule.

Definition 2.10. Assume that M is a left-cancellative monoid, S is a subset
of M , and L is a family of S-words of length two. We say that the left domino
rule is valid for L if, whenever s1, s2, s

′
1, s

′
2, t0, t1, t2 lie in S and s′1t1 = t0s1 and

s′2t2 = t1s2 hold in M , then the assumption that s1|s2, s′1|t1, and s′2|t2 lie in L
implies that s′1|s

′
2 lies in L as well.

The left domino rule corresponds to the diagram on
the right: the solid arcs are the assumptions, namely
that s′1|t1, s

′
2|t2 and s1|s2 lie in L, the dotted arc is

the expected conclusion, namely that s′1|s
′
2 does. s1 s2

s′1 s′2

t0 t1 t2

Lemma 2.11. If (M,∆) is a Garside monoid, then the left domino rule is valid
for ∆-normal words of length two.

Proof. Assume that s1, s2, s
′
1, s

′
2, t0, t1, t2 lie in S and satisfy the assumptions of

Def. 2.10 (with respect to ∆-normal words of length two). We want to show that
s′1|s

′
2 is ∆-normal. In view of Lemma 2.6, assume s ∈ Div(∆) and s 4 s′1s

′
2.

Then, we have s 4 s′1s
′
2t2, whence s 4 t0s1s2, see

the diagram on the right. Arguing as in the proof
of Lemma 2.6, we deduce t0\s 4 s1s2. As t0\s
lies in Div(∆), we deduce t0\s 4 H(s1s2) = s1,
whence s 4 t0s1 = s′1t1. As s lies in Div(∆), we
deduce s 4 H(s′1t1) = s′1. Therefore, we have
s′1 = H(s′1s

′
2), and s′1|s

′
2 is ∆-normal. �

s′1 s′2

s1 s2

t0 t1 t2
s

t0\s

We can now easily compute a ∆-normal decomposition for every element.
In order to describe the procedure (which can be translated into an algorithm
directly), we work with Div(∆)-words and, starting from an arbitrary Div(∆)-
word w, explain how to build a ∆-normal word that represents the same element.
To this end, we first introduce notations that will be used throughout the paper.
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Notation 2.12. (i) If S is a set and F is a map from S[2] to itself, then, for i > 1,
we denote by Fi the (partial) map of S∗ to itself that consists in applying F to
the entries in position i and i+ 1. If u = i1| ··· |in is a finite sequence of positive
integers, we write Fu for the composite map Fin

◦ ··· ◦Fi1 (so Fi1 is applied first).
(ii) If S is a set and N is a map from S∗ to itself, we denote by N the restriction

of N to S[2].

Then the main result about the ∆-normal form can be stated as follows:

Proposition 2.13. Assume that (M,∆) is a Garside monoid. Then, for ev-
ery Div(∆)-word w of length p, there exists a unique ∆-normal word N∆(w) of
length p that represents the same element as w. Moreover, one has

(2.14) N∆(w) = N∆
δp
(w),

with δp inductively defined by δ2 := 1 and δp := sh(δp−1)|1|2| ··· |p−1, where sh is
a shift of all entries by +1.

Thus, for instance, (2.14) says that, in order to normalise a Div(∆)-word of
length four, we can successively normalise the length-two factors beginning at
positions 3, 2, 3, 1, 2, and 3, thus in six steps.

Proof. We begin with an auxiliary result, namely finding a ∆-normal decompo-
sition for a word of the form t|s1| ··· |sp where s1| ··· |sp is ∆-normal, that is, for
multiplying a ∆-normal word by one more letter on the left. Then we claim that,
putting t0 := t and, inductively, s′i|ti := N∆(ti−1 |si) for i = 1, ... , p, provides a
∆-normal decomposition of length p+ 1 for ts1 ···sp. Indeed, the commutativity
of the diagram in Fig. 4 gives the equality ts1 ···sp = s′1 ···s

′
ptp in M , and the

validity of the left domino rule implies that each pair s′i|s
′
i+1 is ∆-normal. In

terms of N∆, we deduce the equality

(2.15) N∆(t|w) = N∆
1|2| ··· |p

(t|w).

when w is a ∆-normal word of length p. From there, (2.5) follows by a straight-
forward induction. �

s1 s2 sp

s′1 s′2 s′p s′p+1

t = t0 t1 t2 tp−1 tp

Figure 4. Left-multiplying a ∆-normal word by an element
of Div(∆): the left domino rule guarantees that the upper row
is ∆-normal whenever the lower row is.

The explicit description of Prop. 2.13 enables one to completely analyse the
complexity of the ∆-normal form.

Corollary 2.16. If (M,∆) is a Garside monoid, then ∆-normal decompositions
can be computed in linear space and quadratic time. The Word Problem for M
with respect to Div(∆) lies in dtime(n2).
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Proof. By assumption, the set Div(∆) is finite, so the complete table of the
map N∆ can be precomputed, and then each application of N∆ has time cost O(1)
and keeps the length unchanged. Then, as the sequence δp has length p(p− 1)/2,
Prop. 2.13 implies that a ∆-normal decomposition for an element represented by
a Div(∆)-word of length p can be obtained in time O(p2).

Computing ∆-normal decompositions yields a solution of the Word Problem,
since two Div(∆)-words w,w′ represent the same element of M if, and only if,
the ∆-normal words N∆(w) and N∆(w′) only differ by the possible adjunction
of final letters 1. �

On the other hand, a direct application of (2.15) and Fig. 4 is the fact that,
viewed as paths in the Cayley graph of M with respect to Div(∆), the ∆-normal
forms of g and tg remain at a uniformly bounded distance, namely at most two.
Thus, we can state (see [27]):

Corollary 2.17. If (M,∆) is a Garside monoid, then the ∆-normal words sat-
isfiy the 2-Fellow traveller Property on the left.

2.3. The right counterpart. Owing to Prop. 2.13 and its normalisation recipe
based on left-multiplication, the question naturally arises of a similar recipe based
on right-multiplication, hence based on computing a ∆-normal decomposition
of gt from one of g. Such a recipe does exist, but this is not obvious, because the
definition of ∆-normality is not symmetric.

Proposition 2.18. Assume that (M,∆) is a Garside monoid. Then, for every
Div(∆)-word w of length p, one also has

(2.19) N∆(w) = N∆
δ̃p
(w),

with δ̃p inductively defined by δ̃2 := 1 and δ̃p := δ̃p−1|p−1| ··· |2|1.

For instance, (2.19) says that, in order to normalise a Div(∆)-word of length
four, we can successively normalise the length-two factors beginning at posi-
tions 1, 2, 1, 3, 2, and 1, in six steps as in (2.14), but in a different order.

As can be expected, the proof of Prop. 2.18 relies on a symmetric counterpart
of the left domino rule of Def. 2.10.

Definition 2.20. Assume that M is a left-cancellative monoid, S is a subset
of M , and L is a family of S-words of length two. We say that the right domino
rule is valid for L if, whenever s1, s2, s

′
1, s

′
2, t0, t1, t2 lie in S and t0s

′
1 = s1t1 and

t1s
′
2 = s2t2 hold in M , then the assumption that s1|s2, t0|s

′
1, and t1|s

′
2 lie in L

implies that s′1|s
′
2 lies in L as well.

The right domino rule corresponds to the diagram on
the right: the solid arcs are the assumptions, namely
that t0|s′1, t1|s

′
2 and s1|s2 lie in L, and the dotted arc

is the expected conclusion, namely that s′1|s
′
2 does. s′1 s′2

s1 s2

t0 t1 t2

Then we have the counterpart of Lemma 2.11. Observe that the argument is
totally different, reflecting the lack of symmetry in the definition of ∆-normality.
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Lemma 2.21. If (M,∆) is a Garside monoid, then the right domino rule is
valid for ∆-normal words of length two.

Proof (sketch). For s in Div(∆), let ∂s be the element of Div(∆) satisfying s∂s =
∆, and let φ := ∂2. Then, s∆ = ∆φ(s) holds for every s in Div(∆), and
one shows that φ extends to an automorphism of M . It follows, in particular,
that s1|s2 being ∆-normal implies that φ(s1)|φ(s2) is ∆-normal as well. By
assumption, there exist t′0, t

′
1, t

′
2 satisfying t0t

′
0 = t1t

′
1 = t2t

′
2 = ∆. By the above

equality, we have s1∆ = ∆φ(s1) and s2∆ = ∆φ(s2), whence, by left-cancellation,
s′1t

′
1 = t′0φ(s1) and s′2t

′
2 = t′1φ(s1). Thus the diagram below is commutative.

Assume s 4 s′1s
′
2 with s in Div(∆). Let s′ := s′1\s. Our aim is to prove that s

left-divides s′1, that is, that s′ is 1.

The assumption that s left-divides s′1s
′
2 implies

s′ 4 s′2, whence t1s
′ 4 t1s

′
2. On the other

hand, the assumption s 4 s′1s
′
2 implies a for-

tiori s 4 s′1s
′
2t

′
2, that is, s 4 t′0φ(s1)φ(s2)

and, therefore, t′0\s 4 φ(s1)φ(s2). As t′0\s lies
in Div(∆) and φ(s1)|φ(s2) is ∆-normal, we deduce
t′0\s 4 φ(s1)φ(s2), whence s 4 t′0φ(s1), which is also φ(s1) φ(s2)

s′1 s′2

s1 s2

t′0 t′1 t′2

t0 t1 t2

s 4 s′1t
′
1. We deduce s′ 4 t′1, and, therefore, t1s

′ 4 t1t
′
1 = ∆. Thus t1s

′ lies
in Div(∆) and it left-divides t1s

′
2. By assumption, t1|s′2 is ∆-normal, so we

deduce that t1s
′ left-divides t1, implying s′ = 1, as expected. Hence, s′1|s

′
2 is

∆-normal, the right domino rule is valid. �

We can easily complete the argument.

Proof of Prop. 2.18. The argument is symmetric of the one for Prop. 2.13. It
consists in establishing for w a ∆-normal word of length p the equality

(2.22) N∆(w|t) = N∆
p|p−1| ··· |1

(w).

The latter immediately follows from the diagram

s′0 s′1 s′p−1 s′p

s1 sp−1 sp

t0 t1 t2 tp−1 tp = t

whose validity is guaranteed by the right domino rule. �

We deduce a counterpart of Cor. 2.17:

Corollary 2.23. Assume that (M,∆) is a Garside monoid. Then ∆-normal
words satisfy the 2-Fellow traveller Property on the right.

Remark 2.24. As in Subsections 1.1 and 1.2, the ∆-normal decompositions as-
sociated with a Garside monoid (M,∆) extend to the group of fractions of M .
It directly follows from the definition that M satisfies the Ore conditions (can-
cellativity and existence of common right-multiples), hence embeds in a group of
(left) fractions G (then called a Garside group). Then every element of G admits
a unique decomposition of the form ∆m|s1| ··· |sp where s1| ··· |sp is ∆-normal and,
in addition, we require s1 6= ∆ (that is, m is maximal) and sp 6= 1 (that is, p
is minimal). It is easy to deduce from Prop. 2.8 and Cor. 2.17 and 2.23 that the
∆-normal form provides a biautomatic structure for G (in the sense of [23]).
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3. The S-normal form associated with a Garside family

Looking at the mechanism of the ∆-normal form associated with a Garside
monoid invites to a further extension. Indeed, one quickly sees that several
assumptions in the definition of a Garside monoid are not used in the construction
of a normal form that obeys the recipe of Prop. 2.13. This easy observation,
and the need of using decompositions similar to ∆-normal ones in more general
situations, led to introducing the notion of a Garside family [15], extensively
developed in the book [17]. Also see [16] for the computational aspects.

3.1. The notion of a Garside family. Our aim is to define normal forms that
work in the same way as the ∆-normal form of a Garside monoid, but in more
general monoids (in fact, monoids can be extended into categories at no cost). So,
we start with a monoid M equipped with a generating family S and try to define
for the elements of M distinguished S-decompositions that resemble ∆-normal
decompositions: in particular, if (M,∆) is a Garside monoid and S is Div(∆),
we should retrieve ∆-normal decompositions. Of course, we cannot expect to
do that for an arbitrary generating family S, and this is where the notion of a
Garside family will appear. First, if we try to just copy (2.5), problems arise.
Therefore, we start from a new notion.

Definition 3.1. If M is a left-cancellative monoid and S is included in M , an
S-word s1|s2 is called S-normal if the following condition holds:

(3.2) ∀s∈S ∀f∈M (s 4 fs1s2 ⇒ s 4 fs1).

An S-word s1| ··· |sp is called S-normal if si|si+1 is S-normal for every i < p, and
strict S-normal if it is S-normal with, in addition, sp 6= 1.

Relation (3.2) is reminiscent of (iii) in Lemma 2.6, but with the important
difference of the additional term f : we do not only consider the left-divisors
of s1s2 that lie in S, but, more generally, all elements of S that left-divide fs1s2.

Example 3.3. Assume that (M,∆) is a Garside monoid, and let S := Div(∆).
Assume that s1| ··· |sp is S-normal in the sense of Def. 3.1. Then, for every i, (3.2)
implies in particular ∀s∈S (s 4 s1s2 ⇒ s 4 s1), whence si = H(sisi+1). Hence,
by Lemma 2.6, s1| ··· |sp is ∆-normal in the sense of Prop. 2.4.

The converse implication is also true, but less obvious. Indeed, assume that
s1| ··· |sp is ∆-normal, and we have s 4 fsisi+1 for some s in Div(∆) and f in M .
Then, using the right-complement operation \ as in the proof of Lemma 2.6, we
deduce that f\s left-divides sisi+1, as illustrated in the diagram

f s1 s2

s f\s

As si|si+1 is ∆-normal, we deduce f\s 4 si, whence s 4 fsi. Hence (3.2) is
satisfied and si|si+1 is S-normal in the sense of Def. 3.1.

By definition, being S-normal is a local property only involving length-two
subfactors. So we immediately obtain:

Proposition 3.4. If M is a monoid and S is a finite subfamily of M , then
S-normal words form a regular language.
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Hereafter we investigate S-normal decompositions. An easy, but important
fact is that such decompositions are necessarily (almost) unique when they ex-
ist. We shall restrict to the case of monoids that admit no nontrivial invert-
ible element (as Garside monoids do). This restriction is not necessary, but it
makes statements more simple: essentially, one can cope with nontrivial invert-
ible elements at the expense of replacing equality with the weaker equivalence
relation =×, where g =× g′ means g = ge for some invertible element e, see [17].

Lemma 3.5. Assume that M is a left-cancellative monoid with no nontrivial
invertible elements and S is included in M . Then every element of g admits at
most one strict S-normal decomposition.

sketch. Assume that s1| ··· |sp and t1| ··· |tq are S-normal decompositions of an
element g. From the assumption that s1 lies in S and left-divides t1 ···tq, and
that t1| ··· |tq is S-normal, one easily deduces s1 4 t1. By a symmetric argument,
one deduces t1 4 s1, whence s1 = t1, because M has non nontrivial invertible
element. Then use an induction. �

If we consider S-normal decompositions that are not strict, uniqueness is no
longer true as, trivially, s1| ··· |sp being S-normal implies that s1| ··· |sp|1| ··· |1
is also S-normal (and represents the same element of the ambient monoid).
Lemma 3.5 says that this is the only lack of uniqueness.

At this point, we are left with the question of the existence of S-normal de-
compositions, and this is where the central technical notion arises:

Definition 3.6. Assume that M is a left-cancellative monoid with no nontrivial
invertible elements and S is a subset of M that contains 1. We say that S is a
Garside family in M if every element g of M has an S-normal decomposition,
that is, there exists an S-normal S-word s1| ··· |sp satisfying s1 ···sp = g.

Example 3.7. It follows from the connection of Ex. 3.3 that, if (M,Div(∆) is a
Garside monoid, then Div(∆) is a Garside family in M . So, in particular, the n-
cube Sn of (1.1) is a Garside family in the abelian monoid N

n and, similarly, the
family of all simple n-strand braids is a Garside family in the braid monoid B+

n .
Many examples of a different flavour exist. For instance, every left-cancellative

monoid M is a Garside family in itself, since every element g of M admits the
length-one M -normal decomposition g (!). More interestingly, let K+ be the
“Klein bottle monoid”

K+ := 〈a, b | a = bab〉+,

which is the positive cone in the ordered group 〈a, b | a = bab〉, itself the funda-
mental group of the Klein bottle, and the nontrivial semidirect product Z ⋊ Z.
Then K+ cannot be made a Garside monoid since no function λ as in Def. 2.1(i)
may exist. However, if we put ∆ := a2, the left- and right-divisors of ∆ coincide
and the family Div(∆) is an (infinite) Garside family in K+.

We refer to [17] for many examples of Garside families, and just mention the
recent result [20] that every finitely generated Artin–Tits monoid admits a finite
Garside family, independently of whether the associated Coxeter group is finite
or not. In Fig. 5, we display such a finite Garside family for the monoid with
presentation

〈σ1, σ2, σ3 | σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1〉
+,
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that is, for what is called type Ã2.

1 σ1

σ2

σ3

σ1σ2

σ2σ1

σ2σ3

σ3σ2 σ1σ3

σ3σ1

σ2σ3σ2

(σ2σ1σ3)

(σ2σ3σ1)

σ3σ1σ3

(σ3σ1σ2)

(σ3σ2σ1)

σ1σ2σ1

(σ1σ2σ3)

(σ1σ3σ2)

σ1σ2σ3σ2

σ2σ3σ1σ3

σ3σ1σ2σ1

Figure 5. A finite Garside family S in the Artin–Tits monoid
of type Ã2: the sixteen right-divisors of the elements σ1σ2σ3σ2,
σ2σ3σ1σ3, and σ3σ1σ3σ1. Attention! The family S is not closed
under left-divisor, implying that some intermediate vertices (the
six grey ones) do not belong to S.

3.2. Computing S-normal decompositions. We postpone to the next sub-
section the question of recognising Garside families, and explain here how S-
normal decompositions behave when they exist, that is, when S is a Garside
family. To this end, the point is that the counterparts of Lemmas 2.9 and 2.11
are valid.

Lemma 3.8. Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then, for all s1, s2 in S, the
element s1s2 has a unique S-normal decomposition of length two.

Proof. Let s1, s2 belong to S. By assumption, s1s2 admits an S-normal decompo-
sition, say s′1| ··· |s

′
p. As s1 belongs to S and s′p−1|s

′
p is S-normal, the assumption

s1 4 (s′1 ···s
′
p−2)s

′
p−1s

′
p implies s1 4 (s′1 ···s

′
p−2)s

′
p−1. Repeating the argument

p− 1 times, we conclude that s1 left-divides s′1, say s′1 = s1t1. Left-cancelling s1,
we deduce s2 = t1s

′
2 ···s

′
p and, arguing as above, we conclude that s2 must left-

divide t1s
′
2, say t1s

′
2 = s2t2. Left-cancelling s2, we deduce 1 = t2s

′
3 ···s

′
p. As M

has no nontrivial invertible element, the only possibility is t1 = s′3 = ··· = s′p = 1,
which implies that s′1|s

′
2 is an S-normal decomposition of s1s2. The argument is

illustrated in the diagram

s1 s2

s′1 s′2 s′3 s′p

t1 t2

Thus, every element of S[2] has an S-normal decomposition of length two. Its
uniqueness follows from Lemma 3.5. �
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Lemma 3.9. Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then the left domino rule is
valid for S-normal words of length two.

Proof. Assume that s1, s2, s
′
1, s

′
2, t0, t1, t2 lie in S and satisfy the assumptions of

Def. 2.10 (with respect to S-normal words of length

two). Our aim is to show that s′1|s
′
2 is S-normal.

Assume s ∈ S and s 4 fs′1s
′
2. First, s 4 s′1s

′
2 implies

s 4 fs′1s
′
2t2, whence s 4 ft0s1s2. As s1|s2 is S-

normal, we deduce s 4 ft0s1, whence s 4 fs′1t1.
As s′1|t1 is S-normal, we deduce s 4 fs′1 in turn.
Therefore, s′1|s

′
2 is S-normal. � s1 s2

s′1 s′2

t0

f

t1 t2

s

Arguing exactly as for Prop. 2.13 and using, in particular, Fig. 4, we obtain

Proposition 3.10. Assume that M is a left-cancellative monoid with no nontriv-
ial invertible element and S is a Garside family in M . Then, for every S-word w
of length p, there exists a unique S-normal word NS(w) of length p that represents
the same element as w. Moreover, with δp as in Prop. 2.13, one has

(3.11) NS(w) = NS
δp
(w).

Thus, the recipe for computing the ∆-normal form associated with a Gar-
side monoid extends without change to the S-normal form associated with an
arbitrary Garside family S. As in Sec. 2, we deduce

Corollary 3.12. Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then S-normal decomposi-
tions can be computed in linear space and quadratic time. The Word Problem
for M with respect to S lies in dtime(n2).

On the other hand, as the diagram of Fig. 4 remains valid, we obtain

Corollary 3.13. Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then the S-normal words
satisfy the 2-Fellow traveller Property on the left.

In contrast to the particular case of Garside monoids, there is no symmetric
counterpart involving right multiplication in the framework of an arbitrary Gar-
side family. As can be expected, the existence of such a counterpart is equivalent
to the validity of the right domino rule for S-normal words of length two.
Now, the latter may fail, as the counterexample
on the right shows: here S is the sixteen-element
Garside family described in Fig. 5 in the Artin–Tits
monoid of type Ã2. σ2 σ3

σ1 σ1σ2

σ1σ2σ1 σ1σ2σ1 σ1σ3

For more results on the question, we refer to Chap. V of [17], where the notion
of a bounded Garside family is introduced, and where it is proved that the right
domino rule and the counterpart of Prop. 2.18 are valid, whenever S is a bounded
Garside family.
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3.3. Existence of S-normal decompositions. The notion of a Garside family
is useful only if we can provide practical characterisations, which amounts to
giving sufficient conditions for S-normal decompositions to exist. A number of
such characterisations are known [17, Chap. IV], and we shall only mention a few
of them.

Two types of characterisations exist, according to whether the ambient monoid
satisfies or not additional conditions. Let us begin with the case of a monoid that
is just assumed to be left-cancellative and, in this paper, to admit no nontrivial
invertible element. In order to state the results, we need two definitions.

Definition 3.14. If M is a left-cancellative monoid, S is included in M , and g
is an element of M , then an element s of S is said to be an S-head of g if we
have s 4 g and ∀t∈S (t 4 g ⇒ t 4 s).

In other words, an S-head of g is a greatest left-divisor of g lying in S. An
S-head is unique whenever the ambient monoid M has no nontrivial invertible
element: if s and s′ are S-heads of g, the definition implies s 4 s′ and s′ 4 s,
whence s′ = s. If (M,∆) is a Garside monoid, the Div(∆)-head of an element g
exists and is simply the left-gcd of g and ∆, as considered in Lemma 2.6.

Definition 3.15. If M is a left-cancellative monoid
and S is included in M , we say that S is closed under
right-comultiple if the relation

∀s, t∈S ∀g∈M ((s 4 g and t 4 g)

⇒ ∃r∈S (s 4 r and t 4 r and r 4 g))

is satisfied in M , as illustrated on the right.

t

s
r∈S

Thus, a family S is closed under right-comultiple if every common right-
multiple of two elements s, t of S is a right-multiple of some common right-
multiple of s and t that lies in S. Finally, we naturally say that a family S is
closed under right-divisor if every right-divisor of an element of S belongs to S.

Proposition 3.16. [15, Prop. 3.9] or [17, Prop. IV.1.24] Assume that M is a left-
cancellative monoid with no nontrivial invertible element, and S is a generating
subfamily of M that contains 1. Then S is a Garside family in M—that is, every
element of M admits an S-normal decomposition—if, and only if, it satisfies one
of the following equivalent conditions:

(i) Every nontrivial element of M admits an S-head, and S is closed under
right-divisor.

(ii) Every element of S2 admits a ≺-maximal left-divisor in S, and S is closed
under right-comultiple and right-divisor.

The conditions of Prop. 3.16 are not demanding: very little is required for the
existence of S-normal decompositions. The difference between (i) and (ii) is that,
in (ii), the existence of an S-head is relaxed twice: one considers elements of S2

(that is, elements that can be expressed as the product of two elements of S)
rather than arbitrary elements, and ≺-maximal left-divisors, which is weaker
than 4-greatest left-divisors, since it amounts to replacing s 4 t with t 6≺ s.
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Example 3.17. Prop. 3.16(i) makes it straightforward that, if (M,∆) is a Gar-
side monoid, Div(∆) is a Garside family: as noted above, the left-gcd of g and ∆
is a Div(∆)-head of g and, by definition, Div(∆) is closed under right-divisor.

The argument is similar for the family Div(∆) in the Klein bottle monoid K+

of Example 3.7, but one easily finds examples of a completely different flavour.
For instance, the reader can play with the family {bi | 0 6 i 6 n + 1} ∪ {a} in
the monoid 〈a, b | abn = bn+1〉+ with n > 1.

When the ambient monoid satisfies additional assumptions, the conditions of
Prop. 3.16 can still be weakened.

Definition 3.18. A left-cancellative monoid is called right-noetherian if there is
no infinite descending sequence with respect to strict right-divisibility.

Equivalently, a left-cancellative monoid is right-noetherian if, and only if, there
is no infinite bounded ascending sequence with respect to strict left-divisibility,
meaning that g1 ≺ g2 ≺ ··· 4 g is impossible. When a monoid is right-noetherian,
the existence of ≺-maximal elements is for free, and we deduce

Corollary 3.19. Assume that M is a right-noetherian left-cancellative monoid
with no nontrivial invertible element, and S is a generating subfamily of M that
contains 1. Then S is a Garside family if, and only if, S is closed under right-
comultiple and right-divisor.

The criterion can be further improved as, for the ambient monoid to be right-
noetherian, it is sufficient that the restriction of right-divisibility to the considered
family S is, a trivial condition when S is finite, see [17, Prop. IV.2.18].

Finally, things become even more simple when the ambient monoid admits
conditional right-lcms, meaning that any two elements that admit a common
right-multiple admit a right-lcm. Then closure under right-comultiple boils down
to closure under right-lcm (that is, the right-lcm of two elements of S belongs
to S when it exists), and we obtain

Corollary 3.20. Assume that M is a left-cancellative monoid that is right-
noetherian, admits conditional right-lcms, and contains no nontrivial invertible
element, and S is a generating subfamily of M that contains 1. Then S is a
Garside family if, and only if, S is closed under right-lcm and right-divisor.

Thus, in the context of Cor. 3.20, being a Garside family is a closure property.
It follows that, for every generating set A, there exists a smallest Garside fam-
ily S that includes A, namely the closure of A under right-lcm and right-divisor.
When the ambient monoid is noetherian (meaning left- and right-noetherian), it
admits a smallest generating family, namely the family of atoms (indecomposable
elements), and therefore it admits a smallest Garside family, the closure of atoms
under right-lcm and right-divisor. A typical example is the family Div(∆) in a
Garside monoid (with ∆ chosen minimal), but another example is the Garside
family of Fig. 5 in the Artin–Tits monoid of type Ã2.
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Let us mention a last result. We observed that the definition of an S-normal
sequence in (3.2) is a priori more demanding than that of (2.5). It turns out
that, when S satisfies convenient conditions, the conditions become equivalent:

Proposition 3.21. [17, Prop. IV.1.20] Assume that M is a left-cancellative mon-
oid with no nontrivial invertible element, and S is a generating family of M that
is closed under right-comultiple and right-divisor. Then an S-word s1| ··· |sp is
S-normal if, and only if, it satisfies the condition

(3.22) ∀s∈S ( si ≺ s ⇒ s 64 sisi+1 ···sp ).

We already observed that the condition is necessary. That it is sufficient
follows from arguments extending those of Ex. 3.3. Note that, by Prop. 3.16,
every Garside family satisfies the assumptions of Prop. 3.21 and, therefore, the
connection is valid in this case.

Remark 3.23. Once again, we can think of extending the results from the
monoid to its enveloping group. Here, some care is needed as, in general, a left-
cancellative monoid (even a cancellative one) need not embed in a group of left
fractions: by the classical Ore theorem, this happens if, and only if, the monoid M
is cancellative and any two elements of M admit a common left-multiple. But,
even in this case, the existence of unique S-normal decompositions in M does
not directly lead to unique distinguished decompositions for the elements of its
group of fractions, because fractional decompositions need not be unique. How-
ever, when the monoid M admits left-lcms, a notion of irreducible fraction arises
and one obtains unique decompositions (called “symmetric S-normal”) for the
elements of the group by using S-normal decompositions for the numerator and
the denominator of an irreducible fractional decomposition, see [17, Sec. III.2].

4. Quadratic normalisation

Proceeding one step further, we now consider more general normalisation pro-
cesses that include those of the previous sections, but also new examples of a
different flavour. However, we shall see that the mechanism of Garside normal-
isation, as captured in Prop. 3.10, can be retrieved in the more general frame-
work of what we shall call “quadratic normalisations of class (4, 3)”. One of the
benefits of such an extended approach is that some monoids that are not even
left-cancellative, like plactic monoids, become in turn eligible.

4.1. Normalisations and geodesic normal forms. We now restart from a
general standpoint and consider (not necessarily cancellative) monoids equipped
with a generating family. We are interested in normal forms in such monoids,
according to the following abstract scheme:

Definition 4.1. Assume that M is a monoid and S is a generating subfamily
of M . A normal form on (M,S) is a (set-theoretic) section of the canonical
projection ev of S∗ onto M . A normal form nf on (M,S) is called geodesic if,
for every g in M , we have ‖nf(g)‖ 6 ‖w‖ for every S-word w representing g.

Typically, we saw in Sec. 3 that, if M is left-cancellative with no nontrivial in-
vertible element, every Garside family S of M provides a normal form on (M,S),
associating with every element g of M the unique strict S-normal decompositon
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of g. This normal form is geodesic, since, by Prop. 3.10, the S-normal form of an
element specified by an S-word of length p has length at most p.

As already done in Sec. 2 and 3, we shall rather work with words, and concen-
trate on the normalisation maps that associate to an arbitrary word the unique
equivalent normal word. This leads us to the following notion.

Definition 4.2. A normalisation is a pair (S,N), where S is a set and N is a
map from S∗ to itself satisfying, for all S-words u, v, w,

‖N(w)‖ = ‖w‖,(4.3)

‖w‖ = 1 implies N(w) = w,(4.4)

N(u|N(w)|v) = N(u|w|v).(4.5)

An S-word w satisfying N(w) = w is called N -normal. If M is a monoid, we say
that (S,N) is a normalisation for M if M admits the presentation

(4.6) 〈S | {w = N(w) | w ∈ S∗}〉+.

Note that (4.5) implies that N is idempotent. We shall see below that the
maps N∆ and NS considered in Sec. 2 and 3 are typical examples of normali-
sations. Many others appear in [19]. The connection between normalisations
and normal forms is easily described, especially in the case when all equivalent
S-words have the same length.

Proposition 4.7. [19, Prop. 2.1.12] If (S,N) is a normalisation for a monoid M ,
then putting nf(g) = N(w), where w is any S-decomposition of g, provides a
normal form on (M,S).

Conversely, if M is a monoid, S is a generating subfamily of M , and nf

is normal form on (M,S), and, moreover, any two S-decompositions of an el-
ement of M have the same length, then putting N(w) = nf(ev(w)) provides a
normalisation for M .

Moreover, it is easily seen that the two correspondences of Prop. 4.7 are in-
verses of one another.

When the elements of M may admit S-decompositions of different lengths (as
in the case of a Garside family), more care is needed, but we can still merge
unique normal forms and length-preserving normalisation maps at the expense
of introducing a dummy letter that represents 1 and is eventually collapsed.

Definition 4.8. If (S,N) is a normalisation, an element e of S is called N -neutral
if, for every S-word w, one has

(4.9) N(w|e) = N(e|w) = N(w)|e.

Then we write πe for the action of erasing e in an S-word. If M is a monoid, we
say that (S,N) is a normalisation for M mod e if M admits the presentation

(4.10) 〈S | {w = N(w) | w ∈ S∗} ∪ {e = 1}〉+.

We invite the reader to check that, if S is a Garside family in a left-cancellative
monoid M that admits no nontrivial invertible element, then (S,NS) is a nor-
malisation for M mod 1 and the S-normal words of Sec. 3 are the associated
NS-normal words.
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Then Prop. 4.7 extends in

Proposition 4.11. [19, Prop. 2.2.7] If M is a monoid and (S,N) is a normali-
sation for M mod e, putting nf(g) = πe(N(w)), where w is any S-decomposition
of g, provides a geodesic normal form on (M,S \ {e}).

Conversely, if M is a monoid, S generates M , and nf is a geodesic normal
form on (M,S), putting N(w) = nf(ev(w))|em, with e a new letter not in S
evaluated to 1 in M and m = ‖w‖ − ‖nf(ev(w))‖, provides a normalisation
for M mod e (with alphabet S ∪ {e}).

Again, the two correspondences of Prop. 4.11 are inverses of one another. Thus,
investigating geodesic normal forms and investigating normalisations are one and
the same question.

This general framework being set, we now turn to a more specific situation.
By Prop. 3.4 and 3.10, subfactors of length two play a prominent rôle in Garside
normalisation. This is the property we shall extend. We recall Notation 2.12, in
particular that, for N : S∗ → S∗, we use N for the restriction of N to S[2].

Definition 4.12. A normalisation (S,N) is quadratic if the two conditions hold:
(i) An S-word w is N -normal if, and only if, every length-two factor of w is.
(ii) For every S-word w, there exists a finite sequence of positions u, depending

on w, such that N(w) is equal to Nu(w).

Example 4.13. By Prop. 3.4 and 3.10, if S is a Garside family, then the asso-
ciated normalisation (S,NS) is quadratic: Prop. 3.10 says that u := δp can be
chosen for every S-word w of length p.

For a different example, as in Ex. 1.5, let (An, N
Lex) be the lexicographic nor-

malisation for the free abelian monoid N
n. Then (An, N

Lex) is quadratic. Indeed,
an An-word is NLex-normal if, and only if, all its length-two subfactors are ai|aj
with i 6 j. On the other hand, every An-word can be transformed into a NLex-
normal word by switching adjacent letters that are not in the due order.

Simple counterexamples show that none of the two conditions in Def. 4.12 im-
plies the other. When a normalisation (S,N) is quadratic, then, by definition,
the restriction N of N to S[2] is crucial and most properties can be read from N.
In particular, one shows that, if M is a monoid and (S,N) is a quadratic nor-
malisation for M (resp. for M mod e), then M admits the presentation

〈S | {s|t = N(s|t) | s, t ∈ S}〉+,(4.14)

(resp. 〈S \ {e} | {s|t = πe(N(s|t)) | s, t ∈ S \ {e}}〉+ ).(4.15)

So, the relations between words of length two bear all information.
Before turning to more elaborate results, let us immediately note the following

direct consequence of Def. 4.12(i):

Proposition 4.16. If (S,N) is a quadratic normalisation and S is finite, then
N -normal words form a regular language.



24 PATRICK DEHORNOY

4.2. The class of a quadratic normalisation. We now introduce a parameter,
called the class, evaluating the complexity of the normalisation process associated
with a quadratic normalisation.

If (S,N) is a quadratic normalisation and w is an S-word, N(w) is obtained
by successively applying the restriction N of N to S[2] at various positions. So,
in particular, for ‖w‖ = 3, we have N(w) = Nu(w) for some finite sequence u of
positions 1 and 2. As N is idempotent, repeating 1 or 2 in u is useless, and it is
enough to consider sequences u of the form 121... or 212... (we omit separators).

Notation 4.17. For m > 0, we write 121...[m] for the alternating sequence 121...
of length m, and similarly for 212...[m].

So, if (S,N) is a quadratic normalisation, then, for every S-word w of length
three, there exists m such that N(w) is N121...[m](w) or N212...[m](w).

Definition 4.18. We say that a quadratic normalisation (S,N) is of left class c
(resp. right-class c) if, for every w in S[3], we have

N(w) = N121...[c](w) (resp. N(w) = N212...[c](w)).

We say that (S,N) is of class (c, c′) if it is of left class c and right class c′.

Example 4.19. If (M,∆) is a Garside monoid, Prop. 2.13 gives N∆(w)=N∆
212

(w)

for every Div(∆)-word w of length three. Hence, (Div(∆), N∆) is of right class 3.

Symmetrically, Prop. 2.18 gives N∆(w) = N∆
121

(w), so (Div(∆), N∆) is also of left

class 3. Hence, the normalisation (Div(∆), N∆) is of class (3, 3).
If S is a Garside family in a left-cancellative monoid with no nontrivial invert-

ible element, then Prop. 3.10 implies that (S,NS) is of right class 3, but, lacking
in general a counterpart of Prop. 2.18, we have no hint for the left class.

The reader can check that the lexicographic normalisation (An, N
Lex) of Ex. 1.5

also has class (3, 3). On the other hand, there exist examples of normalisations
with an arbitrarily high minimal class: see [19, Ex. 3.3.9], where the minimal
class is (3 + ⌊log2 n⌋, 3 + ⌊log2 n⌋) for a size n alphabet.

Let us mention one more normalisation, very different from the previous ex-
amples. If X is a linearly ordered finite set, the plactic monoid over X is [6]

PX =

〈
X

∣∣∣∣
xzy = zxy for x 6 y < z

yxz = yzx for x < y 6 z

〉+
.

Then PX is also generated by the family CX of nonempty columns over X , de-
fined to be strictly decreasing products of elements of X . Call a pair of columns
s1|s2 normal if ‖s1‖ > ‖s2‖ holds and, for every 1 6 k 6 ‖s2‖, the kth el-
ement of s1 is at most the one of s2. Then normal sequences s1| ··· |sp are in
one-to-one correspondence with Young tableaux, and every element of PX is rep-
resented by a unique tableau of minimal length (in terms of columns). Thus,
mapping a CX -word to the unique corresponding tableau defines a geodesic nor-

mal form on (PX , CX). Writing ĈX for CX enriched with one empty column ∅

and using Prop. 4.11, we obtain a normalisation (ĈX , N) for PX mod ∅. Then,
condition (i) in Def. 4.12 is satisfied by the definition of tableaux. Moreover, for

every ĈX -word w, the normal tableau N(w) can be computed by resorting to
the Robinson–Schensted’s insertion algorithm, progressively replacing each pair
s1|s2 of subsequent columns by N(s1|s2), which is a tableau with two columns
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(if the algorithm returns a tableau with one column, we insert an empty column

to keep the length unchanged). So, the normalisation (ĈX , N) also satisfies con-
dition (ii) in Def. 4.12 and, therefore, it is quadratic. Then, the computations

of [5, §§3.2–3.4 and §§4.2–4.4] show that (ĈX , N) is of class (3, 3).

There exists an easy connection between the left and the right class.

Lemma 4.20. If a quadratic normalisation is of left class c, then it is of left
class c′ for every c′ with c′ > c, and of right class c′′ for every c′′ with c′′ > c+1.

Proof. Assume that (S,N) is of left class c. First, for w in S[3], the equality
N(w) = N121...[c](w) implies N(w) = N121...[c+1](w), since N(w) is N -invariant.
So (S,N) is of left class c+1 as well and, from there, it is of left class c′ for c′ > c.

On the other hand, we have

N(w) = N121...[c](N2(w)) = N212...[c+1](w)

by the assumption and by (4.5). Hence (S,N) is of right class c + 1 and, from
there, of right class c′′ for every c′′ with c′′ > c+ 1. �

Hence, the minimal class of a quadratic normalisation (S,N) is either (c, c′)
with |c′−c| 6 1, or (∞,∞), the latter being excluded for S finite. By Lemma 4.20,
a Garside normalisation is of right class 4, and we can state:

Proposition 4.21. If M is a left-cancellative monoid with no nontrivial invert-
ible element and S is a Garside family in M , then the normalisation (S,NS) is
of class (4, 3).

4.3. Quadratic normalisations of class (4, 3). We shall now show that many
properties of Garside normalisations extend to all quadratic normalisations of
class (4, 3). The extension comes from the following observation:

Lemma 4.22. A quadratic normalisation (S,N) is of class (4, 3) if, and only if,
the left domino rule is valid for the family of all N -normal words of length two.

Proof. Assume that (S,N) is of right class 3, and let L be the family of all
N -normal words of length two. Let s1, s2, s

′
1, s

′
2, t0, t1, t2 be elements of S satis-

fying the assumptions of Def. 2.10. By the definition of the right class, we have
N(t0|s1|s2) = N212(t0|s1|s2). As, by assumption, s1|s2 is N -normal, we obtain

N(t0|s1|s2) = N12(t0|s1|s2) = N2(s
′
1|t1|s2) = s′1|s

′
2|t2.

So s′1|s
′
2|t2 is N -normal, hence so is s′1|s

′
2. Therefore, the left domino rule is valid

for L.
Conversely, assume that the left domino rule is valid for L. Let t0|r1|r2 belong

to S[3]. Put

s1|s2 = N(r1 |r2), s′1|t1 = N(t0|s1), and s′2|t2 = N(t1|s2).

Then s′2|t2 is N -normal by construction, and s′1|s
′
2 is N -normal by the left domino

rule, so s′1|s
′
2|t2 is N -normal. Hence we have N(w) = N212(w) for every w in S[3].

Therefore, (S,N) is of right class 3 and, therefore, of class (4, 3). �
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Using the left domino rule exactly as in Sec. 2 and 3, we deduce

Proposition 4.23. If (S,N) is a quadratic normalisation of class (4, 3), then,
for every word w of length p, we have

(4.24) N(w) = Nδp(w).

So the universal recipe given by the sequence of positions δp is valid for ev-
ery normalisation of class (4, 3). Of course, a similar recipe associated with

the sequence of positions δ̃p as in Prop. 2.18 is valid for every normalisation of
class (3, 4), with the right domino rule replacing the left one. In the case of a
normalisation of class (3, 3), both recipes are valid, as in the case of the Gar-
side normalisation associated with a Garside monoid or, more generally, with a
bounded Garside family.

Arguing exactly as in the previous sections, we deduce

Corollary 4.25. If (S,N) is a quadratic normalisation of class (4, 3) for a mon-
oid ÊM , then N -normal decompositions can be computed in linear space and
quadratic time. The Word Problem for M with respect to S lies in dtime(n2),
and, if e is a N -neutral element of S and Me is the quotient of M obtained by
collapsing e, so does the Word Problem for Me with respect to S \ {e}.

Corollary 4.26. If (S,N) is a quadratic normalisation of class (4, 3) (resp. of
class (3, 4)), then N -normal words satisfy the 2-Fellow traveller Property on the
left (resp. on the right).

Let us turn to another question, and mention (without proof) one further re-
sult. We start from the (easy) observation that the class of a normalisation (S,N)
can be characterised by algebraic relations satisfied by the map N and its trans-
lated copy.

Lemma 4.27. [19, Prop. 3.3.5] A quadratic normalisation (S,N) is of left class c
if, and only if, the map N satisfies N121...[c] = N121...[c+1] = N212...[c+1]; it is of
class (c, c) if, and only if, the map N satisfies N121...[c] = N212...[c].

So, in particular, if a normalisation (S,N) is of class (4, 3), the map N, which,
by definition, is idempotent, satisfies N212 = N2121 = N1212. The next result pro-
vides an axiomatisation of class (4, 3) normalisations: it shows that, conversely,
every idempotent map satisfying the above relation necessarily stems from such
a normalisation.

Proposition 4.28. [19, Prop. 4.3.1] If S is a set and F is a map from S[2] to
itself satisfying

(4.29) F212 = F2121 = F1212,

there exists a quadratic normalisation (S,N) of class (4, 3) satisfying F = N.

The problem is to extend F into a map F ∗ on S∗ such that (S, F ∗) is a
quadratic normalisation of class (4, 3). The idea of the proof is to take the
recipe given by (4.24) as a definition, and to show that the resulting map has
the expected properties. The result is not trivial, and there is no counterpart for
higher classes.
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The specific reasons why the result works for class (4, 3) are the algebraic
properties of the monoid that admits the presentation
〈
σ1, ... , σp−1

∣∣∣∣ σ
2
i = σi for i > 1,

σiσj = σjσi for j − i > 2
σjσiσj = σiσjσiσj = σjσiσjσi for j = i+ 1

〉+
.

This monoid is a sort of asymmetric version of a symmetric group (or rather
of the corresponding Hecke algebra at q = 0), which is considered and used by
A. Hess and V. Ozornova in [26], and investigated by D. Krammer in [30].

4.4. Characterising Garside normalisations. We observed in Prop. 4.21 that
every Garside normalisation is of class (4, 3), a result that is optimal in general,
since the right domino rule fails for the finite Garside family of Fig. 5, implying
that the associated normalisation is not of class (3, 3). Conversely, it is easy to
see that the lexicographic normalisation of Ex. 4.13, which is of class (3, 3), hence
a fortiori (4, 3), does not stem from a Garside family. So the question arises
of characterising Garside normalisations among all normalisations of class (4, 3).
The answer is simple.

Definition 4.30. Assume that (S,N) is a (quadratic) normalisation for a mon-
oid M . We say that (S,N) is left-weighted if, for all s, t, s′, t′ in S, the equality
s′|t′ = N(s|t) implies s 4 s′ in M .

Thus, a normalisation (S,N) is left-weighted if, for every s in S, the first entry
of N(s|t) is always a right-multiple of s in the associated monoid.

Proposition 4.31. [19, Prop. 5.4.3] Assume that (S,N) is a quadratic normali-
sation mod 1 for a monoid M that is left-cancellative and contains no nontrivial
invertible element. Then the following are equivalent:

(i) The family S is a Garside family in M and N = NS holds.
(ii) The normalisation (S,N) is of class (4, 3) and is left-weighted.

The implication (i) ⇒ (ii) is almost straightforward. Indeed, if S is a Garside
family and s′1|s

′
2 = NS(s1|s2) holds, we have s1 4 s′1s

′
2 with s ∈ S, so the

assumption that s′1|s
′
2 is S-normal implies s1 4 s′1. Hence NS is left-weighted.

The converse implication is much more delicate. The main point is to show
that S is a Garside family in M , which is proved by establishing that S is closed
under right-divisor and every element of the ambient monoid M has an S-head,
and then using Prop. 3.16(i).

4.5. Connection with rewriting systems. There exists a simple connection
between normalisations as introduced above and rewriting systems. We refer
to [21] or [29] for basic terminology.

Lemma 4.32. If (S,N) is a quadratic normalisation for a monoid M , then
putting R = {s|t → N(s|t) | s, t ∈ S, s|t 6= N(s|t)} provides a rewriting sys-
tem (S,R) that is quadratic, reduced, normalising, confluent, and presents M .

Conversely, if (S,R) is a quadratic, reduced, normalising, and confluent rewrit-
ing system presenting a monoid M , putting N(w) = w′, where w′ is the R-normal
form of w, provides a quadratic normalisation (S,N) for M .

The above correspondences are inverses of one another.
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Example 4.33. If (An, N
Lex) is the lexicographic normalisation for the free

commutative monoid N
n , the associated quadratic rewriting system (An, Rn)

consists of the n(n− 1)/2 rules ai|aj → aj |ai for 1 6 j < i 6 n.

The correspondence of Lemma. 4.32 extends to a normalisation mod a neutral
letter e at the expense of defining a new system Re by replacing s|t → N(s|t)
with s|t → πe(N(s|t)), that is, of erasing the involved N -neutral letter.

By Lemma 4.32, a quadratic normalisation (S,N) yields a reduced quadratic
rewriting system (S,R) that is normalising and confluent, meaning that, from
every S-word, there is a rewriting sequence leading to a N -normal word. This
however does not rule out the possible existence of infinite rewriting sequences:
the system (S,R) need not a priori be terminating. Here again, class (4, 3) is the
point where transition occurs.

Proposition 4.34. [19, Prop. 5.7.1] If (S,N) is a quadratic normalisation of
class (4, 3), then the associated rewriting system (S,R) is terminating, and so is
(S \ {e}, Re) if e is a N -neutral element of S. More precisely, every rewriting
sequence from a length-p word has length at most 2p − p− 1.

The (delicate) proof consists in showing that every sequence of R-rewritings
inevitably approaches a N -normal word: because of the left domino rule, in
whatever order the rewritings are operated, the distance between the current
word and its image under N cannot increase, and it must even decrease at some
predictible intervals.

Either by taking into account the influence of the right domino rule in the
proof of the above result, or by an alternative direct argument based on the
classical Matsumoto’s lemma for the symmetric group Sp, one can show that,
in the case of a normalisation of class (3, 3), the upper bound 2p − p − 1 drops
to p(p− 1)/2.

Owing to Prop. 4.21, we obtain as a direct application of Prop. 4.34:

Corollary 4.35. Assume that M is a left-cancellative monoid with no nontrivial
invertible element and S is a Garside family in M . Then the associated rewriting
system is terminating. More precisely, every rewriting sequence from a length-p
word has length at most 2p − p− 1.

By contrast, we have:

Proposition 4.36. There exists a quadratic normalisation of class (4, 4) such
that the associated rewriting system is not terminating.

Proof (sketch). Let S := {a, b, b′, b′′, c, c′, c′′, d} and let R consist of the five rules

ab → ab′, b′c′ → bc, bc′ → b′′c′′, b′c → b′′c′′, cd → c′d.

Then (S,R) is quadratic by definition, and the diagram of Fig. 6, in which ab′′c′′d

is R-normal, shows that (S,R) is not terminating, since it admits the length-3
cycle abcd → ab′cd → ab′c′d → abcd. However, one can show (with some care)
that (S,R) is normalising and confluent, and that the associated normalisation
is of class (4, 4). �

It can be noted that terminating rewriting systems may also arise when the
minimal class is (4, 4): a beautiful example is provided by the Chinese monoid
based on a set of size 3, see [11].
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abcd

ab′cd

abc′d

ab′′c′′d ab′c′d

Figure 6. Non-termination of the rewriting system associated
with the class (4, 4) normalisation of Prop. 4.36.
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