Abstract
We study k-prefix-free, k-suffix-free and k-infix-free languages that generalize prefix-free, suffix-free and infix-free languages by allowing marginal errors. For example, a string x in a k-prefix-free language L can be a prefix of up to k different strings in L. Namely, a code (language) can allow some marginal errors. We also define finitely prefix-free languages in which a string x can be a prefix of finitely many strings. We present efficient algorithms that determine whether or not a given regular language is k-prefix-free, k-suffix-free or k-infix-free, and analyze their runtime. Lastly, we establish the undecidability results for (linear) context-free languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Béal, M.P., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing forbidden words of regular languages. Fundamenta Informaticae 56(1,2), 121–135 (2002)
Berstel, J., Perrin, D.: Theory of codes. Academic Press, Inc. (1985)
Clarke, C.L.A., Cormack, G.V.: On the use of regular expressions for searching text. ACM Transactions on Programming Languages and Systems 19(3), 413–426 (1997)
Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Information Processing Letters 67(3), 111–117 (1998)
Han, Y.S.: Decision algorithms for subfamilies of regular languages using state-pair graphs. Bulletin of the European Association for Theoretical Computer Science 93, 118–133 (2007)
Han, Y.S.: An improved prefix-free regular-expression matching. International Journal of Foundations of Computer Science 24(5), 679–687 (2013)
Han, Y.S., Salomaa, K., Wood, D.: Intercode regular languages. Fundamenta Informaticae 76(16), 113–128 (2007)
Han, Y.S., Wang, Y., Wood, D.: Infix-free regular expressions and languages. International Journal of Foundations of Computer Science 17(2), 379–393 (2006)
Han, Y.S., Wang, Y., Wood, D.: Prefix-free regular languages and pattern matching. Theoretical Computer Science 389(1–2), 307–317 (2007)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Company Incorporated (2006)
Huffman, D.: A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40(9), 1098–1101 (1952)
Jürgensen, H., Konstantinidis, S.: Codes. Word, Language, Grammar, Handbook of Formal Languages 1, 511–607 (1997)
Kari, L., Konstantinidis, S., Kopecki, S.: On the maximality of languages with combined types of code properties. Theoretical Computer Science 550, 79–89 (2014)
Kari, L., Mahalingam, K.: DNA Codes and Their Properties. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 127–142. Springer, Heidelberg (2006)
Konitzer, M., Simon, H.U.: DFA with a Bounded Activity Level. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 478–489. Springer, Heidelberg (2014)
Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial dna word design. Journal of Computational Biology 8(3), 201–219 (2001)
Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society 52(4), 264–268 (1946)
Wood, D.: Theory of Computation. Harper & Row (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Han, YS., Ko, SK., Salomaa, K. (2015). Generalizations of Code Languages with Marginal Errors. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-21500-6_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21499-3
Online ISBN: 978-3-319-21500-6
eBook Packages: Computer ScienceComputer Science (R0)