Abstract
We study reversible deterministic finite automata (REV-DFAs), that are partial deterministic finite automata whose transition function induces an injective mapping on the state set for every letter of the input alphabet. We give a structural characterization of regular languages that can be accepted by REV-DFAs. This characterization is based on the absence of a forbidden pattern in the (minimal) deterministic state graph. Again with a forbidden pattern approach, we also show that the minimality of REV-DFAs among all equivalent REV-DFAs can be decided. Both forbidden pattern characterizations give rise to NL-complete decision algorithms. In fact, our techniques allow us to construct the minimal REV-DFA for a given minimal DFA. These considerations lead to asymptotic upper and lower bounds on the conversion from DFAs to REV-DFAs. Thus, almost all problems that concern uniqueness and the size of minimal REV-DFAs are solved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
Axelsen, H.B.: Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 95–105. Springer, Heidelberg (2012)
Axelsen, H.B., Glück, R.: A simple and efficient universal reversible turing machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems. Inform. Comput. 97, 1–22 (1992)
García, P., Vázquez de Parga, M., López, D.: On the efficient construction of quasi-reversible automata for reversible languages. Inform. Process. Lett. 107, 13–17 (2008)
Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)
Héam, P.C.: A lower bound for reversible automata. RAIRO Inform. Théor. 34, 331–341 (2000)
Holzer, M., Jakobi, S.: Minimal and Hyper-Minimal Biautomata. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 291–302. Springer, Heidelberg (2014)
Immerman, N.: Nondeterministic space is closed under complement. SIAM J. Comput. 17, 935–938 (1988)
Kobayashi, S., Yokomori, T.: Learning approximately regular languages with reversible languages. Theoret. Comput. Sci. 174, 251–257 (1997)
Kutrib, M.: Aspects of Reversibility for Classical Automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 83–98. Springer, Heidelberg (2014)
Kutrib, M., Malcher, A.: Reversible Pushdown Automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 368–379. Springer, Heidelberg (2010)
Kutrib, M., Malcher, A.: One-Way Reversible Multi-head Finite Automata. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer, Heidelberg (2013)
Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In: Non-Classical Models of Automata and Applications (NCMA 2014). books@ocg.at, vol. 304, pp. 163–178. Austrian Computer Society, Vienna (2014)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)
Lombardy, S.: On the Construction of Reversible Automata for Reversible Languages. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002)
Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241–254 (2011)
Morita, K.: A Deterministic Two-Way Multi-head Finite Automaton Can Be Converted into a Reversible One with the Same Number of Heads. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg (2013)
Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE E72, 223–228 (1989)
Pin, J.E.: On reversible automata. In: Latin 1992: Theoretical Informatics. LNCS, vol. 583, pp. 401–416. Springer (1992)
Ruzzo, W.L., Simon, J., Tompa, M.: Space-bounded hierarchies and probabilistic computations. J. Comput. System Sci. 28, 216–230 (1984)
Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Inform. 26, 279–284 (1988)
Wagner, K., Wechsung, G.: Computational Complexity. Reidel (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Holzer, M., Jakobi, S., Kutrib, M. (2015). Minimal Reversible Deterministic Finite Automata. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-21500-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21499-3
Online ISBN: 978-3-319-21500-6
eBook Packages: Computer ScienceComputer Science (R0)