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Abstract. We introduce a weight assignment logic for reasoning about quan-
titative languages of infinite words. This logic is an extension of the classical
MSO logic and permits to describe quantitative properties of systems with mul-
tiple weight parameters, e.g., the ratio between rewards and costs. We show that
this logic is expressively equivalent to unambiguous weighted Büchi automata.
We also consider an extension of weight assignment logic which is expressively
equivalent to nondeterministic weighted Büchi automata.
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automata, Büchi automata, unambiguous automata

1 Introduction

Since the seminal Büchi theorem [6] about the expressive equivalence of finite automata
and monadic second-order logic, a significant field of research investigates logical char-
acterizations of language classes appearing from practically relevant automata models.
In this paper we introduce a new approach to the logical characterization of quantita-
tive languages of infinite words where every infinite word carries a value, e.g., a real
number.

Quantitative languages of infinite words and various weighted automata for them
were investigated by Chatterjee, Doyen and Henzinger in [7]as models for verifica-
tion of quantitative properties of systems. Their weightedautomata are automata with
a single weight parameter where a computation is evaluated using measures like the
limit average or discounted sum. Recently, the problem of analysis and verification of
systems with multiple weight parameters, e.g. time, costs and energy consumption, has
received much attention in the literature [2, 3, 5, 17, 18, 21]. For instance, the setting
where a computation is evaluated as the ratio between accumulated rewards and costs
was considered in [3, 5, 18]. Another example is a model of energy automata with
several energy storages [17].

Related work. Droste and Gastin [9] introduced weighted MSO logic on finite
words with constants from a semiring. In the semantics of their logic (which is a quan-
titative language of finite words) disjunction is extended by the sum operation of the
semiring and conjunction is extended by the product. They show that weighted MSO
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logic is more expressive than weighted automata [10] (the unrestricted use of weighted
conjunction and weighted universal quantifiers leads to unrecognizability) and provide a
syntactically restricted fragment which is expressively equivalent to weighted automata.
This result was extended in [15] to the setting of infinite words. A logical characteri-
zation of the quantitative languages of Chatterjee, Doyen and Henzinger was given in
[12] (again by a restricted fragment of weighted MSO logic).In [14], a multi-weighted
extension of weighted MSO logic of [12] with the multiset-based semantics was con-
sidered.

Our contributions. In this paper, we introduce a new approach to logic for quantita-
tive languages, different from [9, 12, 14, 15]. We develop a so-calledweight assignment
logic (WAL) on infinite words, an extension of the classical MSO logic to the quanti-
tative setting. This logic allows us to assign weights (or multi-weights) to positions of
anω-word. Using WAL, we can, for instance, express that whenever a position of an
input word is labelled by lettera, then the weight of this position is2. As a weighted
extension of the logical conjunction, we use themergingof partially definedω-words.
In order to evaluate a partially definedω-word, we introduce adefault weight, assign it
to all positions with undefined weight, and evaluate the obtained totally definedω-word,
e.g., as the reward-cost ratio or discounted sum.

As opposed to the weighted MSO logic of [9], the weighted conjunction-like op-
erators of WAL capture recognizability by weighted Büchi automata. We show that
WAL is expressively equivalent tounambiguousweighted Büchi automata where, for
every inputω-word, there exists at most one accepting computation. Unambiguous au-
tomata are of considerable interest for automata theory as they can have better decid-
ability properties. For instance, in the setting of finite words, the equivalence problem
for unambiguous max-plus automata is decidable [19] whereas, for nondeterministic
max-plus automata, this problem is undecidable [20].

We also consider an extended version of WAL which captures nondeterministic
weighted Büchi automata. In extended WAL we allow existential quantification over
first-order and second-order variables in the prefix of a formula. The structure of ex-
tended WAL is similar to the structure of unweighted logics for, e.g., timed automata
[25] and data automata [4].

For the proof of our expressiveness equivalence result, we establish a Nivat de-
composition theorem for nondeterministic and unambiguousweighted Büchi automata.
Recall that Nivat’s theorem [22] is one of the fundamental characterizations of rational
transductions and shows a connection between rational transductions and rational lan-
guage. Recently, Nivat’s theorem was proved for semiring-weighted automata on finite
words [11] and weighted multioperator tree automata [24]. We obtain similar decom-
positions for WAL and extended WAL and deduce our results from the classical Büchi
theorem [6]. Our proof is constructive and hence decidability properties for WAL and
extended WAL can be transferred into decidability properties of weighted Büchi au-
tomata. As a side application of our Nivat theorem, we can easily show that weighted
Büchi automata and weighted Muller automata are expressively equivalent.

Outline. In Sect. 2 we introduce a general framework for weighted Büchi automata
and consider several examples. In Sect. 3 we prove a Nivat decomposition theorem
for weighted Büchi automata. In Sect. 4 we define weight assignment logic and its
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extension. In Sect. 5 we state our main result and give a sketch of its proof for the
unambiguous and nondeterministic cases.

2 Weighted Büchi Automata

Let N = {0, 1, ...} denote the set of all natural numbers. For an arbitrary setX , an
ω-word overX is an infinite sequence(xi)i∈N wherexi ∈ X for all i ∈ N. LetXω

denote the set of allω-words overX . Any setL ⊆ Xω is called anω-languageoverX .
A Büchi automatonover an alphabetΣ is a tupleA = (Q, I, T, F ) whereQ

is a finite set of states,Σ is an alphabet (i.e. a finite non-empty set),I, F ⊆ Q
are sets of initial resp. accepting states, andT ⊆ Q × Σ × Q is a transition re-
lation. A run ρ = (ti)i∈N ∈ Tω of A is defined as an infinite sequence of match-
ing transitions which starts in an initial state and visits some accepting state in-
finitely often, i.e., ti = (qi, ai, qi+1) for each i ∈ N, such thatq0 ∈ I and
{q ∈ Q | q = qi for infinitely manyi ∈ N} ∩ F 6= ∅. Let label(ρ) := (ai)i∈N ∈ Σω,
the label of ρ. We denote byRunA the set of all runs ofA and, for eachw ∈ Σω,
we denote byRunA(w) the set of all runsρ of A with label(ρ) = w. Let L(A) =
{w ∈ Σω | RunA(w) 6= ∅}, theω-languageacceptedby A. We call anω-language
L ⊆ Σω recognizableif there exists a Büchi automatonA overΣ such thatL(A) = L.

We say that a monoidK = (K,+, 0) is complete(cf., e.g., [15]) if it is equipped
with infinitary sum operations

∑

I : KI → K for any index setI, such that, for allI
and all families(ki)i∈I of elements ofK, the following hold:

–
∑

i∈∅ ki = 0,
∑

i∈{j} ki = kj ,
∑

i∈{p,q} ki = kp + kq for p 6= q;

–
∑

j∈J (
∑

i∈Ij
ki) =

∑

i∈I ki, if
⋃

j∈J Ij = I andIj ∩ Ij′ = ∅ for j 6= j′.

Let R = R ∪ {−∞,∞}. Then,R equipped with infinitary operations likeinfinum
or supremumforms a complete monoid. Now we introduce an algebraic structure for
weighted Büchi automata which is an extension of totally complete semirings [15] and
valuation monoids [12] and covers various multi-weighted measures.

Definition 2.1. A valuation structureV = (M,K, val) consists of a non-empty setM ,
a complete monoidK = (K,+, 0) and a mappingval : Mω → K called henceforth a
valuation function.

In the definition of a valuation structure we have two weight domainsM andK.
HereM is the set of transition weights which in the multi-weightedexamples can be
tuples of weights (e.g., a reward-cost pair) andK is the set of weights of computations
which can be single values (e.g., the ratio between rewards and costs).

Definition 2.2. LetΣ be an alphabet andV = (M, (K,+, 0), val) a valuation struc-
ture. Aweighted Büchi automaton(WBA) overV is a tupleA = (Q, I, T, F,wt) where
(Q, I, T, F ) is a Büchi automaton overΣ andwt : T → M is a transition weight
function.
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The behavior of WBA is defined as follows. Given a runρ of this automaton, we
evaluate theω-sequence of transition weights ofρ (which is inMω) using the valua-
tion functionval and then resolve the nondeterminism on the weights of runs using the
complete monoidK. Formally, letρ = (ti)i∈N ∈ Tω be a run ofA. Then, theweight
of ρ is defined aswtA(ρ) = val((wt(ti))i∈N) ∈ K. Thebehaviorof A is a mapping
[[A]] : Σω → K defined for allw ∈ Σω by [[A]](w) =

∑

(wtA(ρ) | ρ ∈ RunA(w)).
Note that the sum in the equation above can be infinite. Therefore we consider a com-
plete monoid(K,+, 0). A mappingL : Σω → K is called aquantitativeω-language.
We say thatL is (nondeterministically)recognizableoverV if there exists a WBAA
overV such that[[A]] = L.

We say that a WBAA overΣ andV is unambiguousif |RunA(w)| ≤ 1 for every
w ∈ Σω. We call a quantitativeω-languageL : Σω → K unambiguously recognizable
overV if there exists an unambiguous WBAA overΣ andV such that[[A]] = L.

Example 2.3.(a) The ratio measure was introduced in [5], e.g., for the modeling of the
average costs in timed systems. In the setting ofω-words, we consider the model
with two weight parameters: thecostand thereward. The rewards and costs of tran-
sitions are accumulated along every finite prefix of a run and their ratio is taken.
Then, the weight of an infinite run is defined as the limit superior (or limit in-
ferior) of the sequence of the computed ratios for all finite prefixes. To describe
the behavior of these double-priced ratio Büchi automata,we consider the valu-
ation structureVRATIO = (M,K, val) whereM = Q × Q≥0 models the reward-
cost pairs,K = (R, sup,−∞) andval : Mω → R is defined for every sequence
u = ((ri, ci))i∈N ∈ Mω by val(u) = lim supn→∞

r1+...+rn
c1+...+cn

. Here, we assume
that r0 = −∞.

(b) Discounting[1, 7] is a well-known principle which is used in, e.g., economics
and psychology. In this example, we consider WBA with transition-dependent
discounting, i.e., are two weight parameters: the cost and the discounting fac-
tor (which is not fixed and depends on a transition). In order to define WBA
with discounting formally, we consider the valuation structureVDISC = (M,K, val)
whereM = Q≥0 × ((0, 1] ∩ Q) models the pairs of a cost and a discounting factor,
K = (R≥0 ∪ {∞}, inf,∞), andval is defined for allu = ((ci, di))i∈N ∈Mω as
val(u) = c0 +

∑∞
i=1 ci ·

∏i−1
j=0 dj .

(c) Now we consider the valuation structure for the model of multi-weighted automata
which correspond to one-player energy games with lower bound considered in [17].
Let n ≥ 1 ands1, ..., sn be energy storages. We start with empty storages and,
after taking a transition of a Büchi automaton, the energy level of each storagesj
(1 ≤ j ≤ n) can be increased (if we regain energy) or decreased (if we consume
energy). The goal is to keep the energy level of every energy storage not less than
zero. Consider the sequenceu = (ui)u∈N where, for alli ∈ N, ui = (u1i , ..., u

n
i ) ∈

Zn is the vector of the energy level changes for each storage. Wesay thatu is
correct if

∑i
k=0 u

j
k ≥ 0 for all i ∈ N andj ∈ {1, ..., n}. For this situation we

consider the valuation structureVENERGY = (M,K, val) whereM = Zn, K =
({0, 1},∨, 0) and, for allu ∈Mω, we letval(u) = 1 if u is correct andval(u) = 0
otherwise.
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(d) Since a valuation monoid(K, (K,+, 0), val) of Droste and Meinecke [12] is a
special case of valuation structures, all examples considered there also fit into our
framework. ⊓⊔

3 Decomposition of WBA

In this section, we establish a Nivat decomposition theoremfor WBA. We will need it
for the proof of our main result. However, it also could be of independent interest.

Let Σ be an alphabet andV = (M, (K,+, 0), val) a valuation structure. For a
(possibly different fromΣ) alphabetΓ , we introduce the following operations. Let∆ be
an arbitrary non-empty set andh : Γ → ∆ a mapping called henceforth arenaming. For
anyω-wordu = (γi)i∈N ∈ Γω, we leth(u) = (h(γi))i∈N ∈ ∆ω. Now leth : Γ → Σ
be a renaming andL : Γω → K a quantitativeω-language. We define therenaming
h(L) : Σω → K for all w ∈ Σω by h(L)(w) =

∑
(

L(u) | u ∈ Γω andh(u) = w
)

.
For a renamingg : Γ → M , the compositionval ◦g : Γω → K is defined for all
u ∈ Γω by (val ◦g)(u) = val(g(u)). Given a quantitativeω-languageL : Γω → K
and anω-languageL ⊆ Γω, the intersectionL ∩ L : Γω → K is defined for allu ∈ L
as(L ∩ L)(u) = L(u) and for allu ∈ Γω \ L as(L ∩ L)(u) = 0. Given a renaming
h : Γ → Σ , we say that anω-languageL ⊆ Γω is h-unambiguousif for all w ∈ Σω

there exists at most oneu ∈ L such thath(u) = w.
Our Nivat decomposition theorem for WBA is the following.

Theorem 3.1. LetΣ be an alphabet,V = (M, (K,+, 0), val) a valuation structure,
andL : Σω → K a quantitativeω-language. Then

(a) L is unambiguously recognizable overV iff there exist an alphabetΓ , renamings
h : Γ → Σ andg : Γ → M , and a recognizable andh-unambiguousω-language
L ⊆ Γω such thatL = h((val ◦g) ∩ L).

(b) L is nondeterministically recognizable overV iff there exist an alphabetΓ , renam-
ingsh : Γ → Σ andg : Γ → M , and a recognizableω-languageL ⊆ Γω such
thatL = h((val ◦g) ∩ L).

3.1 Proof of Theorem 3.1

We start with part (b) of Theorem 3.1.

Lemma 3.2. LetA be a WBA overΣ andV. Then there exist an alphabetΓ , renaming
h : Γ → Σ and g : Γ → M , and a recognizableω-languageL ⊆ Γω such that
[[A]] = h((val ◦g) ∩ L).

Proof. The idea is as in [11] to take the set of transitions as the extended alphabetΓ .
Then,h maps every transition to its label andg maps every transition to its weight.
Then, if in the underlying unweighted Büchi automaton we label every transition with
itself, then we obtain the Büchi automaton acceptingL.

Formally, letA = (Q, I, T, F,wt). We may assume w.l.o.g. thatT 6= ∅.We let
Γ = T and h : Γ → Σ be defined for allt = (p, a, q) ∈ T as h(t) = a, and
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let g : T →M be defined for allt ∈ T as g(t) = wt(t). We also defineL by
L = {ρ = (ti)i∈N | ρ is a run ofA}.

First we show thatL is recognizable. Indeed, consider the Büchi automaton
A′ = (Q, I, T ′, F ) over Γ whereT ′ = {(p, (p, a, q), q) | (p, a, q) ∈ T }. Then
L(A′) = L and henceL is recognizable. Finally we show that[[A]] = h((valω ◦g)∩L).
Letw ∈ Σω. Then

h((valω ◦g) ∩ L)(w) =
∑

u∈L,
h(u)=w

valω(g(u)) =
∑

ρ∈RunA(w)

wtA(ρ) = [[A]](w).

⊓⊔

Now we turn to the implication⇐.

Lemma 3.3. Let Γ be an alphabet,h : Γ → Σ and g : Γ → M renamings, and
L ⊆ Γω a recognizableω-language. Then, the quantitativeω-languageh((val ◦g)∩L)
is recognizable overV.

Proof. Since Büchi automata are not determinizable, the most challenging part in the
proof is to show that recognizability of quantitativeω-languages is stable under inter-
section with recognizableω-languages. Here we apply the result of [8] that recognizable
ω-languages are recognizable by unambiguous Büchi automata.

Let A be an unambiguous Büchi automaton overΓ with L(A) = L. If we asso-
ciate with every transition(p, γ, q) of A the weightg(γ) ∈ M , then we obtain the
WBA B overΓ andV with [[B]] = (val ◦g) ∩ L. It remains to show that recognizable
quantitativeω-languages are closed under renaming. For this, we apply theconstruc-
tion of Droste and Vogler [16]. LetB = (Q, I, T, F,wt). Then we construct the WBA
C = (Q′, I ′, T ′, F ′,wt′) overΣ andV defined as follows:

– Q′ = Q× Γ , I ′ = I × {γ0} for some fixedγ0 ∈ Γ , F ′ = F × Γ ;
– T ′ consists of all transitionst = ((p, γ), a, (p′, γ′)) ∈ Q′ × Σ × Q′ such that
(p, γ′, p′) ∈ T andh(γ′) = a. For such a transitiont, we letwt′(t) = wt(p, γ′, p′).

Thenh([[B]]) = [[C]]. Hence the quantitativeω-languageh((val ◦g)∩L) is recognizable
overV. ⊓⊔

Then Theorem 3.1(b) follows immediately from Lemmas 3.2 and3.3.
The proof of Theorem 3.1(a) relies on the same constructionsas the proof of Theo-

rem 3.1(b). Note that in the proof of Lemma 3.2, ifA is unambiguous, theω-language
L is h-unambiguous. Note also that the WBAB in the proof of Lemma 3.3 is unam-
biguous but, in general,C is not. However,h-unambiguity ofL guarantees thatC is
unambiguous.

3.2 Weighted Muller Automata

As a first application of Theorem 3.1 we show that WBA are expressively equivalent to
weighted Muller automatawhich are defined as WBA with the difference that a set of
accepting statesF ⊆ Q is replaced by a setF ⊆ 2Q of sets of accepting states. Then,
for an accepting runρ, the set of all states, which are visited inρ infinitely often, must
be inF .
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Theorem 3.4. Let Σ be an alphabet,V = (M, (K,+, 0), val) a valuation structure
andL : Σω → K a quantitativeω-language. ThenL = [[A]] for some WBAA overΣ
andV iff L = [[A′]] for some weighted Muller automatonA′ overΣ andV.

Theorem 3.4 extends the result of [15] for totally complete semirings. Whereas
the proof of [15] was given by direct non-trivial automata transformation, our proof
is based on the fact that weighted Muller automata permit thesame decomposition as
stated in Theorem 3.1 for WBA. The constructions for this case are much the same as
the constructions of Theorem 3.1(b). We only have to replaceF ⊆ Q byF ⊆ 2Q in the
proofs and slightly modify the constructions of Lemma 3.3.

– It is well known that Muller automata are determinizable. Then, for the construction
of the weighted Muller automaton for(val ◦g) ∩ L we use the fact that Muller
and Büchi automata are expressively equivalent and take a deterministic Muller
automaton recognizingL.

– In the definition ofC in the proof of Lemma 3.3 we replaceF ′ by the Muller
acceptance conditionF ′ which consists of all sets{(q1, γ1), ..., (qk, γk)} ⊆ Q′

such that{q1, ..., qk} ∈ F (a similar idea was used in [12]).

4 Weight Assignment Logic

4.1 Partial ω-words

Before we give a definition of the syntax and semantics of our new logic, we introduce
some auxiliary notions about partialω-words. LetX be an arbitrary non-empty set.
A partial ω-word overX is a partial mappingu : N 99K X , i.e., u : U → X for
someU ⊆ N. Let dom(u) = U , the domainof u. We denote byX↑ the set of all
partialω-words overX . Clearly,Xω ⊆ X↑. A trivial ω-word ⊤ ∈ X↑ is the partial
ω-word with dom(⊤) = ∅. Foru ∈ X↑, i ∈ N andx ∈ X , theupdateu[i/x] ∈ X↑

is defined asdom(u[i/x]) = dom(u) ∪ {i}, u[i/x](i) = x andu[i/x](i′) = u(i′)
for all i′ ∈ dom(u) \ {i}. Let θ = (uj)j∈J be an arbitrary family of partialω-words
uj ∈ X↑ whereJ is an arbitrary index set. We say thatθ is compatibleif, for all
j, j′ ∈ J andi ∈ dom(uj) ∩ dom(uj′), we haveuj(i) = uj′(i). If θ is compatible,
then we define themergingu := (

d
j∈J uj) ∈ X↑ asdom(u) =

⋃

j∈J dom(uj) and,
for all i ∈ dom(u), u(i) = uj(i) wheneveri ∈ dom(uj) for somej ∈ J . Let θ =
{uj}j∈{1,2} be compatible. Then, we writeu1 ↑ u2. Clearly, the relation↑ is reflexive
and symmetric. In the caseu1 ↑ u2, for

d
j∈{1,2} uj we will also use notationu1 ⊓ u2.

Example 4.1.Let X = {a, b} with a 6= b andu1 = aω ∈ X↑. Let u2 ∈ X↑ be
the partialω-word whose domaindom(u2) is the set of all odd natural numbers and
u2(i) = a for all i ∈ dom(u2). Let u3 ∈ X↑ be the partialω-word such thatdom(u3)
is the set of all even natural numbers andu3(i) = b for all i ∈ dom(u3). Thenu1 ↑ u2
andu2 ↑ u3, but¬(u1 ↑ u3). This shows in particular that the relation↑ is not transitive
if X is not a singleton set. Then,u1 ⊓ u2 = aω andu2 ⊓ u3 = (ba)ω.
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4.2 WAL: Syntax and Semantics

Let V1 be a countable set offirst-order variablesandV2 a countable set ofsecond-
order variablessuch thatV1 ∩ V2 = ∅. Let V = V1 ∪ V2. LetΣ be an alphabet and
V = (M, (K,+, 0), val) a valuation structure. We also consider a designated element
1 ∈ M which we call thedefault weight. We denote the pair(V, 1) by V1. The set
WAL(Σ,V1) of formulas ofweight assignment logicoverΣ andV1 is given by the
grammar

ϕ ::= Pa(x) | x = y | x < y | X(x) | x 7→ m | ϕ⇒ ϕ | ϕ ⊓ ϕ | ⊓x.ϕ | ⊓X.ϕ

wherea ∈ Σ, x, y ∈ V1, X ∈ V2 andm ∈ M . Such a formulaϕ is called aweight
assignment formula.

Let ϕ ∈ WAL(Σ,V1). We denote by CONST(ϕ) ⊆ M the set of all weights
m ∈ M occurring inϕ. The set FREE(ϕ) ⊆ V of free variablesof ϕ is defined to be
the set of all variablesX ∈ V which appear inϕ and are not bound by any quantifier
⊓X . We say thatϕ is asentenceif FREE(ϕ) = ∅.

Note that the merging as defined before is a partially defined operation, i.e., it is
defined only for compatible families of partialω-words. In order to extend it to a totally
defined operation, we fix an element⊥ /∈ M↑ which will mean the undefined value.
Let M↑

⊥ = M↑ ∪ {⊥}. Then, for any familyθ = (uj)j∈J with uj ∈ M↑
⊥, such that

eitherθ ∈ (M↑)J is not compatible orθ ∈ (M↑
⊥)

J \ (M↑)J , we let
d

j∈J uj = ⊥.

For anyω-wordw ∈ Σω, aw-assignmentis a mappingσ : V → dom(w)∪2dom(w)

mapping first-order variables to elements indom(w) and second-order variables to sub-
sets ofdom(w). For a first-order variablex and a positioni ∈ N, thew-assignment
σ[x/i] is defined onV \ {x} asσ, and we letσ[x/i](x) = i. For a second-order vari-
ableX and a subsetI ⊆ N, thew-assignmentσ[X/I] is defined similarly. LetΣω

V

denote the set of all pairs(w, σ) wherew ∈ Σω andσ is aw-assignment. We will
denote such pairs(w, σ) bywσ.

The semantics ofWAL-formulas is defined in two steps: by means of the auxil-
iary and proper semantics. Letϕ ∈ WAL(Σ,V1). The auxiliary semanticsof ϕ is
the mapping〈〈ϕ〉〉 : Σω

V → M↑
⊥ defined for allwσ ∈ Σω

V with w = (ai)i∈N as
shown in Table 1. Note that the definition of〈〈..〉〉 does not employ+ andval. The
proper semantics[[ϕ]] : Σω

V → K operates on the auxiliary semantics〈〈ϕ〉〉 as follows.
Let wσ ∈ Σω

V . If 〈〈ϕ〉〉(wσ) ∈ M↑, then we assign the default weight to all undefined
positions indom(〈〈ϕ〉〉(wσ)) and evaluate the obtained sequence usingval. Otherwise,
if 〈〈ϕ〉〉(wσ) = ⊥, we put[[ϕ]](wσ) = 0. Note that ifϕ ∈ WAL(Σ,V1) is a sentence,
then the values〈〈ϕ〉〉(wσ) and[[ϕ]](wσ) do not depend onσ and we consider the auxiliary
semantics ofϕ as the mapping〈〈ϕ〉〉 : Σω → M↑

⊥ and the proper semantics ofϕ as the
quantitativeω-language[[ϕ]] : Σω → K. Note that+ was not needed for the semantics
of WAL-formulas. This operation will be needed in the next sectionfor the extension
of WAL. We say that a quantitativeω-languageL : Σω → K isWAL-definableover
V if there exist a default weight1 ∈ M and a sentenceϕ ∈ WAL(Σ,V1) such that
[[ϕ]] = L.

Example 4.2.Consider a valuation structureV = (M, (K,+, 0), val) and a default
weight1 ∈ M . Consider an alphabetΣ = {a, b, ...} of actions. We assume that the
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〈〈Pa(x)〉〉(wσ) =

{

⊤, aσ(x) = a

⊥, otherwise

〈〈x = y〉〉(wσ) =

{

⊤, σ(x) = σ(y)

⊥, otherwise

〈〈x < y〉〉(wσ) =

{

⊤, σ(x) < σ(y)

⊥, otherwise

〈〈X(x)〉〉(wσ) =

{

⊤, σ(x) ∈ σ(X)

⊥, otherwise

〈〈x 7→ m〉〉(wσ) = ⊤[σ(x)/m]

〈〈ϕ1 ⇒ ϕ2〉〉(wσ) =

{

〈〈ϕ2〉〉(wσ), 〈〈ϕ1〉〉(wσ) = ⊤

⊤, otherwise
〈〈ϕ1 ⊓ ϕ2〉〉(wσ) = 〈〈ϕ1〉〉(wσ) ⊓ 〈〈ϕ2〉〉(wσ)
〈〈⊓x.ϕ〉〉(wσ) =

d
i∈dom(w)〈〈ϕ〉〉(wσ[x/i])

〈〈⊓X.ϕ〉〉(wσ) =
d

I⊆dom(w)〈〈ϕ〉〉(wσ[X/I])

Table 1.The auxiliary semantics ofWAL-formulas

cost ofa is c(a) ∈ M , the cost ofb is c(b) ∈ M , and the costs of all other actions
x in Σ are equal toc(x) = 1 (which can mean, e.g., that these actions do not invoke
any costs). Then everyω-wordw induces theω-word of costs. We want to construct
a sentence of our WAL which for every such anω-word will evaluate its sequence of
costs usingval. The desired sentenceϕ ∈ WAL(Σ,V1) is

ϕ = ⊓x.([Pa(x) ⇒ (x 7→ c(a))] ⊓ [Pb(x) ⇒ (x 7→ c(b))]).

Then, for everyw = (ai)i∈N ∈ Σω, the auxiliary semantics〈〈ϕ〉〉(w) is the partialω-
word overM where all positionsi ∈ N with ai = a are labelled byc(a), all positions
with ai = b are labelled byc(b), and the labels of all other positions are undefined.
Then, the proper semantics[[ϕ]](w) assigns1 to all positions with undefined labels and
evaluates it by means ofval.

4.3 WAL: Relation to MSO Logic

Let Σ be an alphabet. We consider monadic second-order logicMSO(Σ) over ω-
words to be the set of formulas

ϕ ::= Pa(x) | x = y | x < y | X(x) | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ | ∀X.ϕ

wherea ∈ Σ, x, y ∈ V1 andX ∈ V2. Forwσ ∈ Σω
V , the satisfaction relationwσ |= ϕ is

defined as usual. The usual formulas of the formϕ1∨ϕ2, ∃X .ϕ with X ∈ V , ϕ1 ⇒ ϕ2

andϕ1 ⇔ ϕ2 can be expressed usingMSO-formulas.
For any formulaϕ ∈ MSO(Σ), let W (ϕ) denote theWAL-formula obtained

from ϕ by replacing∧ by ⊓, ∀X (with X ∈ V ) by ⊓X , and every subformula
¬ψ by ψ ⇒ false. Here false can be considered as abbreviation of the sentence
⊓x.(x < x). Note thatW (ϕ) does not contain any assignment formulasx 7→ m and
〈〈W (ϕ)〉〉(wσ) ∈ {⊤,⊥} for everywσ ∈ Σω

V . Moreover, it can be easily shown by
induction on the structure ofϕ that, for allwσ ∈ Σω

V : wσ |= ϕ iff 〈〈W (ϕ)〉〉(wσ) = ⊤.
This shows that MSO logic on infinite words is subsumed byWAL. For the formulas
which do not contain any assignments of the formx 7→ m, the merging⊓ can be con-
sidered as the usual conjunction and the merging quantifiers⊓X as the usual universal
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[[⊔x.ϕ]](wσ) =
∑

(

[[ϕ]](wσ[x/i]) | i ∈ dom(w)
)

[[⊔X.ϕ]](wσ) =
∑

(

[[ϕ]](wσ[X/I]) | I ⊆ dom(w)
)

Table 2.The semantics ofeWAL-formulas

quantifiers∀X . Moreover,⊤ corresponds to the boolean true value and⊥ to the boolean
false value.

For aWAL-formulaϕ, we will consider¬ϕ as abbreviation forϕ⇒ false.

4.4 Extended WAL

Here we extendWAL with weighted existential quantification over free variables in
WAL-formulas. LetΣ be an alphabet,V = (M, (K,+, 0), val) a valuation structure
and1 ∈M a default weight. The seteWAL(Σ,V1) of formulas ofextended weight as-
signment logicoverΣ andV1 consists of all formulas of the form⊔X1. ... ⊔Xk.ϕwhere
k ≥ 0, X1, ...,Xk ∈ V andϕ ∈ WAL(Σ,V1). Given a formulaϕ ∈ eWAL(Σ,V1),
the semanticsof ϕ is the mapping[[ϕ]] : Σω

V → K defined inductively as follows. If
ϕ ∈ WAL(Σ,V1), then[[ϕ]] is defined as the proper semantics forWAL. If ϕ con-
tains a prefix⊔x with x ∈ V1 or ⊔X with X ∈ V2, then, for allwσ ∈ Σω

V , [[ϕ]](wσ) is
defined inductively as shown in Table 2. Again, ifϕ is a sentence, then we can consider
its semantics as the quantitativeω-language[[ϕ]] : Σω → K. We say that a quantitative
ω-languageL : Σω → K is eWAL-recognizableoverV if there exist a default weight
1 ∈M and a sentenceϕ ∈ eWAL(Σ,V1) such that[[ϕ]] = L.

Example 4.3.LetΣ = {a} be a singleton alphabet,V = VDISC as defined in Example
2.3(b). Assume that, for every position of anω-word, we can either assign to this po-
sition the cost5 and the discounting factor0.5 or we assign the cost the smaller cost2
and the bigger discounting factor0.75. After that we compute the discounted sum using
the valuation function ofVDISC. We are interested in the infimal value of this discounted
sum. We can express it by means of theeWAL-formula

ϕ = ⊔X.⊓x.([X(x) ⇒ (x 7→ (5, 0.5))] ⊓ [(¬X(x)) ⇒ (x 7→ (2, 0.75))])

i.e. [[ϕ]](aω) is the desired infimal value.

5 Expressiveness Equivalence Result

In this section we state and prove the main result of this paper.

Theorem 5.1. Let Σ be an alphabet,V = (M, (K,+, 0), val) a valuation structure
andL : Σω → K a quantitativeω-language. Then

(a) L isWAL-definable overV iff L is unambiguously recognizable overV.
(b) L is eWAL-definable overV iff L is recognizable overV.
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5.1 Unambiguous Case: Definability Implies Recognizability

In this subsection, we prove part (a) of Theorem 5.1. First weshowWAL-definability
implies unambiguous recognizability. We establish a decomposition ofWAL-formulas
in a similar manner as it was done for unambiguous WBA in Theorem 3.1 (a), i.e., we
separate weighted part ofWAL from its unweighted part. Then applying the classical
Büchi theorem and our Nivat Theorem 3.1(a), we obtain thatL is recognizable overV.

Lemma 5.2. Let ϕ ∈ WAL(Σ,V1) be a sentence. Then there exist an alphabetΓ ,
renamingsh : Γ → Σ and g : Γ → M , and a sentenceβ ∈ MSO(Γ ) such that
[[ϕ]] = h((val ◦g) ∩ L(β)).

The proof of this lemma will be given in the rest of this subsection. Let# /∈ M
be a symbol which we will use to mark all positions whose labels are undefined in
the auxiliary semantics ofWAL-formulas. Let∆ϕ = CONST(ϕ) ∪ {#}. Then our
extended alphabet will beΓ = Σ ×∆ϕ. We define the renamingsh, g as follows. For
all u = (a, b) ∈ Γ , we leth(u) = a, g(u) = b if b ∈ M , andg(u) = 1 if m = #.
The main difficulty is to construct the sentenceβ. For anyω-wordw = (ai)i∈N ∈ Σω

and any partialω-word η ∈ (CONST(ϕ))↑, we encode the pair(w, η) as theω-word
code(w, η) = ((ai, bi))i∈N ∈ Γω where, for alli ∈ dom(η), bi = η(i) and, for all
i ∈ N\dom(η), bi = #. In other words, we will considerω-words ofΓ as convolutions
of ω-words overΣ with the encoding of the auxiliary semantics ofϕ.

The construction ofβ is based on the following technical lemma.

Lemma 5.3. For every subformula ζ of ϕ, there exists a formula
Φ(ζ) ∈ MSO(Σ ×∆ϕ) such thatFREE(Φ(ζ)) = FREE(ζ) and, for all wσ ∈ Σω

V

andη ∈ (CONST(ϕ))↑, we have:〈〈ζ〉〉(wσ) = η iff (code(w, η))σ |= Φ(ζ).

Note that〈〈ϕ〉〉(wσ) = η means in particular that〈〈ϕ〉〉(wσ) 6= ⊥.

Proof. Let Y ∈ V2 be a fresh variable which does not occur inϕ. First, we define
inductively the formulaΦY (ζ) ∈ MSO(Γ ) with FREE(ΦY (ζ)) = FREE(ζ) ∪ {Y }
which describes the connection between the inputω-wordw and the output partialω-
wordη; here the variableY keeps track of the domain ofη.

– For ζ = Pa(x), we let

ΦY (ζ) =
∨

b∈∆ϕ

P(a,b)(x) ∧ Y (∅)

whereY (∅) is abbreviation for∀y.¬Y (y). Here we demand that the first component
of the letter at positionx is a and the second component is an arbitrary letter from
∆ϕ and that the auxiliary semantics ofζ is the trivial partialω-word⊤.

– Let ζ be one of the formulas of the formx = y, x < y orX(x). Then, we let

ΦY (ζ) = ζ ∧ Y (∅).
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– For ζ = (x 7→ m), we let

ΦY (ζ) =
∨

a∈Σ

P(a,m)(x) ∧ ∀y.(Y (y) ⇔ x = y).

This formula describes that positionx of η must be labelled bym and all other
positions are unlabelled.

– Let ζ = (ζ1 ⇒ ζ2). Let Z ∈ V2 be a fresh variable. Consider the formula
κ = ∃Z.[ΦZ(ζ1) ∧ Z(∅)] which checks whether the value of the auxiliary seman-
tics of ζ1 is ⊤. Then, we let

ΦY (ζ) = (κ ∧ ΦY (ζ2)) ∨ (¬κ ∧ Y (∅)).

– Let ζ = ζ1 ⊓ ζ2. LetY1, Y2 ∈ V2 be two fresh distinct variables. Then we let

ΦY (ζ) = ∃Y1.∃Y2.(ΦY1
(ζ1) ∧ ΦY2

(ζ2) ∧ [Y = Y1 ∪ Y2]).

Here Y = Y1 ∪ Y2 is considered as abbreviation for the MSO-formula
∀y.(Y (y) ⇔ [Y1(y) ∨ Y2(y)]).

– The most interesting case is a formula of the formζ = ⊓X .ζ′ with X ∈ V . Here,
every value ofX induces its own value ofY (X ) and we have to merge infinitely
many partialω-words, i.e., to express thatY is the infinite union ofY (X ) over all
setsX . We can show thatY must be the minimal set which satisfies the formula
ξ(Y ) = ∀X .∃Y ′.(ΦY ′(ζ′) ∧ (Y ′ ⊆ Y )) whereY ′ ∈ V2 is a fresh variable. Then,
we let

ΦY (ζ) = ξ(Y ) ∧ ∀Z.(ξ(Z) ⇒ (Y ⊆ Z))

whereZ ∈ V2 is a fresh variable.

Letw = (ai)i∈N ∈ Σω, σ be aw-assignment andη ∈ (CONST(ϕ))↑. ForR ⊆ N,
let η|R ∈ (CONST(ϕ))↑ be defined asdom(η|R) = R ∩ dom(η) andη|R(i) = η(i) for
all i ∈ dom(η|R). Now we show by induction on the structure ofζ that

(code(w, η))σ |= ΦY (ζ) iff σ(Y ) ⊆ dom(η) and〈〈ζ〉〉(wσ) = η|σ(Y ). (1)

– Let ζ = Pa(x).
• Assume that(code(w, η))σ |= ΦY (ζ). Thenaσ(x) = a andσ(Y ) = ∅. Hence
〈〈ζ〉〉(wσ) = ⊤ = η|∅ and∅ = σ(Y ) ⊆ dom(η).

• Conversely, assume thatσ(Y ) ⊆ dom(η) and 〈〈ζ〉〉(wσ) = η|σ(Y ).
Then 〈〈ζ〉〉(wσ) = ⊤ which implies aσ(x) = a and σ(Y ) = ∅. Then
(code(w, η))σ |= ΦY (ζ).

– Let ζ be one of the formulasx < y, x = y andX(x).
• Assume that(code(w, η))σ |= ΦY (ζ). Then (code(w, η))σ |= ζ and
σ(Y ) = ∅. Since(code(w, η))σ |= ζ implieswσ |= ζ, we obtain〈〈ζ〉〉(wσ) =
⊤ = η|∅ and∅ = σ(Y ) ⊆ dom(η).

• Conversely, assume thatσ(Y ) ⊆ dom(η) and 〈〈ζ〉〉(wσ) = η|σ(Y ).
Then 〈〈ζ〉〉(wσ) = ⊤ which implies wσ |= ζ and σ(Y ) = ∅. Then,
(code(w, η))σ |= ζ andσ(Y ) = ∅. Hence(code(w, η))σ |= ΦY (ζ).

– Let ζ = (x 7→ m) with m ∈ CONST(ϕ) (sinceζ is a subformula ofϕ).
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• Assume that(code(w, η))σ |= ΦY (ζ). Thenσ(x) ∈ dom(η), η(σ(x)) = m
andσ(Y ) = {σ(x)}. Hence〈〈ψ〉〉(wσ) = ⊤[σ(x)/m] = η|σ(Y ) and{σ(x)} =
Y ⊆ dom(η).

• Conversely, assume that the right hand side of (1) holds true. Thenη|σ(Y ) =
⊤[σ(x)/m]. Sinceσ(Y ) ⊆ dom(η), we haveσ(Y ) = {σ(x)}. Moreover,
η(σ(x)) = m. Then the left hand side of (1) also holds true.

– Let ζ = (ζ1 ⇒ ζ2).
• Assume that the left hand side of (1) holds true. Then one of the following

cases is possible.
∗ (code(w, η))σ |= κ ∧ ΦY (ζ2). Then,(code(w, η))σ[Y/∅] |= ΦY (ζ1) and
(code(w, η))σ |= ΦY (ζ2). Then by induction hypothesis forζ1 andζ2 we
have:〈〈ζ1〉〉(wσ) = η|∅ = ⊤, σ(Y ) ⊆ dom(η) and〈〈ζ2〉〉(wσ) = η|σ(Y ).
This impliesσ(Y ) ⊆ dom(η) and 〈〈ζ〉〉(wσ) = 〈〈ζ2〉〉(wσ) = η|σ(Y ).
Hence the right hand side of (1) holds true.

∗ (code(w, η))σ |= ¬κ ∧ Y (∅). Then,(code(w, η))σ[Y/∅] 2 ΦY (ζ1) and
σ(Y ) = ∅. Then by induction hypothesis forζ1 we have〈〈η1〉〉(wσ) 6=
η|∅ = ⊤. Then∅ = σ(Y ) ⊆ dom(η) and〈〈ζ〉〉 = ⊤ = η|σ(Y ). Then the
right hand side of (1) holds true.

• Now assume that the right hand side of (1) holds true. Then oneof the following
cases is possible.
∗ 〈〈ζ1〉〉(wσ) = ⊤ = η|∅. Then by induction hypothesis forζ1 we have
(code(w, η))σ[Y/∅] |= ΦY (ζ1) and hence(code(w, η))σ |= κ. Moreover,
η|σ(Y ) = 〈〈ζ〉〉(wσ) = 〈〈ζ2〉〉(wσ) andσ(Y ) ⊆ dom(η). Then by induc-
tion hypothesis forζ2 we obtain(code(w, η))σ |= ΦY (ζ1). Then we have
(code(w, η))σ |= κ ∧ ΦY (ζ1) and hence(code(w, η))σ |= ΦY (ζ).

∗ 〈〈ζ1〉〉(wσ) 6= ⊤ = η|∅. Then by induction hypothesis forζ1 we have
(code(w, η))σ[Y/∅] 2 ΦY (ζ1) and hence(code(w, η))σ 2 κ. Moreover,
η|σ(Y ) = 〈〈ζ〉〉(wσ) = ⊤ = η|∅ andσ(Y ) ⊆ dom(η) which implies
σ(Y ) = ∅. Then(code(w, η))σ |= ¬κ∧Y (∅) and hence(code(w, η))σ |=
ΦY (ζ).

– Let ζ = ζ1 ⊓ ζ2.
• Assume that the left hand side of (1) holds. Then there exist subsetsR1, R2 ⊆
dom(w) such that:
∗ σ(Y ) = R1 ∪R2,
∗ (code(w, η))σ[Y/R1 ] |= ΦY (ζ1),
∗ (code(w, η))σ[Y/R2 ] |= ΦY (ζ2).

Then by induction hypothesis forζ1 andζ2 we have:
∗ R1 ⊆ dom(η) and〈〈ζ1〉〉(wσ) = η|R1

,
∗ R2 ⊆ dom(η) and〈〈ζ2〉〉(wσ) = η|R2

.
Thenσ(Y ) ⊆ dom(η) and, sinceη|R1

and η|R2
are compatible partialω-

words, we have〈〈ζ1 ⊓ ζ2〉〉(wσ = η|R1
⊓ η|R2

= η|σ(Y ). This shows that the
right hand side of (1) also holds true.

• Conversely, assume that the right hand side of (1) holds. Letη1 = 〈〈ζ1〉〉(wσ)
andη2 = 〈〈ζ2〉〉(wσ). Thenη|σ(Y ) = σ1 ⊓ σ2. Moreover, there existR1, R2 ⊆
dom(w) such that:
∗ R1 ∪R2 = σ(Y ),
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∗ η1 = η|R1
andη = η|R2

.
Since R1, R2 ⊆ σ(Y ) ⊆ dom(η), by induction hypothesis we
have (code(w, η))σ[Yi/Ri] |= ΦY (ζi) for i ∈ {1, 2}. Since Y2 does
not occur in ΦY (ζ1) and Y1 does not occur inΦY (ζ2), we have
code(w, η)σ[Y1/R1][Y2/R2] |= ΦY (ζi) for i ∈ {1, 2}. Then the left hand side
of (1) holds.

– Let ζ = ⊓x.ζ′ with x ∈ V1.
• Assume that(code(w, η))σ |= ΦY (ζ). Then (code(w, η))σ |= ξ(Y ). This

means that for alli ∈ dom(w) there exists a subsetRi ⊆ σ(Y ) such that
(code(w, η))σ[x/i][Y ′/Ri] |= ΦY (ζ

′). Then by induction hypothesis for all
i ∈ dom(w) we have:Ri ⊆ dom(η) and 〈〈ζ′〉〉(wσ[x/i]) = η|Ri

. Let R =
⋃

i∈dom(w)Ri. Then,(code(w, η))σ[Z/R] |= ξ(Z). Since(code(w, η))σ |=

∀Z.(ξ(Z) ⇒ (Y ⊆ Z)), we obtainσ(Y ) ⊆ R. HenceR = σ(Y ) and

〈〈ζ〉〉(wσ) =
l

i∈dom(w)

η|Ri
= η|R = η|σ(Y ).

Finally,σ(Y ) =
⋃

i∈dom(w)Ri ⊆ dom(η). This shows that the right hand side
of (1) holds true.

• Conversely, assume that the right hand side of (1) holds. Then there ex-
ists a family(Ri)i∈dom(w) of subsetsRi ⊆ dom(Y ) ⊆ dom(η) such that
⋃

i∈dom(w)Ri = σ(Y ) and, for all i ∈ dom(w), 〈〈ζ′〉〉(wσ[x/i]) = η|Ri
.

Then it is easy to see by induction hypothesis that, for alli ∈ dom(w),
(code(w, η))[x/i][Y ′/Ri] |= ΦY ′(ζ′). Then(code(w, η))σ |= ξ(Y ). It remains
to show that

(code(w, σ))σ |= ∀Z.(ξ(Z) ⇒ (Y ⊆ Z)).

Indeed, letQ ⊆ dom(w) with (code(w, η))σ[Z/Q] |= ξ(Z). Then for all
i ∈ dom(w) there exists a subsetQi ⊆ Q with (code(w, η))σ[x/i][Y ′/Qi] |=
ΦY ′(ζ′). Then by induction hypothesis for alli ∈ dom(w) we have
Qi ⊆ dom(η) and

η|Qi
= 〈〈ζ′〉〉(wσ[x/i]) = η|Ri

.

HenceQi = Ri for all i ∈ dom(w), and

σ(Y ) =
⋃

i∈dom(w)

Ri =
⋃

i∈dom(w)

Qi ⊆ Q.

– The proof forζ = ⊓X.ζ′ with X ∈ V2 is completely analogous to the proof of the
previous case. The difference is that we consider ”for allI ⊆ dom(w)” instead of
”for all i ∈ dom(w)”.

Finally, we constructΦ(ζ) fromΦY (ζ) by labelling all positions not inY by#:

Φ(ζ) = ∃Y.(ΦY (ζ) ∧ ∀x.(Y (x) ∨
∨

a∈Σ

P(a,#)(x))).

Assume that〈〈ζ〉〉(wσ) = η. Let R = dom(η) and considerσ′ = σ[Y/R]. Then
σ′(Y ) ⊆ dom(η) and 〈〈ζ〉〉(wσ) = η|σ(Y ). Then by (1) we have(code(w, η))σ′ |=
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ΦY (ζ). Moreover, for alli ∈ dom(w) \ σ′(Y ), the valueη(i) is undefined and hence
(code(w, η))σ′ |= ∀x.(Y (x)∨

∨

a∈Σ P(a,#)(x)) which implies(code(w, η))σ |= Φ(ζ).
⊓⊔

Now we continue the proof of Lemma 5.2. We apply Lemma 5.3 to the caseζ = ϕ.
Then,Φ(ϕ) is a sentence andL(Φ(ϕ)) = {code(w, η) | 〈〈ϕ〉〉(w) = η 6= ⊥}. Note
that L(Φ(ϕ)) is h-unambiguous, since for everyw ∈ Σω there exists at most one
u ∈ L(Φ(ϕ)) with h(u) = w. If we let β = Φ(ϕ), then we obtain the desired decom-
position[[ϕ]] = h((val ◦g) ∩ L(β)). Indeed, letw ∈ Σω. Then we distinguish between
the following two cases:

– 〈〈ϕ〉〉(w) = ⊥. Then [[ϕ]](w) = 0. On the other side, there exists noη
with code(w, η) ∈ L(β) and hence nou ∈ L(β) with h(u) = w. Then
h((val ◦g) ∩ L(β))(w) = 0 = [[ϕ]](w).

– 〈〈ϕ〉〉(w) ∈ M↑. Then, since the mappingg assigns the default weight1 to the
undefined positions of〈〈ϕ〉〉(w) ∈ M↑ andL(β) is h-unambiguous, we also have
h((val ◦g) ∩ L(β))(w) = [[ϕ]](w).

This finishes the proof of Lemma 5.2. HenceWAL-definability implies unambigu-
ous recognizability.

5.2 Unambiguous Case: Recognizability Implies Definability

Now we show the converse part of Theorem 5.1(a), i.e., we showthat unambiguous
recognizability impliesWAL-definability.

Lemma 5.4. Let A be an unambiguous WBA overΣ and V. Then, the quantitative
ω-language[[A]] if WAL-definable overV.

Proof. Let A = (Q, I, T, F,wt) be an unambiguous WBA overΣ andV. First, using
the standard approach, we describe runs ofA by means of MSO-formulas. For this,
we fix an enumeration(ti)1≤i≤m of T and associate with every transitionti a second-
order variableXi which keeps track of positions wheret is taken. Then, a run ofA can
be described using a formulaβ ∈ MSO(Σ) with FREE(β) = {X1, ..., Xm} which
demands that values of the variablesX1, ..., Xm form a partition of the domain of an
input word, the transitions of a run are matching, the labelsof transitions of a run are
compatible with an input word, a run starts inI and visits some state inF infinitely
often. Let1 ∈M be an arbitrary default weight. Consider theWAL(Σ,V1)-sentence

ϕ =W (∃X1...∃Xm.β)⊓
(

⊓X1...⊓Xm.[W (β) ⇒ ⊓x.
dm

i=1Xi(x) ⇒ (x 7→ wt(ti))]
)

.

Now we show that[[ϕ]] = [[A]]. Letw ∈ Σω. We distinguish between the following two
cases.

– RunA(w) = ∅. Then [[A]](w) = 0. On the other side,w 2 ∃X1...∃Xm.β
which implies〈〈W (∃X1...∃Xm.β)〉〉(w) = ⊥. Then 〈〈ϕ〉〉(w) = ⊥ and hence
[[ϕ]](w) = 0 = [[A]](w).
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– RunA(w) 6= ∅. Since A is unambiguous, we haveRunA(w) = {ρ}. Let
ρ = (τi)i∈N and σ be a fixedw-assignment. Then, there exists exactly one
tuple (I1, ..., Im) ∈ (2dom(w))m such thatwσ[X1/I1]...[Xm/Im] |= β. Then
〈〈W (∃X1...∃Xm.β)〉〉(w) = ⊤. Moreover,

〈〈W (β) ⇒ ⊓x.
dm

i=1Xi(x) ⇒ (x 7→ wt(ti))〉〉(wσ[X1/I1]...[Xm/Im]) = (wt(τi))i∈N

and, for all(J1, ..., Jm) ∈ (2dom(w))m with (J1, ..., Jm) 6= (I1, ..., Im), we have

〈〈W (β) ⇒ ⊓x.
dm

i=1Xi(x) ⇒ (x 7→ wt(ti))〉〉(wσ[X1/J1]...[Xm/Jm]) = ⊤.

Then〈〈ϕ〉〉(w) = (wt(τi))i∈N and hence[[ϕ]](w) = wtA(ρ) = [[A]](w).

Hence[[A]] is WAL-definable overV. ⊓⊔

5.3 Nondeterministic Case: Definability Implies Recognizability

Now we turn to the proof of Theorem 5.1(b). First we show thateWAL-definability
implies nondeterministic recognizability.

Lemma 5.5. Let1 ∈ M be a default weight andψ ∈ eWAL(Σ,V1). Then the quan-
titativeω-language[[ϕ]] is recognizable overV.

Proof. The idea of our proof is similar to the unambiguous case, i.e., via a decom-
position of theeWAL-sentenceψ. We show that there exist an extended alphabetΓ ,
renamingsh : Γ → Σ andg : Γ → M , and a sentenceβ ∈ MSO(Γ ) such that
[[ϕ]] = h((val ◦g) ∩ L(β)). Note that, as opposed to the unambiguous case, theω-
languageL(β) is not necessarilyh-unambiguous.

We may assume thatψ = ⊔x1...⊔xk.⊔X1...⊔Xl.ϕ whereϕ ∈ WAL(Σ,V1) and
x1, ..., xk,X1, ...,Xl are pairwise distinct variables.

As opposed to the unambiguous case, the extended alphabetΓ must also keep track
of the values of the variablesx1, ..., xk, X1, ..., Xl. Let V = {x1, ..., xk, X1, ..., Xl}
and∆ϕ be defined as in the unambiguous case. Then we letΓ = Σ × ∆ϕ × 2V and
defineh, g for all u = (a, b, S) ∈ Γ with a ∈ Σ, b ∈ ∆ϕ andS ⊆ V by h(u) = a and
g(u) = b if b ∈ M andg(u) = 1 otherwise. Finally we construct the MSO-sentenceβ
overΓ . The construction ofβ will be based on Lemma 5.3. LetΦ(ϕ) ∈ MSO(Σ×∆ϕ)

be the formula constructed in Lemma 5.3 forζ = ϕ. Let Φ(ϕ) ∈ MSO(Γ ) be the
formula obtained fromΦ(ϕ) by replacing every predicateP(a,b)(x) occurring inΦ(ϕ)
by the formula

∨

(P(a,b,U)(x) | U ⊆ V). Using the standard Büchi encoding technique
we construct the formulaφ ∈ MSO(Γ ) which encodes the values ofV-variables in the
2V-component of anω-word overΓ . We letφ = ∀y.(φ1 ∧ φ2) where

φ1 =
∧

x∈V∩V1

([Rx,1(y) ∧ (y = x)] ∨ [Rx,0(y) ∧ (y 6= x)]),

φ2 =
∧

X∈V∩V2

([RX,1(y) ∧X(y)] ∨ [RX,0(y) ∧ ¬X(y)])
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and, forX ∈ V andi ∈ {0, 1},RX ,i(y) denotes the formula

∨

(P(a,b,S)(y) | a ∈ Σ, b ∈ ∆ϕ andS ⊆ V with X ⊳i S)

where⊳1 = ∈ and⊳0 = /∈.
Then we letβ = ∃x1...∃xk.∃X1...∃Xl.(φ ∧ Φ(ϕ)). It remains to show that

[[ψ]] = h((val ◦g) ∩ L(β)).
Let w = (ai)i∈N ∈ Σω. For anyu = (bi)i∈N ∈ ∆ω

ϕ we will abuse notation
and write(w, u) for ((ai, bi))i∈N. Forw ∈ Σω, let Vw denote the set of all mappings
J : V → dom(w)∪2dom(w) such thatJ (V∩V1) ⊆ dom(w) andJ (V∩V2) ⊆ 2dom(w).
For aw-assignmentσ andJ ∈ Vw, let σ′ := σ[V/J ] denote thew-assignment such
thatσ′|V = J andσ′

V \V = σ|V \V . Then

h((val ◦g) ∩ L(β))(w) =
∑

(val(g(u)) | J ∈ Vw and(w, u)σ[V/J ] |= Φ(ϕ))

(!)
=

∑

J∈Vw

[[ϕ]](wσ[V/J ])

= [[ψ]](w).

Then, the quantitativeω-language[[ψ]] is recognizable overV by Theorem 3.1 (b) and
the classical Büchi theorem (which states thatL(β) is a recognizableω-language). ⊓⊔

6 Nondeterministic Case: Recognizability implies Definability

Now we show the converse direction of Theorem 5.1(b), i.e., that recognizability im-
plieseWAL-definability.

Lemma 6.1. LetA be a WBA overΣ andV. Then the quantitativeω-language[[A]] is
eWAL-definable overV.

Proof. Our proof is a slight modification of our proof of Lemma 5.4. Let
A = (Q, I, T, F,wt) be a nondeterministic WBA. Adopting the notations from the
proof of Lemma 5.1, we construct theeWAL(Σ,V1)-sentence

ψ = ⊔X1...⊔Xm.
(

W (β) ⇒ ⊓x.
dm

i=1Xi(x) ⇒ (x 7→ wt(ti))
)

.

(where1 is irrelevant for the definition ofψ). Now we show that[[ϕ]] = [[A]]. Let
w ∈ Σω. Then, using the correspondence between the values ofX1, ..., Xm and the
runs inRunA(w), we obtain

[[ψ]](w) =
∑

ρ=(τi)i∈N∈RunA(w)

val(wt(τi)) =
∑

ρ∈RunA(w)

wtA(ρ) = [[A]](w).

This shows that[[ψ]] is eWAL-definable overV. ⊓⊔
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7 Discussion

In this paper we introduced a weight assignment logic which is a simple and intuitive
logical formalism for reasoning about quantitativeω-languages. Moreover, it works
with arbitrary valuation functions whereas in weighted logics of [12], [14] some ad-
ditional restrictions on valuation functions were added. We showed that WAL is ex-
pressively equivalent to unambiguous weighted Büchi automata. We also considered an
extension of WAL which is equivalent to nondeterministic B¨uchi automata. Our expres-
siveness equivalence results can be helpful to obtain decidability properties for our new
logics. The future research should investigate decidability properties of nondeterminis-
tic and unambiguous weighted Büchi automata with the practically relevant objectives.
Although the weightedω-automata models [7] do not have a Büchi acceptance con-
dition, it seems likely that their decidability results about the threshold problems hold
for Büchi acceptance condition as well. It could be also interesting to study our weight
assignment technique in the context of temporal logic like LTL.

Our results obtained forω-words can be easily adopted to the structures like finite
words and trees. We have also extended the results of this paper to the timed setting
and obtained a logical characterization ofmulti-weighted timed automata(cf., e.g.,
[5], [21]). For the proof of this result we applied a Nivat decomposition theorem for
weighted timed automata [14]. Due to space constraints we cannot present this result
here.
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