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Abstract. We introduce a weight assignment logic for reasoning aboaing

titative languages of infinite words. This logic is an exiensof the classical

MSO logic and permits to describe quantitative propertiesystems with mul-

tiple weight parameters, e.g., the ratio between rewardseasts. We show that
this logic is expressively equivalent to unambiguous wigidBuchi automata.
We also consider an extension of weight assignment logiclwisi expressively
equivalent to nondeterministic weighted Biichi automata.
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1 Introduction

Since the seminal Biichi theoreim [6] about the expressiugalgnce of finite automata
and monadic second-order logic, a significant field of redeswvestigates logical char-
acterizations of language classes appearing from prilgtietevant automata models.
In this paper we introduce a new approach to the logical cbaraation of quantita-
tive languages of infinite words where every infinite wordriesr a value, e.g., a real
number.

Quantitative languages of infinite words and various weidrdutomata for them
were investigated by Chatterjee, Doyen and Henzingerlirag7/inodels for verifica-
tion of quantitative properties of systems. Their weighdetbmata are automata with
a single weight parameter where a computation is evaluated uneasures like the
limit average or discounted sum. Recently, the problem afyeis and verification of
systems with multiple weight parameters, e.g. time, castisenergy consumption, has
received much attention in the literature [2] 3| 5 [17,[1§, Edr instance, the setting
where a computation is evaluated as the ratio between adateduewards and costs
was considered in_[3,/ %5, 18]. Another example is a model ofgghautomata with
several energy storages [17].

Related work. Droste and Gastin_[9] introduced weighted MSO logic on finite
words with constants from a semiring. In the semantics af thgic (which is a quan-
titative language of finite words) disjunction is extendedtibe sum operation of the
semiring and conjunction is extended by the product. Theyvsthat weighted MSO
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logic is more expressive than weighted automata [10] (thestricted use of weighted
conjunction and weighted universal quantifiers leads tecwognizability) and provide a
syntactically restricted fragment which is expressivejyigalent to weighted automata.
This result was extended in [15] to the setting of infinite @srA logical characteri-
zation of the quantitative languages of Chatterjee, DoyghHenzinger was given in
[12] (again by a restricted fragment of weighted MSO logiin)[14], a multi-weighted
extension of weighted MSO logic df [12] with the multisetsed semantics was con-
sidered.

Our contributions. In this paper, we introduce a new approach to logic for quznti
tive languages, different frornl[9, 12,114 /15]. We develop-@alledweight assignment
logic (WAL) on infinite words, an extension of the classical MSOito the quanti-
tative setting. This logic allows us to assign weights (oftirueights) to positions of
anw-word. Using WAL, we can, for instance, express that whenavgosition of an
input word is labelled by letted, then the weight of this position & As a weighted
extension of the logical conjunction, we use thergingof partially definedv-words.
In order to evaluate a partially definedword, we introduce aefault weightassign it
to all positions with undefined weight, and evaluate theiobtatotally defined,-word,
e.g., as the reward-cost ratio or discounted sum.

As opposed to the weighted MSO logic of [9], the weighted aanfion-like op-
erators of WAL capture recognizability by weighted Blichi@mata. We show that
WAL is expressively equivalent tanambiguousveighted Biichi automata where, for
every inputw-word, there exists at most one accepting computation. Wiguous au-
tomata are of considerable interest for automata theorfi@sdan have better decid-
ability properties. For instance, in the setting of finiterd® the equivalence problem
for unambiguous max-plus automata is decidable [19] wiserea nondeterministic
max-plus automata, this problem is undecidablé [20].

We also consider an extended version of WAL which capturesleterministic
weighted Buchi automata. In extended WAL we allow exig@mjuantification over
first-order and second-order variables in the prefix of a fdanThe structure of ex-
tended WAL is similar to the structure of unweighted logios £.g., timed automata
[25] and data automatal[4].

For the proof of our expressiveness equivalence result, stabksh a Nivat de-
composition theorem for nondeterministic and unambigueeighted Biichi automata.
Recall that Nivat's theorem [22] is one of the fundamentareleterizations of rational
transductions and shows a connection between rationaduations and rational lan-
guage. Recently, Nivat's theorem was proved for semirimggivted automata on finite
words [11] and weighted multioperator tree automata [243. &utain similar decom-
positions for WAL and extended WAL and deduce our resultmftbe classical Biichi
theorem|[6]. Our proof is constructive and hence decidaghilioperties for WAL and
extended WAL can be transferred into decidability progsrof weighted Buchi au-
tomata. As a side application of our Nivat theorem, we cailyesisow that weighted
Buichi automata and weighted Muller automata are exprelysdquivalent.

Outline. In Sect[2 we introduce a general framework for weightediBaatomata
and consider several examples. In SEtt. 3 we prove a Nivamgeasition theorem
for weighted Bichi automata. In Sect. 4 we define weightgassent logic and its



extension. In Secf]5 we state our main result and give alskadtits proof for the
unambiguous and nondeterministic cases.

2 Weighted Bichi Automata

Let N = {0,1,...} denote the set of all natural numbers. For an arbitrarnyX5en
w-word over X is an infinite sequencer;);cn Wherez; € X forall i € N. Let X¥
denote the set of alb-words overX . Any setl C X¢ is called anv-languageover X.

A Buchi automatorover an alphabet’ is a tupleA = (Q,I,T,F) where@
is a finite set of statesY' is an alphabet (i.e. a finite non-empty sef)F C @
are sets of initial resp. accepting states, &hdC @ x X x @Q is a transition re-
lation. Arun p = (¢;);en € T¥ of A is defined as an infinite sequence of match-
ing transitions which starts in an initial state and visitsng accepting state in-
finitely often, i.e.,t; = (¢, a;,q+1) for eachi € N, such thatqy € I and
{q € Q| ¢ = ¢; forinfinitely manyi € N} N F' # (. Let label(p) := (a;)ien € X%,
the label of p. We denote byRun 4 the set of all runs of4 and, for eachv € X¥,
we denote byRun 4(w) the set of all rung of A with label(p) = w. Let L(A) =
{w € X*| Runy(w) # 0}, the w-languageacceptedby A. We call anw-language
L C X% recognizabléf there exists a Biichi automatotiover X' such thatZ(A) = L.

We say that a monoitf = (K, +, 0) is complete(ct., e.g., [15]) if it is equipped
with infinitary sum operation§", : K/ — K for any index sef/, such that, for all
and all families(k;);c of elements ofs, the following hold:

= Dico ki =0, Zie{j} ki = k; Zie{p,q} ki =kp + kg forp # q;
= 2jer(Cier; ki) = Yier ki it Ujes I = Tandl; 0 Iy = O for j # j"

Let R = R U {—o0,00}. Then,R equipped with infinitary operations likafinum
or supremunforms a complete monoid. Now we introduce an algebraic siredor
weighted Buchi automata which is an extension of totalljnptete semirings [15] and
valuation monoids [12] and covers various multi-weighteshsures.

Definition 2.1. A valuation structur& = (M, K, val) consists of a non-empty s&f,
a complete monoitt = (K, +,0) and a mappingal : M — K called henceforth a
valuation function

In the definition of a valuation structure we have two weigbinains) and K.
Here M is the set of transition weights which in the multi-weighesdmples can be
tuples of weights (e.g., a reward-cost pair) dtids the set of weights of computations
which can be single values (e.qg., the ratio between rewardsasts).

Definition 2.2. Let X' be an alphabet an = (M, (K, +,0), val) a valuation struc-
ture. Aweighted Biichi automatafwBA) overV is a tupleA = (Q, I, T, F, wt) where
(Q,I,T,F) is a Buchi automaton ovet’ andwt : T — M is a transition weight
function.



The behavior of WBA is defined as follows. Given a rumf this automaton, we
evaluate thev-sequence of transition weights pf(which is in A/’) using the valua-
tion functionval and then resolve the nondeterminism on the weights of rung tise
complete monoidk. Formally, letp = (¢;)ien € T* be a run ofA. Then, theweight
of p is defined asvt 4(p) = val((wt(t;)):en) € K. Thebehaviorof A is a mapping
[A] : ¥¥ — K defined for allw € X* by [A](w) = >_(wta(p) | p € Runa(w)).
Note that the sum in the equation above can be infinite. Thexefe consider a com-
plete monoid K, +, 0). A mappingL : X* — K is called aguantitativew-language
We say that_ is (nondeterministicallyjecognizableoverV if there exists a WBAA
overV such thaf A] = L.

We say that a WBAA over X andV is unambiguousf | Run 4(w)| < 1 for every
w € X¥. We call a quantitativer-languagd. : ¥ — K unambiguously recognizable
overV if there exists an unambiguous WBA over X' andV such thafA] = L.

Example 2.3.(a) The ratio measure was introduced ih [5], e.g., for theeling of the
average costs in timed systems. In the setting-ofords, we consider the model
with two weight parameters: thewstand thereward The rewards and costs of tran-
sitions are accumulated along every finite prefix of a run &ed tratio is taken.
Then, the weight of an infinite run is defined as the limit sigrefor limit in-
ferior) of the sequence of the computed ratios for all finitefiges. To describe
the behavior of these double-priced ratio Buchi automataconsider the valu-
ation structuréV®Am° = (M, K, val) where M = Q x Q> models the reward-
cost pairskK = (R,sup, —oo) andval : M“ — R is defined for every sequence
u = ((ri,¢i))ien € M* by val(u) = limsup,,_,,, St=+=. Here, we assume
that§ = —oo.

(b) Discounting[1] [7] is a well-known principle which is used in, e.g., ecamos
and psychology. In this example, we consider WBA with traosidependent
discounting, i.e., are two weight parameters: the cost aeddiscounting fac-
tor (which is not fixed and depends on a transition). In oradedé¢fine WBA
with discounting formally, we consider the valuation staue VP'S¢ = (M, K, val)
whereM = Q>0 x ((0,1] N Q) models the pairs of a cost and a discounting factor,
K = (R>p U {o0}, inf, 00), andval is defined for allu = ((¢;,d;))ien € M“ as
val(u) = co+ Yoy Ci - H;;E dj.

(c) Now we consider the valuation structure for the model aftrweighted automata
which correspond to one-player energy games with lower doaonsidered ir [17].
Letn > 1 andsy,...,s, be energy storages. We start with empty storages and,
after taking a transition of a Blichi automaton, the eneeygll of each storage;

(1 < j < n) can be increased (if we regain energy) or decreased (if weurne
energy). The goal is to keep the energy level of every endaypge not less than
zero. Consider the sequence= (u;),en Where, for ali € N, u; = (ul, ..., ul) €
Z™ is the vector of the energy level changes for each storagesaiehatu is
correctif >, _,ul > Oforalli € Nandj € {1,...,n}. For this situation we
consider the valuation structubéeReY = (M, K, val) where M = 7", K =
({0,1},v,0) and, for allu € M*, we letval(u) = 1if u is correct andral(u) = 0
otherwise.



(d) Since a valuation monoidK, (K, +,0), val) of Droste and Meinecke [12] is a
special case of valuation structures, all examples coresidibere also fit into our
framework. O

3 Decomposition of WBA

In this section, we establish a Nivat decomposition thedi@mWVBA. We will need it
for the proof of our main result. However, it also could berafépendent interest.

Let X' be an alphabet andl = (M, (K, +,0),val) a valuation structure. For a
(possibly different from") alphabet”, we introduce the following operations. Latbe
an arbitrary non-empty setand I" — A a mapping called henceforthenaming For
anyw-wordu = (7v;)ien € I', we leth(u) = (h(7i))ien € AY. Now leth : ' — X
be a renaming antl : ' — K a quantitativev-language. We define threnaming
h(L): X¥ - K forallw € 2% by h(L)(w) = 3 (L(u) | u € I'* andh(u) = w).
For a renamingy : I' — M, the compositionvalog : I'* — K is defined for all
u € I' by (valog)(u) = val(g(u)). Given a quantitative-languagd. : I'Y — K
and anw-languageC C ', the intersectiofi N £ : I'Y — K is defined for allu € £
as(LN L)(u) = L(u) and forallu € '\ L as(L N £L)(u) = 0. Given a renaming
h:I' — X, we say that an-languageC C ' is h-unambiguoud for all w € X¥
there exists at most onec £ such that(u) = w.

Our Nivat decomposition theorem for WBA is the following.

Theorem 3.1. Let X be an alphabety = (M, (K, +,0), val) a valuation structure,
andl : ¥ — K a quantitativev-language. Then

(a) L is unambiguously recognizable oveiiff there exist an alphabel’, renamings
h:I'— XY andg: I' - M, and a recognizable and-unambiguous,-language
L C I'Y such thatll = h((valog) N L).

(b) L is nondeterministically recognizable ovkiiff there exist an alphabdt, renam-
ingsh : I' — X andg : I' — M, and a recognizable-languagel C I'“ such
thatl = h((valog) N L).

3.1 Proofof Theoren(3.1
We start with part (b) of Theorem 3.1.

Lemma 3.2. Let. A be a WBA ovel’ andV. Then there exist an alphabEt renaming
h:I — XYandg : I' — M, and a recognizables-languagel C I'“ such that
[A] = h((valog) N L).

Proof. The idea is as in [11] to take the set of transitions as thenebete alphabef’.
Then,h maps every transition to its label agdmaps every transition to its weight.
Then, if in the underlying unweighted Biichi automaton weeleevery transition with
itself, then we obtain the Blichi automaton accepiing

Formally, letA = (Q,I,T, F,wt). We may assume w.l.o.g. th@t # (.We let
I'=Tandh : I' — X be defined for alt = (p,a,q) € T ash(t) = a, and



let g : T — M be defined for allt € T asg(t) = wt(t). We also definel by
L={p=(ti)ien | pisarunofA}.

First we show thatl is recognizable. Indeed, consider the Buchi automaton
A =(Q,I1,T',F) over I whereT' = {(p,(p,a,q9),q) | (p,a,q) € T}. Then
L(A") = £ and hence is recognizable. Finally we show thgd] = h((val® og)NL).
Letw € X“. Then

Ml og) N L)) = 3 val(g) = S wha(p) = [Al(w).
u€L, pERunN 4 (w)
h(u)=w

Now we turn to the implicatior=.

Lemma 3.3. Let I" be an alphabeth : I' —+ Y andg : I’ — M renamings, and
L C I'¥ arecognizables-language. Then, the quantitativelanguageh((val og) N L)
is recognizable ovey.

Proof. Since Biichi automata are not determinizable, the mostestgihg part in the
proof is to show that recognizability of quantitativelanguages is stable under inter-
section with recognizable-languages. Here we apply the result of [8] that recogniabl
w-languages are recognizable by unambiguous Buchi automat

Let A be an unambiguous Buchi automaton oyewith £(A) = L. If we asso-
ciate with every transitiorip, v, ¢) of A the weightg(y) € M, then we obtain the
WBA B over " andV with [B] = (valog) N L. It remains to show that recognizable
quantitativew-languages are closed under renaming. For this, we applgahstruc-
tion of Droste and Voglei [16]. LeB = (Q, I, T, F, wt). Then we construct the WBA
C=(Q,I' T, F' wt')overX andV defined as follows:

- Q' =QxII'=1x{y}forsomefixedyy € I', I = F x I}
— T’ consists of all transitions = ((p,7),a, (»’,7')) € @ x X x @' such that
(p,~',p") € T andh(y') = a. For such a transitiot) we letwt' (t) = wt(p, 7', p’).

Thenh([B]) = [C]. Hence the guantitative-languagé:((val og) N £) is recognizable
overv, ad

Then Theorern 3]11(b) follows immediately from Lemrhag 3.2Ru&d

The proof of Theorem 3l1(a) relies on the same constructere proof of Theo-
rem3.1(b). Note that in the proof of Lemial3.2 4fis unambiguous, the-language
L is h-unambiguous. Note also that the WBAIn the proof of Lemm&3]3 is unam-
biguous but, in generaf; is not. Howeverh-unambiguity ofC guarantees that is
unambiguous.

3.2 Weighted Muller Automata

As a first application of Theoren 3.1 we show that WBA are esgikely equivalent to
weighted Muller automatahich are defined as WBA with the difference that a set of
accepting state8' C Q is replaced by a seF C 29 of sets of accepting states. Then,
for an accepting rup, the set of all states, which are visitedgrinfinitely often, must

be inF.



Theorem 3.4. Let X' be an alphabety = (M, (K, +,0),val) a valuation structure
andlL : X¥ — K a quantitativev-language. Theifi. = [A] for some WBAA over X
andV iff L = [A] for some weighted Muller automatoti over X andV.

Theoren{ 3} extends the result 6f [15] for totally completenisings. Whereas
the proof of [15] was given by direct non-trivial automatartsformation, our proof
is based on the fact that weighted Muller automata permiséme decomposition as
stated in Theorefn 3.1 for WBA. The constructions for thisscae much the same as
the constructions of Theordm 8.1(b). We only have to replace Q by F C 2% in the
proofs and slightly modify the constructions of Lemima 3.3.

— Itis well known that Muller automata are determinizableefihfor the construction
of the weighted Muller automaton fdralog) N £ we use the fact that Muller
and Buchi automata are expressively equivalent and taketexrdinistic Muller
automaton recognizing.

— In the definition ofC in the proof of Lemmd_313 we replac€’ by the Muller
acceptance conditio®” which consists of all set$(q1,v1), .-, (qx, %)} € Q'
suchthaf{qy, ..., gz} € F (a similar idea was used in [12]).

4 Weight Assignment Logic

4.1 Partial w-words

Before we give a definition of the syntax and semantics of ewr logic, we introduce
some auxiliary notions about partiatwords. LetX be an arbitrary non-empty set.
A partial w-word over X is a partial mapping: : N --» X, ie,u : U — X for
someU C N. Letdom(u) = U, thedomainof . We denote byX T the set of all
partial w-words overX. Clearly, X« C XT. A trivial w-word T € XT is the partial
w-word with dom(T) = . Foru € X', i € Nandx € X, theupdateu[i/z] € X'
is defined aslom(u[i/z]) = dom(u) U {i}, u[i/z](i) = x andu[i/z](i') = u(i)
for all ¢/ € dom(u) \ {i}. Let® = (u;),cs be an arbitrary family of partiab-words
u; € X' whereJ is an arbitrary index set. We say thatis compatibleif, for all
J.j’ € Jandi € dom(u;) N dom(u; ), we haveu,;(i) = u; (7). If 6 is compatible,
then we define thenergingu := ([, ; u;) € X1 asdom(u) = Uje s dom(u;) and,
for all ¢ € dom(u), u(i) = u;(i) wheneveri € dom(u;) for somej € J. Let§ =
{u;}jeq1,2y be compatible. Then, we write, 1 u. Clearly, the relatiort is reflexive
and symmetric. In the casg 1 uo, for |_|je{1,2} u; we will also use notatiom; M us.

Example 4.1Let X = {a,b} with a # bandu; = a* € X'. Letuy € X' be
the partialw-word whose domaimlom(us) is the set of all odd natural numbers and
us(i) = aforalli € dom(uz). Letug € X7 be the partialo-word such thatlom (u3)

is the set of all even natural numbers andi) = b for all i € dom(us). Thenu; T ug
andus 1 us, but—(uy T usz). This shows in particular that the relatidiis not transitive

if X is not a singleton set. Then; Muy = a* andus Mug = (ba)v.



4.2 WAL: Syntax and Semantics

Let V1 be a countable set dirst-order variablesand V, a countable set afecond-
order variablessuch thatl; NV, = (). LetV = V; U Vs. Let X be an alphabet and

VY = (M, (K, +,0),val) a valuation structure. We also consider a designated elemen
1 € M which we call thedefault weight We denote the paifV, 1) by V;. The set
WAL(XY,V,) of formulas ofweight assignment logiever X' andV; is given by the
grammar

o u= Po(z)[z=y| o<y|X(@)|[z—=m|o=¢|[pNe|[Nz.e|NX.p

wherea € X, z,y € V1, X € Vo andm € M. Such a formula is called aweight
assignment formula

Let o € WAL(X,V,). We denote by ONST(p) C M the set of all weights
m € M occurring ing. The set REE(¢) C V' of free variablesof ¢ is defined to be
the set of all variableg” € V which appear inp and are not bound by any quantifier
MNX. We say that is asentencéf FREE(p) = 0.

Note that the merging as defined before is a partially defirpatadion, i.e., it is
defined only for compatible families of partiatwords. In order to extend it to a totally
defined operation, we fix an element¢ MT which will mean the undefined value.
Let MT = MT U {L}. Then, for any familyy = (u;);c; with u; € M, such that
eitherd € (M™)” is not compatible 08 € (M )7\ (M™)7, we let[ e, uj = L.

For anyw-wordw € X, aw-assignmeris a mapping : V — dom(w)uU23°m )
mapping first-order variables to elementslinn(w) and second-order variables to sub-
sets ofdom(w). For a first-order variable and a positioni € N, the w-assignment
oz /i] is defined oV \ {«} aso, and we letr[x/i](xz) = i. For a second-order vari-
able X and a subsef C N, thew-assignment[X/I] is defined similarly. Lets
denote the set of all pairfgv, o) wherew € X ando is aw-assignment. We will
denote such pair@v, o) by w,.

The semantics oWAL-formulas is defined in two steps: by means of the auxil-
iary and proper semantics. Let € WAL(X, V;). The auxiliary semanticof ¢ is
the mapping((¢) : % — M| defined for allw, € X¥ with w = (a;)ien as
shown in Tabld1l. Note that the definition @f.)) does not employ andval. The
proper semantic§y] : Xy — K operates on the auxiliary semanti¢g)) as follows.
Letw, € X¥. If {(p)(w,) € MT, then we assign the default weight to all undefined
positions indom({¢)) (w,)) and evaluate the obtained sequence usiiigOtherwise,
if (p)(ws) =L, we put[e](w,) = 0. Note thatifp € WAL(X, V) is a sentence,
then the value§y)) (w, ) and[¢] (w, ) do not depend os and we consider the auxiliary
semantics of» as the mappingy)) : X* — MI and the proper semantics gfas the
quantitativev-languagdy] : X — K. Note that+ was not needed for the semantics
of WA L-formulas. This operation will be needed in the next seclirrthe extension
of WAL. We say that a quantitative-languagd. : ¥ — K is WAL-definableover
V if there exist a default weight € M and a sentencg € WAL(X, V;) such that

[e] = L.

Example 4.2.Consider a valuation structufe = (M, (K,+,0),val) and a default
weight1 € M. Consider an alphabeét = {a,b, ...} of actions. We assume that the
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Table 1. The auxiliary semantics &&WA L-formulas

cost ofa is c(a) € M, the cost ofb is ¢(b) € M, and the costs of all other actions
x in X are equal tax(z) = 1 (which can mean, e.g., that these actions do not invoke
any costs). Then every-word w induces thev-word of costs. We want to construct

a sentence of our WAL which for every such arword will evaluate its sequence of
costs usingral. The desired sentengee WAL(X,V,) is

o =Nz.([Pa(z) = (. — c(a)] N [Py(z) = (z — ¢(b))]).

Then, for everyw = (a;)ien € X¥, the auxiliary semantic§y)) (w) is the partiako-
word overM where all positiong € N with a; = « are labelled by:(a), all positions
with a; = b are labelled by:(b), and the labels of all other positions are undefined.
Then, the proper semantifg] (w) assignsl to all positions with undefined labels and
evaluates it by means ofl.

4.3 WAL: Relation to MSO Logic

Let ¥ be an alphabet. We consider monadic second-order 80O (Y) over w-
words to be the set of formulas

¢ = Poa) |z=yle<y|X(@)|oAp|-p|Vrp|VX.p

wherea € X, z,y € Vi andX € Va. Forw, € X, the satisfaction relation,, |= ¢ is
defined as usual. The usual formulas of the farmv o, IX . With X € V', o1 = o
andy; < o can be expressed usiddSO-formulas.

For any formulap € MSO(X), let W(y) denote theWAL-formula obtained
from ¢ by replacingA by M, VX (with X € V) by nX, and every subformula
—p by ¢ = false. Here false can be considered as abbreviation of the sentence
Nz.(z < ). Note thatiV (¢) does not contain any assignment formutas> m and
(W(e))(ws) € {T, L} for everyw, € X. Moreover, it can be easily shown by
induction on the structure of that, for allw, € X¢: wo = ¢ iff (W(p))(ws) = T.
This shows that MSO logic on infinite words is subsumedA L. For the formulas
which do not contain any assignments of the farm» m, the merging1 can be con-
sidered as the usual conjunction and the merging quantifi¢ras the usual universal



[Uz.¢](we) =3 ([e)(wolays) | i € dom(w))
[LX. @l (we) = 3 ([e)(wox/n) | I S dom(w))
Table 2. The semantics ¢ WA L-formulas

guantifiers7X’. Moreover,T corresponds to the boolean true value and the boolean
false value.
For aWAL-formulay, we will consider-¢ as abbreviation fop = false.

4.4 Extended WAL

Here we extendVAL with weighted existential quantification over free varebin
WAL-formulas. LetY be an alphabety = (M, (K, +,0), val) a valuation structure
andl € M adefault weight. The sefWAL(X, V) of formulas ofextended weight as-
signment logioverY andV; consists of all formulas of the formX} . ... LX}.o where
k>0,X,..,X € Vandp € WAL(X,V;). Given a formulap € eWAL(X,V,),
the semanticf ¢ is the mappindy] : Xy — K defined inductively as follows. If
v € WAL(X,V,;), then[y] is defined as the proper semantics WA L. If ¢ con-
tains a prefixdz with € Vi or LUX with X € V5, then, for allw, € X, [¢](w,) is
defined inductively as shown in Talble 2. Againgifs a sentence, then we can consider
its semantics as the quantitativdanguagdy] : X — K. We say that a quantitative
w-languagd. : X — K iseWAL-recognizableoverV if there exist a default weight
1 € M and a sentencg € eWAL(X, V;) such thafy] = L.

Example 4.3.Let X = {a} be a singleton alphabeét, = VP's¢ as defined in Example
[2.3(b). Assume that, for every position of aAaword, we can either assign to this po-
sition the cosb and the discounting factor5 or we assign the cost the smaller cst
and the bigger discounting fact@r75. After that we compute the discounted sum using
the valuation function o¥°'S¢. We are interested in the infimal value of this discounted
sum. We can express it by means of é(&A L-formula

o =UX.MNz.([X(z) = (z — (5,0.5)] N [(-X(z)) = (z — (2,0.75))])

i.e.[¢](a”) is the desired infimal value.

5 Expressiveness Equivalence Result

In this section we state and prove the main result of this pape

Theorem 5.1. Let X' be an alphabety = (M, (K, +,0),val) a valuation structure
andl : ¥ — K a quantitativev-language. Then

(a) L is WAL-definable oveV iff L is unambiguously recognizable oveér
(b) L iseWAL-definable oveV iff L is recognizable ovey.
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5.1 Unambiguous Case: Definability Implies Recognizabilit

In this subsection, we prove part (a) of Theoken 5.1. Firsshh@vWA L-definability
implies unambiguous recognizability. We establish a dgmusition of WA L-formulas

in a similar manner as it was done for unambiguous WBA in TesbB.1 (a), i.e., we
separate weighted part WAL from its unweighted part. Then applying the classical
Biichi theorem and our Nivat Theorém13.1(a), we obtainthiatrecognizable ovey.

Lemma5.2. Letp € WAL(X,V;) be a sentence. Then there exist an alphabet
renamingsh : I' — Y andg : I' — M, and a sentencé € MSO(I") such that

[e] = R((valog) N L(B)).

The proof of this lemma will be given in the rest of this sulit®et Let# ¢ M
be a symbol which we will use to mark all positions whose lalmke undefined in
the auxiliary semantics oWAL-formulas. LetA, = CONsT(¢) U {#}. Then our
extended alphabet will bE = ¥ x A,. We define the renamings g as follows. For
all w = (a,b) € I', we leth(u) = a, g(u) = bif b € M, andg(u) = 1if m = #.
The main difficulty is to construct the sentengeFor anyw-wordw = (a;);en € X¢
and any partialo-word, € (ConsT(y))T, we encode the paitw, n) as thew-word
code(w,n) = ((as,b;))ien € ' where, for all; € dom(n), b; = n(:) and, for all
i € N\dom(n), b; = #. In other words, we will consides-words ofI" as convolutions
of w-words overX’ with the encoding of the auxiliary semanticsyaf

The construction of} is based on the following technical lemma.

Lemma5.3. For every subformula ( of ¢, there exists a formula
P(¢) € MSO(X x A,) such thatFREE(®(¢)) = FREE(() and, for allw, € Xy
andn € (ConsT(¢))T, we have((¢))(w,) = niff (code(w,n)), | ®(C).

Note that{(¢)) (w, ) = n means in particular thdfy)) (w,) # L.

Proof. Let Y € V1, be a fresh variable which does not occurdnFirst, we define
inductively the formula®y (¢) € MSO(I") with FREE(®y (¢)) = FREE(() U {Y}
which describes the connection between the inpuord w and the output partiab-
wordn; here the variabl®” keeps track of the domain gf

— For¢ = P,(z), we let

Py (¢) = \/ Plap)(x) NY(0)

beA,

whereY (0) is abbreviation fo¥y.—Y (y). Here we demand that the first component
of the letter at position is a and the second component is an arbitrary letter from
A, and that the auxiliary semantics ©fs the trivial partiako-word T.

— Let ¢ be one of the formulas of the form= y, < y or X (x). Then, we let

Dy (C) = CAY (D).
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— For¢ = (z — m), we let

By (Q) = \/ Plam)(@) ANV (y) & z=1y).
acX

This formula describes that positianof n must be labelled byn and all other
positions are unlabelled.

—Let¢ = (4 = (). Let Z € V; be a fresh variable. Consider the formula
k= 3Z.[®z(¢1) A Z(0)] which checks whether the value of the auxiliary seman-
tics of (; is T. Then, we let

Dy () = (kA DPy(C2)) V (e AY(D)).
— Let{ = ¢ M (. LetYy, Ys € Vs be two fresh distinct variables. Then we let
Py (¢) = IV1.3Y2.(Py, (C1) A Py, (G2) A [Y = Y1 UY2]).

Here Y = Y; U Y, is considered as abbreviation for the MSO-formula
V(Y (y) & Y(y) V Ya(y))-

— The most interesting case is a formula of the farm MX.¢" with X € V. Here,
every value oft induces its own value of (X') and we have to merge infinitely
many partiatv-words, i.e., to express that is the infinite union oft”(X’) over all
setsX. We can show thal” must be the minimal set which satisfies the formula
EY) =vVx Y. (Py (¢") A (Y CY)) whereY’ € V; is a fresh variable. Then,
we let

Dy (() = E(Y) ANVZ.(E(Z) = (Y C 2))

whereZ € V5 is a fresh variable.

Letw = (a;)ien € X¥, o be aw-assignment ang € (ConsT(¢))T. ForR C N,
letn|r € (CONST(¢))T be defined adom(n|r) = R N dom(n) andn|g (i) = n(i) for
all i € dom(n|r). Now we show by induction on the structuredothat

(code(w,n)s = By (¢) iff oY) C dom(n) and(C)(ws) = nlory. (1)

— Let¢ = P,(x).

e Assume thatcode(w,n))s = Py (¢). Thena,,) = a ando(Y') = (). Hence
(N (we) =T = nlp andd = o(Y’) < dom(n).

e Conversely, assume that(Y) C dom(n) and (()(ws) = nlewy)-
Then (¢)(w,) = T which impliesa,,) = a ando(Y) = (. Then
(code(w,n))s = Py (C).

— Let ¢ be one of the formulas < y, z = y and X ().

e Assume that(code(w,n)), E Py (). Then (code(w,n)), E ¢ and
a(Y) = 0. Since(code(w,n)), = ¢ impliesw, = ¢, we obtain{(¢))(w,) =
T =n|p andd = o(Y") C dom(n).

e Conversely, assume that(Y) C dom(n) and (()(ws) = nlewy)-
Then (()(w,) = T which impliesw, E ¢ ando(Y) = 0. Then,
(code(w,n))s = ¢ ando(Y) = (). Hence(code(w, n))s E Py (C).

— Let¢ = (z — m) with m € CONST(yp) (since( is a subformula o).
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e Assume thatcode(w,n)), = Py (). Theno(x) € dom(n), n(o(z)) = m
ando (V) = {o(x)}. Hence(y) (wy) = To(x)/m] = nlo(y) and{o(z)} =
Y C dom(n).

e Conversely, assume that the right hand sidé bf (1) holds Thenn|, ) =
Tlo(x)/m]. Sinces(Y) C dom(n), we haves(Y) = {o(z)}. Moreover,
n(o(x)) = m. Then the left hand side dfl(1) also holds true.

— Let¢ = (C1 = ().

e Assume that the left hand side &f (1) holds true. Then one ®ffdfowing
cases is possible.

* (code(w,n))s | Kk A Py (C2). Then,(code(w,n))sv/0 F Py (¢1) and
(code(w,n))s E Py (¢2). Then by induction hypothesis fgr and(, we
have: (1) (ws) = nlg = T, o(Y) € dom(n) and () (wo) = loy).
This implieso(¥) C dom(n) and (C)(ws) = (C)(wa) = Ao
Hence the right hand side ¢fi (1) holds true.

* (code(w,n))s = —x A Y (D). Then,(code(w,n))srv g ¥ Py (1) and
o(Y) = 0. Then by induction hypothesis f@i we have({(n: ) (w,) #
nlg = T. Thend = o(Y) € dom(n) and((¢)) = T = nl,¢y). Then the
right hand side of{l1) holds true.

o Now assume that the right hand side{df (1) holds true. Thembihe following
cases is possible.

x ((1)(w,) = T = n|g. Then by induction hypothesis fa; we have
(code(w,n))s1v/0) E Py (C1) and hencécode(w,n)), = x. Moreover,
Motv) = (O)(ws) = (G2)(ws) anda(Y) C dom(n). Then by induc-
tion hypothesis fot, we obtain(code(w, n)), E Py (¢(1). Then we have
(code(w,n))s |E & A Py (¢1) and hencécode(w, n))s = Py (C).

x ((1)(w,) # T = n|g. Then by induction hypothesis fa; we have
(code(w,n))s1v/0) ¥ Py (¢1) and hencgcode(w,n)), ¥ . Moreover,
Noyy = () (ws) = T = nlp ando(Y) € dom(n) which implies
o(Y) = 0. Then(code(w, n)), E ~£AY () and hencécode(w,n)), E
Py (Q).

—Let{ =G MG.

e Assume that the left hand side 6f (1) holds. Then there eMtstetsR;, Ry C
dom(w) such that:

* O'(Y) = R U Ry,

* (code(w,m))oly/ry) F Py (1),

* (COde(wvn))U[Y/Rz] ': SI)Y(CQ)'

Then by induction hypothesis fgg and(; we have:

* Ry € dom(n) and((G1))(wo ) = n|r,,

« Ry C dom(n) and{(Co)) (we) = 1|,

Theno(Y) C dom(n) and, sincen|r, andn|r, are compatible partial-
words, we have((, M ) (ws = 1|r, MN|r, = N|s(v). This shows that the
right hand side of{1) also holds true.

e Conversely, assume that the right hand sidébf (1) holdsylLet {(¢i))(w,)
andnz = ((2))(w, ). Thenn|,yy = o1 M o2. Moreover, there exisk;, Ry C
dom(w) such that:

x* RiURy =0(Y),
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* m = 1|g, andn = n|r,.
Since Ri1,R: <€ o(Y) <C dom(n), by induction hypothesis we
have (code(w,n))s1v,/r,) FE Pv(G) for i € {1,2}. Since Y, does
not occur in $y((;) and Y; does not occur in®y({2), we have
code(w, ) o[y, /R1[v2/Rs) F Py (() fori € {1,2}. Then the left hand side
of (@) holds.
— Let¢ =nNz.¢’ withz € V7.

e Assume thatcode(w,n)), E Py (¢). Then(code(w,n)), E &(Y). This
means that for alf € dom(w) there exists a subsét; C o(Y) such that
(code(w, n))slz/qy /R E Py (¢’). Then by induction hypothesis for all
i € dom(w) we have:R; C dom(n) and (¢')(wy(z/i) = 1|r,. LEL R =
Uicdom(w) Lti- Then, (code(w,n))s(z/r  &(Z). Since(code(w,n))s =
VZ.(&(Z) = (Y C Z)), we obtaino(Y) C R. HenceR = o(Y) and

(Nwo)= [T nlr =nlr=nlor.

i€dom (w)

Finally, o (Y") = U, cdom(w) fti © dom(n). This shows that the right hand side
of (@) holds true.

e Conversely, assume that the right hand side[6f (1) holdsnThere ex-
ists a family (R;);cdom(w) Of subsetsk; C dom(Y) C dom(n) such that
Uicdom(w) fti = o(Y) and, for alli € dom(w), (¢'Wwesz/a)) = nlr,-
Then it is easy to see by induction hypothesis that, foriaf dom(w),

(code(w, )z i1y /r:) E Py (¢"). Then(code(w,n))s = £(Y). It remains
to show that
(code(w,0))r EVZ.(£(Z) = (Y C Z)).

Indeed, letQQ C dom(w) with (code(w,n)),1z/01 F &(Z). Then for all
i € dom(w) there exists a subs€; C Q with (code(w,n))s[/ iy’ /0, F
@y (¢'). Then by induction hypothesis for all € dom(w) we have
Q; € dom(n) and

77|Qi = <<<I>>(wa[m/z]) = 77|Ri'
Hence®; = R; for all i € dom(w), and
)= |J rR= |J @ce
i€dom(w) i€dom(w)

— The proof for( = MX.¢’ with X € V, is completely analogous to the proof of the
previous case. The difference is that we consider "fof all dom(w)” instead of
“for all ¢ € dom(w)”".

Finally, we construc®(¢) from @y (¢) by labelling all positions not ify” by #:

B(¢) = V(D (O AV.(Y () V \/ Plag)())).
aceX’

Assume that(¢))(w,) = n. Let R = dom(n) and consider’ = o[Y/R]. Then
o'(Y) € dom(n) and {(C))(ws) = nls(y). Then by [1) we havécode(w, 7)), =
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Py (¢). Moreover, for alli € dom(w) \ ¢’(Y), the valuen(i) is undefined and hence

(code(w, n))or = V2.(Y (2)VV e 5y Past) () which implies(code(w, 7))y |= #(C).
O

Now we continue the proof of Lemnia’b.2. We apply Lenimd 5.3 @odhsel = .
Then,®(y) is a sentence and(P(y)) = {code(w,n) | {¢)(w) = n # L}. Note
that £L(@(p)) is h-unambiguous, since for every € X there exists at most one
u € L(P(p)) with h(u) = w. If we let 3 = &(y), then we obtain the desired decom-
position[y¢] = h((valog) N L(B)). Indeed, letw € X“. Then we distinguish between
the following two cases:

- {e)(w) = L. Then [¢](w) = 0. On the other side, there exists np
with code(w,n) € L(8) and hence nax € L(3) with h(u) = w. Then
h((valog) N £(8))(w) = 0 = [¢](w).

— (@) (w) € MT. Then, since the mapping assigns the default weigtit to the
undefined positions of o)) (w) € MT and£() is h-unambiguous, we also have

h((valog) N L(B))(w) = [¢](w).

This finishes the proof of Lemnia®.2. HerdéA L-definability implies unambigu-
ous recognizability.

5.2 Unambiguous Case: Recognizability Implies Definabiljt

Now we show the converse part of Theoreml 5.1(a), i.e., we ghaivunambiguous
recognizability implieSWA L-definability.

Lemma 5.4. Let A be an unambiguous WBA ovér and V. Then, the quantitative
w-language|A] if WA L-definable ovel .

Proof. Let A = (Q, I, T, F,wt) be an unambiguous WBA over andV. First, using
the standard approach, we describe runsidfy means of MSO-formulas. For this,
we fix an enumeratio(¥; )1 <;<., of T and associate with every transitiona second-
order variableX; which keeps track of positions whefrés taken. Then, a run ofl can
be described using a formula € MSO(X) with FReg(8) = {X1,..., X;m} Which
demands that values of the variablgs, ..., X,,, form a partition of the domain of an
input word, the transitions of a run are matching, the labéksansitions of a run are
compatible with an input word, a run starts frand visits some state iR infinitely
often. Letl € M be an arbitrary default weight. Consider A L(X, Vy;)-sentence

o =W(EX;..3X,,.6)N (I‘IXl...I‘IXm.[W(B) = Nz 2, Xi(z) = (2 — wt(tl-))]).

Now we show thafy] = [A]. Letw € X*. We distinguish between the following two
cases.

— Runa(w) = 0. Then[A](w) = 0. On the other sidew ¥ 3X;..3X,,.0
which implies (W (3X;...3X,,.8))(w) = L. Then{y)(w) = L and hence

[l (w) = 0 = [A](w).
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— Rung(w) # 0. Since A is unambiguous, we havBuny(w) = {p}. Let
p = (m)ien and o be a fixedw-assignment. Then, there exists exactly one
tuple (I1,...,I,) € (2%™)™ such thatw,(x,/n,)..(x../,] FE B- Then
(W(3X:..3X,,.8)))(w) = T. Moreover,

(W(B) = Nz[12, Xi(2) = (2 = Wt(t))) (Wo xy /1]...[Xon/Tm]) = (WE(T))iend
and, for all(.Jy, ..., J,) € (2%°™@)ym with (Jy, ..., J,,) # (11, ..., I,), we have
(W(B) = Nz.[1L, Xi(z) = (z = wt(t)) (Wolx, /1), (X0 /J)) = T

Then{(p))(w) = (wt(7:))ien and hencdp](w) = wta(p) = [A](w).
Hence[A] is WAL-definable ovel. O

5.3 Nondeterministic Case: Definability Implies Recognizhility

Now we turn to the proof of Theorem %.1(b). First we show ¥ A L-definability
implies nondeterministic recognizability.

Lemma5.5. Letl € M be a default weight angg € eWAL(X, V;). Then the quan-
titative w-language]¢] is recognizable ovey.

Proof. The idea of our proof is similar to the unambiguous case, via.a decom-
position of theeWA L-sentence). We show that there exist an extended alphdhet
renamingsh : I' — Y andg : I’ — M, and a sentencé € MSO(I") such that
[¢] = h((valog) N L(B)). Note that, as opposed to the unambiguous casewthe
languageC () is not necessarilji-unambiguous.

We may assume that = Llx;...Ux,. LX;...UX;.0 wherep € WAL(X,V;) and
x1, ..., Tk, X1, ..., X @re pairwise distinct variables.

As opposed to the unambiguous case, the extended alphiabest also keep track
of the values of the variables,, ..., z, X1, ..., X;. LetV = {x1,..., 2, X1, ..., Xi }
and A, be defined as in the unambiguous case. Then wg'let ¥ x A, x 2¥ and
defineh, g forallu = (a,b,5) € I'witha € X,b € A, andS C V by h(u) = a and
g(u) =bif b € M andg(u) = 1 otherwise. Finally we construct the MSO-sentefice
overI". The construction of will be based on Lemnia3.3. Lé(y) € MSO(X x A,)
be the formula constructed in Lemmmals.3 for= ¢. Let &(¢) € MSO(I') be the
formula obtained fron®(y) by replacing every predicatg, ;) (x) occurring ind(y)
by the formula\/ (P, ;) (x) | U C V). Using the standard Buichi encoding technique
we construct the formula € MISO(I") which encodes the values Bfvariables in the
2V-component of ao-word overl”. We let¢ = Vy.(¢1 A ¢2) Where

o1=" N\ (Ren@) A (y=2)]V[Rooly) Ay # ),

zeVNVy

¢2=/\ ([Bx1() AX(®)]VI[Rxo(y) A-~X()])
Xevnvs

16



and, forX € V and: € {0,1}, Rx i(y) denotes the formula
\ (Plaps)(y) |a € £,b€ A, andS C Vwith X <; 5)

where<; = € and<y = ¢.

Then we letf = 3z;..32;.3X,..3X,.(¢ A B(p)). It remains to show that
[] = h((valog) N £(B)).

Letw = (a;)ien € X¥. For anyu = (b;)ien € Ag we will abuse notation
and write(w, u) for ((a;,b;))ien. Forw € X¥, letV,, denote the set of all mappings
J : V — dom(w)u2¢°™®) such that7(VNV;) € dom(w) andJ (VNVs) C 2dom(w),
For aw-assignment and7 € V,, leto’ := o[V/J| denote thav-assignment such
thato’|y = J andoy, ,, = oly\v. Then

h((valog) N L(B))(w) =Y (val(g(u)) | T € Vo and(w,u)spv/g] = D))
0 > el wepy,g)

= [¢](w).

Then, the quantitative-language]] is recognizable ove¥ by Theoreni 311 (b) and
the classical Buchi theorem (which states tiéf) is a recognizable-language). O

6 Nondeterministic Case: Recognizability implies Definality

Now we show the converse direction of Theofem 5.1(b), it&t tecognizability im-
plieseWA L-definability.

Lemma 6.1. Let. A be a WBA ove’ andV. Then the quantitative-language].A] is
eWAL-definable oveb.

Proof. Our proof is a slight modification of our proof of Lemnia_5.4.tLe
A= (Q,I,T, F,wt) be a nondeterministic WBA. Adopting the notations from the
proof of Lemmd®5.l, we construct teAVAL(X, V4 )-sentence

P = LIXll_IXm(W(B) = ﬂxﬂ;’lle(:v) = (:v — Wt(ti))).
(where1 is irrelevant for the definition ofy). Now we show thafy] = [A]. Let

w € X¥. Then, using the correspondence between the valugg of., X,,, and the
runs inRun 4 (w), we obtain

[¥](w) = > val(w(ri)) = > wta(p) = [A)(w).
p=(Ti)ien ERun 4 (w) pERuUn 4 (w)
This shows thafy'] is eWAL-definable oveV. O
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7 Discussion

In this paper we introduced a weight assignment logic whica simple and intuitive
logical formalism for reasoning about quantitativelanguages. Moreover, it works
with arbitrary valuation functions whereas in weightedidsgof [12], [14] some ad-
ditional restrictions on valuation functions were addea $tWowed that WAL is ex-
pressively equivalent to unambiguous weighted Buchimmata. \We also considered an
extension of WAL which is equivalent to nondeterministieddi automata. Our expres-
siveness equivalence results can be helpful to obtain deitity properties for our new
logics. The future research should investigate decidglgtoperties of nondeterminis-
tic and unambiguous weighted Biichi automata with the praléy relevant objectives.
Although the weightedv-automata models$ [7] do not have a Biichi acceptance con-
dition, it seems likely that their decidability results aibdhe threshold problems hold
for Biichi acceptance condition as well. It could be alseri@sting to study our weight
assignment technique in the context of temporal logic like.L

Our results obtained fav-words can be easily adopted to the structures like finite
words and trees. We have also extended the results of ther paphe timed setting
and obtained a logical characterizationrofilti-weighted timed automatgf., e.g.,
[5], [21]). For the proof of this result we applied a Nivat degposition theorem for
weighted timed automata [114]. Due to space constraints waatgpresent this result
here.
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