Abstract
We prove that it is NP-complete to decide whether a given string can be factored into palindromes that are each unique in the factorization.
T. Gagie and S.J. Puglisi—Supported by grants 268324, 258308 and 284598 from the Academy of Finland.
M. Piątkowski—Supported by a research fellowship within the project “Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences” (project no. POKL.04.01.01-00-081/10).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alitabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Proceedings of the Prague Stringology Conference (PSC), pp. 70–77 (2013)
Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with variables: fast algorithms and new hardness results. In: Proceedings of the 32nd Symposium on Theoretical Aspects of Computer Science (STACS), pp. 302–315 (2015)
Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for minimum palindromic factorization. Journal of Discrete Algorithms 28, 41–48 (2014)
Frid, A.E., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Advances in Applied Mathematics 50(5), 737–748 (2013)
Gawrychowski, P., Uznański, P.: Tight tradeoffs for approximating palindromes in streams. Technical Report 1410.6433, arxiv.org (2014)
I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Heidelberg (2014)
Kosolobov, D., Rubinchik, M., Shur, A.M.: Pal\(^\text{ k }\) is linear recognizable online. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 289–301. Springer, Heidelberg (2015)
Ravsky, O.: On the palindromic decomposition of binary words. Journal of Automata, Languages and Combinatorics 8(1), 75–83 (2003)
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Structures in Constructive Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 22(3), 337–343 (1977)
Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bannai, H. et al. (2015). Diverse Palindromic Factorization Is NP-complete. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-21500-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21499-3
Online ISBN: 978-3-319-21500-6
eBook Packages: Computer ScienceComputer Science (R0)