Skip to main content

Higher-Order Modal Logics: Automation and Applications

  • Chapter
  • First Online:
Reasoning Web. Web Logic Rules (Reasoning Web 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9203))

Included in the following conference series:

Abstract

These are the lecture notes of a tutorial on higher-order modal logics held at the 11th Reasoning Web Summer School. After defining the syntax and (possible worlds) semantics of some higher-order modal logics, we show that they can be embedded into classical higher-order logic by systematically lifting the types of propositions, making them depend on a new atomic type for possible worlds. This approach allows several well-established automated and interactive reasoning tools for classical higher-order logic to be applied also to modal higher-order logic problems. Moreover, also meta reasoning about the embedded modal logics becomes possible. Finally, we illustrate how our approach can be useful for reasoning with web logics and expressive ontologies, and we also sketch a possible solution for handling inconsistent data.

C. Benzmüller—This work has been supported by the German Research Foundation DFG under grants BE2501/9-1,2 and BE2501/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    thf stands for typed higher-order form and it refers to a family of syntax formats for higher-order logic. So far only the fully developed thf0 format, for simple type theory, is in practical use.

  2. 2.

    In thf0, which is a concrete syntax for HOL, $i and $o represent the HOL base types i and o (Booleans). $i>$o encodes a function (predicate) type. Predicate application, as in A(XW), is encoded as ((A@X)@W) or simply as (A@X@W), i.e., function/predicate application is represented by @; universal quantification and \(\lambda \)-abstraction as in and are represented as in

    figure a

    ; comments begin with %.

  3. 3.

    The 3480 problems for logic S4 can be download from http://christoph-benzmueller.de/papers/THF-S4-ALL.zip.

  4. 4.

    See file QML.thy available at https://github.com/FormalTheology/GoedelGod/blob/master/Formalizations/Isabelle/.

  5. 5.

    See file QML_var.thy at the github url from above.

  6. 6.

    The keyword

    figure e

    indicates a lambda abstraction:

    figure f

    (or

    figure g

    ) denotes the function \(\lambda x:t.p\), which takes an argument x (of type t) and returns p.

  7. 7.

    The underlying proof system of Coq (the Calculus of Inductive Constructions (CIC) [57]) is actually more sophisticated and minimalistic than the calculus shown in Fig. 5. But the calculus shown here suffices for the purposes of this tutorial. This calculus is classical, because of the double negation elimination rule. Although CIC is intuitionistic, it can be made classical by importing Coq’s classical library, which adds the axiom of the excluded middle and the double negation elimination lemma.

  8. 8.

    The natural deduction calculus with the rules from Figs. 5 and 6 is sound and complete relatively to the calculus of Fig. 5 extended with a necessitation rule and the modal axiom K [67]. Starting from a sound and Henkin-complete natural deduction calculus for classical higher-order logic (cf. Fig. 5), the additional modal rules in Fig. 6 make it sound and Henkin-complete for the rigid higher-order modal logic K.

  9. 9.

    More elegantly, we could employ an \(@_{cw}\)-operator; for example, (A6) would then be encoded as \(@_{cw} (likes Mary Bill)\) (see also Sect. 5.4).

  10. 10.

    Fitting [36] (pp. 83ff) actually does not use a translation to higher-order logic, where worlds become part of the syntax. But what he does, using his style of syntax (which distinguishes extensional and intensional types), is essentially analogous to the translation described here.

References

  1. Web semantics: Science, services and agents on the world wide web, special issue on reasoning with context in the semantic web, vol. 12–13, pp. 1–160 (2012)

    Google Scholar 

  2. Adams, R.M.: Introductory Note to *1970. In: Feferman, S., et al. (eds.) Kurt Gödel, Collected Works, vol. III. Oxford University Press, New York (1995)

    Google Scholar 

  3. Akman, V., Surav, M.: Steps toward formalizing context. AI Mag. 17(3), 55–72 (1996)

    Google Scholar 

  4. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning 52(2), 191–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, A.C., Gettings, M.: Gödel’s ontological proof revisited. In: Hájek, P. (ed.) Gödel ’96: Logical foundations of mathematics, computer science and physics. Lecture Notes in Logic, vol. 6, pp. 167–172. Springer, Berlin (1996)

    Chapter  Google Scholar 

  6. Andrews, P.B.: General models and extensionality. J. Symb. Logic 37(2), 395–397 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andrews, P.B.: Church’s type theory. In: Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy. Spring 2014 edition, 2014

    Google Scholar 

  8. Andrews, P.B., Miller, D.A.: Eve Longini Cohen, and Frank Pfenning. Automating higher-order logic. In: Bledsoe, W.W., Loveland, D.W., et al., Automated Theorem Proving: After 25 Years, vol. 29 of Contemporary Mathematics series, pp. 169–192. American Mathematical Society (1984)

    Google Scholar 

  9. Andrews, P.B., Bishop, M.: On sets, types, fixed points, and checkerboards. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, D. (eds.) Theorem Proving with Analytic Tableaux and Related Methods. LNCS, vol. 1071, pp. 1–15. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Marcos, J.: Modality and paraconsistency. The Logica Yearbook, pp. 213–222 (2005)

    Google Scholar 

  11. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  12. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for higher-order logic. In: Proceedings of IJCAR 2008, number 5195 in LNAI, pp. 162–170. Springer, Berlin (2008)

    Google Scholar 

  13. Benzmüller, C., Woltzenlogel Paleo, B.: Formalization, Mechanization and Automation of Gödel’s Proof of God’s Existence. arXiv: 1308.4526 (2013)

  14. Benzmüller, C.: Verifying the modal logic cube is an easy task (for higher-order automated reasoners). In: Siegler, S., Wasser, N. (eds.) Walther Festschrift. LNCS, vol. 6463, pp. 117–128. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Benzmüller, C., Brown, C.: The curious inference of Boolos in MIZAR and OMEGA. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof - Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar, and Rhetoric, vol. 10(23), pp. 299–388. The University of Bialystok, Polen (2007)

    Google Scholar 

  16. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb. Logic 69(4), 1027–1088 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P. (eds.), ECAI 2012, Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 163–168. IOS Press, Montpellier (2012)

    Google Scholar 

  18. Benzmüller, C., Woltzenlogel Paleo, B.: Gödel’s God in Isabelle/HOL. Arch. Formal Proofs, 2013 (2013)

    Google Scholar 

  19. Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: Schaub, T., Friedrich, G., O’Sullivan, B., (eds.), ECAI 2014, Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 93–98, IOS Press (2014)

    Google Scholar 

  20. Benzmüller, C., Paulson, L.: Exploring properties of normal multimodal logics in simple type theory with LEO-II. In: Benzmüller, C., Brown, C., Siekmann, J., Statman, R. (eds.), Reasoning in Simple Type Theory – Festschrift in Honor of Peter B. Andrews on His 70th Birthday, Studies in Logic, Mathematical Logic and Foundations, pp. 386–406, College Publications (2008)

    Google Scholar 

  21. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logic Univers. (Spec. Issue Multimodal Logics) 7(1), 7–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Benzmüller, C., Pease, A.: Higher-order aspects and context in SUMO. J. Web Seman. (Spec. Issue Reasoning with context in the Semant. Web) 12–13, 104–117 (2012)

    Google Scholar 

  23. Benzmüller, Christoph, Raths, Thomas: HOL based first-order modal logic provers. In: McMillan, Ken, Middeldorp, Aart, Voronkov, Andrei (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 127–136. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of the Anderson-Hájek ontological controversy. In: Silvestre, R.S., Béziau, J.-Y. (eds.), Handbook of the 1st World Congress on Logic and Religion, Joao Pessoa, Brasil (2015)

    Google Scholar 

  25. Beziau, J.Y., Carnielli, W., Gabbay, D.: Handbook of Paraconsistency. College Publications, London (2007)

    MATH  Google Scholar 

  26. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., New York (2006)

    Google Scholar 

  27. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. J. Autom. Reasoning 51(1), 109–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Blanchette, Jasmin Christian, Nipkow, Tobias: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, Matt, Paulson, Lawrence C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Boolos, G.: A curious inference. J. Philos. Logic 16, 1–12 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Brown, C.E.: Satallax: An automated higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Bucav, S., Buvac, V., Mason, I.A.: Metamathematics of contexts. Fundamenta Informaticae 23(3), 263–301 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning 49(3), 363–408 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Corazzon, R.: Contemporary bibliography on ontological arguments. http://www.ontology.co/biblio/ontological-proof-contemporary-biblio.htm

  34. da Costa, N.C.A., Alves, E.H.: Semantical analysis of the calculi cn. Notre Dame J. Formal Logic 18(4), 621–630 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dunn, J.M., Restall, G.: Relevance logic. Handbook of Philosophical Logic 6, 1–136 (2002)

    Article  Google Scholar 

  36. Fitting, M.: Types, Tableaux and Gödel’s God, Kluwer (2002)

    Google Scholar 

  37. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthese Library. Kluwer, Netherlands (1998)

    Book  MATH  Google Scholar 

  38. Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  39. Gallin, D.: Intensional and Higher-Order Modal Logic. North Holland, New York (1975)

    MATH  Google Scholar 

  40. Giunchiglia, F.: Contextual reasoning. Epistemologia (Special Issue on Languages and Machines) 16, 345–364 (1993)

    Google Scholar 

  41. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without modal logics. Artif. Intell. 65(1), 29–70 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gödel, K.: Collected Works, Unpublished Essays and Letters. Ontological Proof, pp. 65–85. Oxford University Press, Oxford (1970)

    Google Scholar 

  43. Gödel, K.: Appx.A: Notes in Kurt Gödel’s Hand. In: [70], pp. 144–145 (2004)

    Google Scholar 

  44. Guha, R.V.: Context: A Formalization and Some Applications. Ph.D. thesis, Stanford University (1991)

    Google Scholar 

  45. Henkin, L.: Completeness in the theory of types. J. Symb. Logic 15(2), 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jaśkowski, S.: Rachunek zdań dla systemów dedukcyjnych sprzecznych. Stud. Soc. Scientiarun Torunesis 1(5), 55–77 (1948)

    Google Scholar 

  47. Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Stud. Logica. 24, 143–157 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kaliszyk, C., Urban, J.: Hol(y)hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1), 5–22 (2015)

    Article  MATH  Google Scholar 

  49. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69, 109–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lindblad, F.: agsyHOL website. https://github.com/frelindb/agsyHOL

  51. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. McCarthy, J.: Notes on formalizing context. In: Proceedings of IJCAI 1993, pp. 555–562 (1993)

    Google Scholar 

  53. Muskens, R.: Higher order modal logic. In: Blackburn, P., et al. (eds.) Handbook of Modal Logic, pp. 621–653. Elsevier, Dordrecht (2006)

    Google Scholar 

  54. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Berlin (2002)

    MATH  Google Scholar 

  55. Otten, J.: Mleancop: A connection prover for first-order modal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning. LNCS, vol. 8562, pp. 269–276. Springer, Switzerland (2014)

    Google Scholar 

  56. Woltzenlogel Paleo, B., Benzmüller, C.: Formal theology repository. (https://github.com/FormalTheology/GoedelGod)

  57. Paulin-Mohring, C.: Introduction to the calculus of inductive constructions. In: Delahaye, D., Woltzenlogel Paleo, B. (eds.), All about Proofs, Proofs for All, Mathematical Logic and Foundations. College Publications, London (2015)

    Google Scholar 

  58. Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)

    Google Scholar 

  59. Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.), Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories (ESARLT), CEUR Workshop Proceedings, vol. 257, CEUR-WS.org (2007)

    Google Scholar 

  60. Priest, G.: Paraconsistent belief revision. Theoria 67, 214–228 (2001)

    Article  MathSciNet  Google Scholar 

  61. Priest, G., Sylvan, R.: Simplified semantics for basic relevant logics. J. Philos. Logic (1992)

    Google Scholar 

  62. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: Expressivity and efficiency in a common-sense ontology. In: Shvaiko P. (ed.), Papers from the AAAI Workshop on Contexts and Ontologies: Theory, Practice and Applications, Pittsburgh, Pennsylvania, USA, 2005. Technical report WS-05-01 published by The AAAI Press, Menlo Park, California, July 2005

    Google Scholar 

  63. Raths, Thomas, Otten, Jens: The QMLTP problem library for first-order modal logics. In: Gramlich, Bernhard, Miller, Dale, Sattler, Uli (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 454–461. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  64. Restall, G., Slaney, J.: Realistic belief revision. In: Proceedings of the Second World Conference in the Fundamentals of Artificial Intelligence, pp. 367–378 (1995)

    Google Scholar 

  65. Scott, D.: Appx.B: Notes in Dana Scott’s Hand. In: [70], pp. 145–146 (2004)

    Google Scholar 

  66. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artif. Intell. 155, 41–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Siders, A., Woltzenlogel Paleo, B.: A variant of Gödel’s ontological proof in a natural deduction calculus. ( github.com/FormalTheology/GoedelGod/blob/master/Papers/InProgress/NaturalDeduction/GodProof-ND.pdf?raw=true)

  68. Sobel, J.H.: Gödel’s ontological proof. In On Being and Saying. Essays for Richard Cartwright, pp. 241–261, MIT Press (1987)

    Google Scholar 

  69. Sobel, J.H.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  70. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  71. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)

    MathSciNet  MATH  Google Scholar 

  72. Tanaka, K.: Three schools of paraconsistency. The Australas. J. Logic 1, 28–42 (2003)

    MathSciNet  MATH  Google Scholar 

  73. Wenzel, M.: Hoare logic in isabelle. http://isabelle.in.tum.de/dist/library/HOL/HOL-Isar_Examples/Hoare.html

Download references

Acknowledgments

We would like to thank João Marcos for consistently useful discussions about discussive logics and paraconsistency. Various persons have contributed or positively influenced this line of research in the past, including, Larry Paulson, Chad Brown, Geoff Sutcliffe, and Jasmin Blanchette.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Benzmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benzmüller, C., Woltzenlogel Paleo, B. (2015). Higher-Order Modal Logics: Automation and Applications. In: Faber, W., Paschke, A. (eds) Reasoning Web. Web Logic Rules. Reasoning Web 2015. Lecture Notes in Computer Science(), vol 9203. Springer, Cham. https://doi.org/10.1007/978-3-319-21768-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21768-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21767-3

  • Online ISBN: 978-3-319-21768-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics