Skip to main content

The Unconventionality of Nature: Biology, from Noise to Functional Randomness

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9252))

Abstract

In biology, phenotypes’ variability stems from stochastic gene expression as well as from extrinsic fluctuations that are largely based on the contingency of developmental paths and on ecosystemic changes. Both forms of randomness constructively contribute to biological robustness, as resilience, far away from conventional computable dynamics, where elaboration and transmission of information are robust when they resist to noise. We first survey how fluctuations may be inserted in biochemical equations as probabilistic terms, in conjunction to diffusion or path integrals, and treated by statistical approaches to physics. Further work allows to better grasp the role of biological “resonance” (interactions between different levels of organization) and plasticity, in a highly unconventional frame that seems more suitable for biological processes. In contrast to physical conservation properties, thus symmetries, symmetry breaking is particularly relevant in biology; it provides another key component of biological historicity and of randomness as a source of diversity and, thus, of onto-phylogenetic stability and organization as these are also based on variation and adaptativity.

B. Bravi—This author’s work is supported by the Marie Curie Training Network NETADIS (FP7, grant 290038).

G. Longo—This author’s work is part of the project “Le lois des dieux, des hommes et de la nature” at IEA–Nantes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this regard, Van Kampen critically claims an “indiscriminate application” of the Langevin approach for internal sources of stochasticity, the main reason being that fluctuations cannot be analyzed independently of the global evolution. From the mathematical point of view, in fact, the Eq. (3.2) is rigorously defined only if one specifies which integration rule is chosen (either the Itô or Stratonovich convention, as explained in Van Kampen 2007).

  2. 2.

    Almost ironically, Feynman (1948) notices in this regard: “There are, therefore, no fundamentally new results. However, there is a pleasure in recognizing old things from a new point of view”.

  3. 3.

    The intuition beyond can be traced back to E. Schrödinger’s words: “Incredibly small groups of atoms, much too small to display exact statistical laws, do play a dominating role in the very orderly and lawful events within a living organism”, What is Life (1944).

  4. 4.

    As a preliminary evidence, recent experiments (see Salman et al. 2012) suggest that the fitted curves for protein abundance resemble limit distributions of strongly correlated stochastic variables: this would reflect the spatial and temporal interdependence of processes regulating gene expression.

  5. 5.

    In these contexts, mean values analyses (or central limit theorems) are generally valid. However, in the complex case of second-order phase transitions, in thermodynamics, these analyses fail. For example, the transition between macroscopic order versus disorder in ferro-paramagnetic transitions, does not occur progressively but at a precise (critical) temperature. At that point, fluctuations at every scale dominate and this expresses a tendency to obtain magnetic alignments of every size. Moreover, some physical quantities become infinite, such as susceptibility to an external field. As a consequence of the dominating fluctuations, close or at the transition, mean value analyses fail (Longo et al. 2012b; Toulouse et al. 1977). This may be of interest for biological theoretizing, yet, in this case as well, the phase space is pre-given.

  6. 6.

    In reference to a previous footnote, this situation is closer to second order criticality than to the statistical “averaging out”.

  7. 7.

    Geodetics are usually derived by variational or equivalent methods that allow to write a Hamiltonian or extremize a Lagrangian functional that are given in terms of conservation properties.

  8. 8.

    Note that not only measurable phenotypes, as observables, may change, but pertinent parameters as well: air vibrations at audible frequencies were irrelevant before the formation of hears, in early vertebrates with a double jaw (Allin 1975).

References

  • Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen-Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86, 062109 (2012)

    Article  Google Scholar 

  • Allin, E.F.: Evolution of the mammalian middle ear. J. Morphol. 147(4), 403–437 (1975)

    Article  Google Scholar 

  • Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda \)-infected escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  • Aspect, A., Grangier, P., Roger, G.: Experimental tests of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  Google Scholar 

  • Bailly, F., Longo, G.: Biological organization and anti-entropy. J. Biol. Syst. 17(1), 63–96 (2009)

    Article  MathSciNet  Google Scholar 

  • Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  Google Scholar 

  • Bhalla, U.S.: Understanding complex signaling networks through models and metaphors. Prog. Biophys. Mol. Biol. 81, 45–65 (2003)

    Article  Google Scholar 

  • Bhogale, P.M., Sorg, R.A., Veening, J.W., Berg, J.: What makes the \(lac\)-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems. Nucleic Acid Res. 42(18), 11321–11328 (2014)

    Article  Google Scholar 

  • Bizzarri, M., Cucina, A., Palombo, A., Masiello, M.G.: Gravity sensing cells: mechanisms and theoretical grounds. Rend. Fis. Acc. Lincei 25, S29–S38 (2014)

    Article  Google Scholar 

  • Bravi, B., Sollich, P.: Gaussian Variational Approximation (2015, in preparation)

    Google Scholar 

  • Buiatti, M., Buiatti, M.: Towards a statistical characterisation of the living state of matter. Chaos Soliton. Fract. 20, 55–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Buiatti, M.: Plants: individuals or epigenetic cell populations? In: Jablonka, E., Gissis, S.B. (eds.) Transformations of Lamarckism. MIT Press, Cambridge (2011)

    Google Scholar 

  • Buiatti, M., Buiatti, M.: Chance vs. necessity in living systems: a false antinomy. Biol. Forum 101, 29–66 (2008)

    Google Scholar 

  • Buiatti, M., Longo, G.: Randomness and multi-level interactions in biology. Theory Biosci. 132(3), 139–158 (2013)

    Article  Google Scholar 

  • Calude, C.S., Longo, G.: Classical, quantum and biological randomness as relative incomputability. Nat. Comput. (Spec. Issue) (2015, in press)

    Google Scholar 

  • Castiglione, P., Falcioni, M., Lesne, A., Vulpiani, A.: Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Chibbaro, S., Rondoni, L., Vulpiani, A.: Reductionism, Emergence and Levels of Reality. Springer, Berlin (2014)

    Book  Google Scholar 

  • Del Giudice, E., Preparata, G.: A new QED picture of water: understanding a few fascinating phenomena. In: Sassaroli, E., et al. (eds.) Macroscopic Quantum Coherence. World Scientific, London (1998)

    Google Scholar 

  • Delbrück, M.: The burst size distribution in the growth of bacterial viruses. J. Bacteriol. 50(2), 131–135 (1945)

    Google Scholar 

  • Elf, J., Ehrenberg, M.: Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13(11), 2475–2484 (2003)

    Article  Google Scholar 

  • Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature 467(7312), 167–173 (2010)

    Article  Google Scholar 

  • Eldredge, N., Gould, S.J.: Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf, T.J.M. (ed.) Models in Paleo-Biology, vol. 72, pp. 82–115. Freeman, San Francisco (1972)

    Google Scholar 

  • Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  • Farge, E.: L’embryon sous l’emprise des gènes et de la pression. Pour la Sci. 379, 42–49 (2009)

    Google Scholar 

  • Feynman, R.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948)

    Article  MathSciNet  Google Scholar 

  • Fleury, V., Gordon, R.: Coupling of growth differentiation and morphogenesis, and integrated approach to design in embryogenesis. In: Swan, L., Gordon, R., Seckbach, J. (eds.) Origin of Design in Nature, vol. 23, pp. 385–428. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Gács, P., Hoyrup, M., Rojas, C.: Randomness on computable probability spaces - a dynamical point of view. Theor. Comput. Syst. 48, 465–485 (2011)

    Article  MATH  Google Scholar 

  • Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  • Guerriero, M.L., Pokhilko, A., Fernändez, A.P., Halliday, K.J., et al.: Stochastic properties of the plant circadian clock. J. R. Soc. Interface 9, 69 (2012)

    Article  Google Scholar 

  • Huang, M.C., Wu, J., Luo, Y., Petrosyan, K.G.: Fluctuations in gene regulatory networks as gaussian colored noise. J. Chem. Phys. 132, 155101 (2010)

    Article  Google Scholar 

  • Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, and Financial Markets. World Scientific, Singapore (2009)

    Book  Google Scholar 

  • Kupiec, J.J.: A probabilistic theory for cell differentiation, embryonic mortality and DNA C-value paradox. Specul. Sci. Technol. 6, 471–478 (1983)

    Google Scholar 

  • Lesne, A.: Robustness: confronting lessons from physics and biology. Biol. Rev. Camb. Philos. Soc. 83(4), 509–532 (2008)

    Google Scholar 

  • Lindner, A.B., Madden, R., Demarez, A., Stewart, E.J., Taddei, F.: Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. PNAS 8(105), 3076–3081 (2008)

    Article  Google Scholar 

  • Longo, G., Montévil, M.: Extended criticality, phase spaces and enablement in biology. Chaos Soliton. Fract. 55, 64–79 (2013)

    Article  Google Scholar 

  • Longo, G., Montévil, M.: Perspectives on Organisms: Biological Time, Symmetries and Singularities. Springer, Berlin (2014)

    Book  Google Scholar 

  • Longo, G., Montévil, M.: Models vs. simulations: a comparison by their theoretical symmetries. In: Springer Handbook of Model-Based Science (2015, to appear)

    Google Scholar 

  • Longo, G., Montévil, M., Kauffman, S.: No entailing laws, but enablement in the evolution of the biosphere. In: ACM Proceedings of GECCO (2012)

    Google Scholar 

  • Longo, G., Montévil, M., Pocheville, A.: From bottom-up approaches to levels of organization and extended critical transitions. Front. Physiol. 3, 232 (2012)

    Google Scholar 

  • Longo, G., Montévil, M., Sonnenschein, C., Soto, A.M. In Search of Principles for a Theory of Organisms (2015, submitted)

    Google Scholar 

  • Maheshri, N., O’Shea, E.K.: Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007)

    Article  Google Scholar 

  • Meyer, H.M., Roeder, A.H.K.: Stochasticity in plant cellular growth and patterning. Front. Plant Sci. 5, 420 (2014)

    Google Scholar 

  • Miquel, P.A.: Aging as alteration. In: Robert, L., Fulop, T. (eds.) Aging: Facts and Theories. Krager, Basel, vol. 39, pp. 187–197 (2014)

    Google Scholar 

  • Mirabet, V., Besnard, F., Vernoux, T., Boudaoud, A.: Noise and robustness in phyllotaxis. Plos Comput. Bio. 8, 2 (2012)

    Google Scholar 

  • Monod, J.: Le Hasard et la Nécessité. PUF, Paris (1970)

    Google Scholar 

  • Montévil, M., Mossio, M.: Biological organisation as closure of constraints. J. Theor. Biol. 372, 179–191 (2015)

    Article  Google Scholar 

  • Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144, 268–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Munsky, B., Hernday, A., Low, D., Kammash, M.: Stochastic modeling of the Pap Pili epigenetic switch. In: Proceedings of FOSBE Conference, pp. 145–148 (2014)

    Google Scholar 

  • Nowacki, M., Landweber, L.F.: Epigenetic inheritance in ciliates. Curr. Opin. Microbiol. 12(6), 638–643 (2009)

    Article  Google Scholar 

  • Olshansky, S.J., Rattan, S.I.S.: At the heart of aging: is it metabolic rate or stability? Biogerontology 6, 291–295 (2005)

    Article  Google Scholar 

  • Paulsson, J., Berg, O.G., Ehrenberg, M.: Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. PNAS 97(13), 7148–7153 (2000)

    Article  Google Scholar 

  • Pocock, G.: Human Physiology, 3rd edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  • Prigogine, I., Stengers, I.: Order out of Chaos: Man’s new Dialogue with Nature. Bantam Books, New York (1984)

    Google Scholar 

  • Raj, A., Van Oudenaarden, A.: Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008)

    Article  Google Scholar 

  • Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    Article  Google Scholar 

  • Risken, H.: The Fokker Planck Equation: Methods of Solution and Applications. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  • Robert, L., Paul, G., Chen, Y., Taddei, F., Baigl, D., Lindner, A.B.: Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch. Mol. Syst. Biol. 6, 357 (2010)

    Article  Google Scholar 

  • Romano, A.D., Serviddio, G., De Matthaeis, A., Bellanti, F., Vendemiale, G.: Oxidative stress and aging. J. Nephrol. 23(15), S29–S36 (2010)

    Google Scholar 

  • Salman, H., Brenner, N., Tung, C., Elyahu, N., Stolovicki, E., Moore, L., Libchaber, A., Braun, E.: Universal protein fluctuations in populations of microorganisms. PRL 108(23), 238105 (2012)

    Article  Google Scholar 

  • Schrödinger, E.: What is Life. Cambridge University Press, Cambridge (1944)

    Google Scholar 

  • Sethna, J.P.: Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, New York (2006)

    Google Scholar 

  • Shahrezaei, V., Olivier, J.F., Swain, P.S.: Colored extrinsic fluctuations and stochastic gene expression. Mol. Syst. Biol. 4, 196 (2008)

    Article  Google Scholar 

  • Simpson, M.L., Cox, C.D., Allen, M.S., McCollum, J.M., Dar, R.D., Karig, D.K., Cooke, J.F.: Noise in biological circuits. WIREs Nanomed. Nanotechnol. 1, 214–225 (2009)

    Article  Google Scholar 

  • Snijder, B., Pelkmans, L.: Origins of regulated cell-to-cell variability. Nature 12, 119–125 (2011)

    Google Scholar 

  • Sonnenschein, C., Soto, A.M.: The Society of Cells: Cancer and Control of Cell Proliferation. Springer, New York (1999)

    Google Scholar 

  • Soto, A.M., Sonnenschein, C.: Environmental causes of cancer: endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 6(7), 363–370 (2010)

    Article  Google Scholar 

  • Stewart, E.J., Madden, R., Paul, G., Taddei, F.: Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3(2), e45 (2005)

    Article  Google Scholar 

  • Stolovicki, E., Braun, E.: Collective dynamics of gene expression in cell populations. PLoS One 6(6), e20530 (2011)

    Article  Google Scholar 

  • Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99(20), 12795–12800 (2002)

    Article  Google Scholar 

  • Thomas-Vaslin, V., Altes, H.K., De Boer, R.J., Klatzmann, D.: Comprehensive assessment and mathematical modeling of T cell population dynamics and homeostasis. J. Immunol. 180(4), 2240–2250 (2008)

    Article  Google Scholar 

  • Toulouse, G., Pfeuty, P., Barton, G.: Introduction to the Renormalization Group and to Critical Phenomena. Wiley, New York (1977)

    Google Scholar 

  • Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  • Uyttewaal, M., Burian, A., Alim, K., Landrein, B., et al.: Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149, 439–451 (2012)

    Article  Google Scholar 

  • Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. PNAS 99(9), 5988–5992 (2002)

    Article  Google Scholar 

  • Werner, G.: Metastability, criticality and phase transitions in brain and its models. Biosystems 90(2), 496–508 (2007)

    Article  Google Scholar 

  • Wiener, N., Masani, P.: Collected Works: with Commentaries. MIT Press, Cambridge (1976)

    MATH  Google Scholar 

  • Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nature 10, 122–133 (2009)

    Google Scholar 

  • Wray, J., Kalkan, T., Smith, A.G.: The ground state of pluripotency. Biochem. Soc. Trans. 38, 1027–1032 (2010)

    Article  Google Scholar 

  • Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124, 4 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Angelo Vulpiani for stimulating remarks on a preliminary draft and Peter Sollich for a careful reading of part of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Bravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bravi, B., Longo, G. (2015). The Unconventionality of Nature: Biology, from Noise to Functional Randomness. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21819-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21818-2

  • Online ISBN: 978-3-319-21819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics