Abstract
Because interaction networks occupy more and more space in our current life (social networks) and in our understanding of living systems(biological regulation networks), it seems necessary to develop the knowledge regarding them. By using Boolean automata networks as models of interaction networks, we present new results about the influence of cycles on their dynamics. Cycles in the architecture of boolean networks are known to be the primary engine of dynamical complexity. As a first particular case, we focus on cycle intersections and provide a characterisation of the dynamics of asynchronous Boolean automata networks composed of two cycles that intersect at one automaton. To do so, we introduce an efficient formalism inspired by algorithms to define long sequences of updates, which allows a more efficient description of their dynamics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits dynamics. Discrete Appl. Math. 160, 398–415 (2012)
Didier, G., Remy, É.: Relations between gene regulatory networks and cell dynamics in Boolean models. Discrete Appl. Math. 160, 2147–2157 (2012)
Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)
Goles, E., Martínez, S.: Neural and Automata Networks: Dynamical Behaviour and Applications. Kluwer Academic Publishers, Norwell (1990)
Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. für Phys. 31, 253–258 (1925)
Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961)
Jacob, F., Perrin, D., Sanchez, C., Monod, J.: L’opéron: groupe de gènes à expression coordonnée par un opérateur. C. R. Hebdomadaires Acad. Sci. 250, 1727–1729 (1960)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)
Kauffman, S.A.: Gene regulation networks: A theory for their global structures and behaviors. In: Moscana, A., Monroy, A. (eds.) Current Topics in Development Biology, vol. 6, pp. 145–181. Elsevier, New York (1971)
McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
Melliti, T., Noual, M., Regnault, D., Sené, S., Sobieraj, J.: Full characterization of attractors for two intersected asynchronous Boolean automata cycles. Technical report Université d’Évry - Val d’Essonne (2013). arXiv:1310.5747
Melliti, T., Regnault, D., Richard, A., Sené, S.: On the convergence of Boolean automata networks without negative cycles. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 124–138. Springer, Heidelberg (2013)
Noual, M.: Dynamics of circuits and intersecting circuits. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 433–444. Springer, Heidelberg (2012)
Noual, M.: Updating automata networks. Ph.D. thesis, École normale supérieure de Lyon (2012)
Noual, M., Regnault, D., Sené, S.: About non-monotony in Boolean automata networks. Theoret. Comput. Sci. 504, 12–25 (2013)
Remy, É., Ruet, P., Thieffry, D.: Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. 41, 335–350 (2008)
Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math. 44, 378–392 (2010)
Richard, A., Comet, J.P.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math. 155, 2403–2413 (2007)
Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986)
Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)
Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973)
Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Dora, J.D., Demongeot, J., Lacolle, B. (eds.) Numerical Methods in the Study of Critical Phenomena. Springer Series in Synergetics, vol. 9, pp. 180–193. Springer, Heidelberg (1981)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Melliti, T., Noual, M., Regnault, D., Sené, S., Sobieraj, J. (2015). Asynchronous Dynamics of Boolean Automata Double-Cycles. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-21819-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21818-2
Online ISBN: 978-3-319-21819-9
eBook Packages: Computer ScienceComputer Science (R0)