Abstract
We introduce a notion of ultrametric automata and Turing machines using p-adic numbers to describe random branching of the process of computation. These automata have properties similar to the properties of probabilistic automata but complexity of probabilistic automata and complexity of ultrametric automata can differ very much.
The research was supported by Grant No. 271/2012 from the Latvian Council of Science and by the project ERAF Nr.2DP/2.1.1.1/13/APIA/VIAA/027. Partially supported by Latvian State Research programme NexIT project No.1 “Technologies of ontologies, semantic web and security”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006)
Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)
Freivalds, R.: Complexity of probabilistic versus deterministic automata. In: Bārzdinš, J., Bjørner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)
Freivalds, R.: Non-constructive methods for finite probabilistic automata. Int. J. Found. Comput. Sci. 19(3), 565–580 (2008)
Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.) Turing-100. EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)
Freivalds, R.: Ultrametric finite automata and turing machines. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 1–11. Springer, Heidelberg (2013)
Gouvea, F.Q.: p-adic Numbers: An Introduction. Universitext, 2nd edn. Springer, Heidelberg (1983)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)
Hirvensalo, M.: Quantum Computing. Springer, Heidelberg (2001)
Khrennikov, A.Yu.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic Publishers, Dordrecht (1997)
Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions. Graduate Texts in Mathematics, vol. 58, 2nd edn. Springer, Heidelberg (1984)
Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. In: Proceedings of the 2nd International Conference on p-Adic Mathematical Physics, American Institute Conference Proceedings, vol. 826, pp. 121–128 (2006)
Lunts, A.G.: A method of analysis of finite automata. Sov. Phys. Dokl. 10, 102–105 (1965)
Madore, D.A.: A first introduction to \(p\)-adic numbers. http://www.madore.org/david/math/padics.pdf
Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica 15(4), 557–565 (1995)
Ostrowski, A.: Über einige Lösungen der funktionalgleichung \(\varphi (x)\varphi (y) = \varphi (xy)\). Acta Math. 41(1), 271–284 (1916)
Turakainen, P.: Generalized automata and stochastic languages. Proc. Am. Math. Soc. 21(2), 303–309 (1969)
Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Freivalds, R. (2015). Ultrametric Algorithms and Automata. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-21819-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21818-2
Online ISBN: 978-3-319-21819-9
eBook Packages: Computer ScienceComputer Science (R0)