Skip to main content

Realism and Texture: Benchmark Problems for Natural Computation

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9252))

  • 687 Accesses

Abstract

We consider the problems of the realistic image synthesis, and texture synthesis, from the point of view of natural computation. These problems provide an interesting and relatively simple setting for considering issues such as the depth of simulation and the role of perception. We conclude with a discussion of recent results on the fundamental limits of image synthesis programs. Interpreting these results more generally suggests that “natural” signals may be exactly those that are compressible. This characterization provides a further link between the fields of natural computation and algorithmic information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Important technical considerations such as the means by which programs are delimited are omitted in this brief description.

  2. 2.

    That is, they are not computable in the same sense that the set of programs that halt is not computable.

References

  1. Dictionary entry for texture in the Free On-line Dictionary of Computing. University of London Imperial College of Science, Technology, and Medicine, Department of Computing, foldoc.org (2002)

    Google Scholar 

  2. Fake or foto (2015). http://area.autodesk.com/fakeorfoto

  3. Albregtsen, F.: Statistical texture measures computed from gray level coocurrence matrices. Image Processing Laboratory, Department of Informatics, University of Oslo, pp. 1–14 (2008)

    Google Scholar 

  4. Apodaca, A.A., Gritz, L.: Advanced RenderMan: Creating CGI for Motion Picture, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  5. Borshukov, G., Lewis, J.: Realistic human face rendering for the matrix reloaded. In: Proceedings of the SIGGRAPH 2003 Conference Sketches and Applications, pp. 1. ACM Press (2003)

    Google Scholar 

  6. Calude, C.S.: Information and Randomness: An Algorithmic Perspective, 2nd edn. Springer-Verlag New York Inc, Secaucus (2002)

    Book  Google Scholar 

  7. Calude, C.S., Lewis, J.P.: Is there a universal image generator? Appl. Math. Comput. 218(16), 8151–8159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Trans. Inf. Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coggins, J.M.: A framework for texture analysis based on spatial filtering. Michigan State University Ph.D. thesis (1982)

    Google Scholar 

  10. D’Eon, E., Irving, G.: A quantized-diffusion model for rendering translucent materials. In: ACM SIGGRAPH 2011 Papers, pp. 56:1–56:14. ACM, New York (2011). http://doi.acm.org/10.1145/1964921.1964951

  11. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the International Conference on Computer Vision ICCV 1999, vol. 2, pp. 1033. IEEE Computer Society, Washington (1999)

    Google Scholar 

  12. Garber, D.: Computational Models for Texture Analysis and Textures Synthesis. University of Southern California, Los Angeles (1981)

    Google Scholar 

  13. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. SMC Syst. Man Cybern. 36(6), 610–621 (1973). http://dx.doi.org/10.1109/tsmc.1973.4309314

    Article  Google Scholar 

  14. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: SIGGRAPH 2001 Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 511–518. ACM, New York (2001)

    Google Scholar 

  15. Julesz, B.: Visual pattern discrimination. IEEE Trans. Info. Theory 8, 84–92 (1962)

    Article  Google Scholar 

  16. Julesz, B., Gilbert, E., Victor, J.: Visual discrimination of textures with identical third-order statistics. Biol. Cybern. 31(3), 137–140 (1978)

    Article  Google Scholar 

  17. Julesz, B.: A theory of preattentive texture discrimination based on first-order statistics of textons. Biol. Cybern. 41(2), 131–138 (1981). http://dx.doi.org/10.1007/BF00335367

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewis, J.P.: Generalized stochastic subdivision. ACM Trans. Graph. 6(3), 167–190 (1987)

    Article  Google Scholar 

  19. Lewis, J.P., Rosenholtz, R., Fong, N., Neumann, U.: Visualids: automatic distinctive icons for desktop interfaces. ACM Trans. Graph. 23(3), 416–423 (2004)

    Article  Google Scholar 

  20. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1983)

    Google Scholar 

  21. Moravec, H.P.: 3D graphics and the wave theory. SIGGRAPH Comput. Graph. 15(3), 289–296 (1981). http://doi.acm.org/10.1145/965161.806817

    Article  Google Scholar 

  22. Prusinkiewicz, P., Hanan, J.: Lindenmayer Systems, Fractals, and Plants. Springer Verlag, New York (1989)

    Book  MATH  Google Scholar 

  23. Stiny, G.: Shape: Talking about Seeing and Doing. MIT Press, Cambridge (2006)

    Google Scholar 

  24. Svozil, K.: Randomness & Undecidability in Physics. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  25. Tuceryan, M., Jain, A.: Texture analysis. In: Handbook of Pattern Recognition and Computer Vision. 2 edn, pp. 207–248. World Scientific (1998)

    Google Scholar 

  26. Versteegen, R., Gimel’farb, G., Riddle, P.: Learning high-order generative texture models. In: IVCNZ 2014 Proceedings of the 29th International Conference on Image and Vision Computing New Zealand, pp. 90–95. ACM, New York (2014). http://doi.acm.org/10.1145/2683405.2683420

  27. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structuredvector quantization. In: SIGGRAPH 2000 Proceedings of the 27th Annual Conference on ComputerGraphics and Interactive Techniques, pp. 479–488. ACMPress/Addison-Wesley Publishing Co., New York (2000). http://dx.doi.org/10.1145/344779.345009

  28. Zafar, N., Stephens, D., Larsson, M., Sakaguchi, R., Clive, M., Sampath, R., Museth, K., Blakey, D., Gazdik, B., Thomas, R.: Destroying LA for 2012. In: ACM SIGGRAPH Talk (2010)

    Google Scholar 

  29. Zhu, S.C., Wu, Y.N., Mumford, D.: Filters, random fields and maximum entropy (FRAME): towards a unified theory for texture modeling. Int. J. Comput. Vis. 27(2), 107–126 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Cris Calude for discussion of several topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewis, J.P. (2015). Realism and Texture: Benchmark Problems for Natural Computation. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21819-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21818-2

  • Online ISBN: 978-3-319-21819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics