Abstract
Our behaviour emerges as the result of many systems interacting at different scales, from low level biology to high level social interaction. Is it possible to create naturalistic explanatory models which can integrate these factors? This paper describes the general approach and design of a framework to create autonomous expressive embodied models of behaviour based on affective and cognitive neuroscience theories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa-an open source framework for medical simulation. In: MMVR 15-Medicine Meets Virtual Reality, vol. 125, pp. 13–18. IOP Press (2007)
Aronov, D., Andalman, A.S., Fee, M.S.: A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320(5876), 630–634 (2008)
Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M., Yoshida, C.: Cognitive developmental robotics: a survey. IEEE Trans. Auton. Ment. Dev. 1(1), 12–34 (2009)
Asada, M., MacDorman, K.F., Ishiguro, H., Kuniyoshi, Y.: Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Rob. Auton. Syst. 37(2), 185–193 (2001)
Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.): IVA 2013. LNCS, vol. 8108. Springer, Heidelberg (2013)
Bandura, A.: Social Foundations of Thought and Action: A Social-cognitive View. Prentice-Hall, New York (1986)
Berridge, K.C., Kringelbach, M.L.: Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr. Opin. Neurobiol. 23(3), 294–303 (2013)
Borghi, A.M., Pecher, D.: Introduction to the special topic embodied and grounded cognition. Front. Psychol. 2, 187 (2011)
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr, F.C., et al.: Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)
Cangelosi, A., Schlesinger, M., Smith, L.B.: Developmental Robotics: From Babies to Robots. The MIT Press, Cambridge (2015)
Cassell, J.: Embodied Conversational Agents. MIT press, Cambridge (2000)
Cattaneo, L., Pavesi, G.: The facial motor system. Neurosci. Biobehav. Rev. 38, 135–159 (2014)
Csibra, G., Gergely, G.: Social learning and social cognition: the case for pedagogy. In: Processes of Change in Brain and Cognitive Development. Attention and Performance XXI, vol. 21, pp. 249–274 (2006)
Cultural, E.C.: Culture-gene coevolutionary theory and childrens selective social learning. In: Banaji, M.R., Gelman, S.A.(eds.) Navigating the Social World: What Infants, Children, and Other Species Can Teach us, p. 181 (2013)
Damasio, A.: Self Comes to Mind: Constructing the Conscious Brain. Knopf Doubleday Publishing Group, Pantheon (2010)
Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, Cambridge, MA (2001)
Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System: The Manual. Consulting Psychologists Press, Salt Lake City (2002)
Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1991)
Galef Jr, B.G.: Imitation in animals: history, definition, and interpretation of data from the psychological laboratory. In: Zentall, T.R. (ed.) Social learning: Psychological and biological perspectives, pp. 3–28. Lawrence Erlbaum Associates, New Jersey (1988)
Goldberg, J.H., Fee, M.S.: Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia. J. Neurophysiol. 105(6), 2729–2739 (2011)
Gothard, K., Hoffman, K.: Circuits of emotion in the primate brain. In: Platt, M.L., Ghazanfar, A.A. (eds.) Primate Neuroethology, pp. 292–315. Oxford University Press, New York (2010)
Gurney, K., Lepora, N., Shah, A., Koene, A., Redgrave, P.: Action discovery and intrinsic motivation: a biologically constrained formalisation. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 151–181. Springer, Heidelberg (2013)
Herman, J.P., Cullinan, W.E.: Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20(2), 78–84 (1997)
Heyes, C.: Where do mirror neurons come from? Neurosci. Biobehav. Rev. 34(4), 575–583 (2010)
Heyes, C.M.: Social learning in animals: categories and mechanisms. Biol. Rev. 69(2), 207–231 (1994)
Heyes, C.M., Galef Jr, B.G.: Social Learning In Animals: The Roots of Culture. Elsevier, Burlington (1996)
Izhikevich, E.M., et al.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)
Jones, S.S.: Imitation in infancy the development of mimicry. Psychol. Sci. 18(7), 593–599 (2007)
Kohonen, T.: Self-Organization and Associative Memory, 100 figs. XV, p. 312. Springer-Verlag, Berlin Heidelberg New York. Also Springer Series in Information Sciences, vol. 8(1) (1988)
Krichmar, J.L., Edelman, G.M.: Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cereb. Cortex 12(8), 818–830 (2002)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Ledoux, J.: The Emotional Brain: The Mysterious Underpinnings of Emotional Life. Simon & Schuster, New York (1996)
Lee, M.H.: Intrinsic activity: from motor babbling to play. In: Proceedings of the First Joint International Conference on Development and Learning (ICDL) and on Epigenetic Robotics (EpiRob) (2011)
Lewis, M.D.: Bridging emotion theory and neurobiology through dynamic systems modeling. Behav. Brain Sci. 28(02), 169–194 (2005)
Mingus, B.: Comparison of neural network simulators. http://grey.colorado.edu/emergent/index.phptitle=Comparison_of_Neural_Network_Simulators&oldid=10307. Accessed 27 April 2015
Moschovakis, A., Scudder, C., Highstein, S.: The microscopic anatomy and physiology of the mammalian saccadic system. Prog. Neurobiol. 50(2), 133–254 (1996)
O’Reilly, R.C., Hazy, T.E., Mollick, J., Mackie, P., Herd, S.: Goal-driven cognition in the brain: a computational framework (2014). arXiv preprint arXiv:1404.7591
O’Reilly, R.C., Hazy, T.E., Herd, S.A.: The leabra cognitive architecture: how to play 20 principles with nature and win! (2012)
Panksepp, J.: Affective Neuroscience: The Foundations of Human and Animal Emotions. Oxford University Press, New York (1998)
Parke, F.I., Waters, K.: Computer Facial Animation, vol. 289. AK Peters Ltd., Wellesley (1996)
Parker, S.G., Johnson, C.R.: Scirun: a scientific programming environment for computational steering. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, p. 52. ACM (1995)
Pelachaud, C.: Modelling multimodal expression of emotion in a virtual agent. Philos. Trans. R. Soc. B: Biol. Sci. 364(1535), 3539–3548 (2009)
Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective learning-a manifesto. BT Technol. J. 22(4), 253–269 (2004)
Picard, R.W.: Affective computing. Technical report, M.I.T. Media Laboratory (1995)
Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., McNamara, J.O., Williams, S.M. (eds.): Neuroscience. Sinauer Associates, Inc., Sunderland (2004)
Rohlfing, K., Deak, G.: Microdynamics of interaction: capturing and modeling infants’ social learning. IEEE Trans. Auton. Ment. Dev. 5(3), 189–191 (2013)
Rolls, E.T.: Emotion and Decision-making Explained. Oxford University Press, New York (2013)
Sagar, M.: Creating models for simulating the face. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 394–394. Springer, Heidelberg (2011)
Sagar, M., Bullivant, D., Robertson, P., Efimov, O., Jawed, K., Kalarot, R., Wu, T.: A neurobehavioural framework for autonomous animation of virtual human faces. In: SIGGRAPH Asia 2014 Autonomous Virtual Humans and Social Robot for Telepresence, p. 2. ACM (2014)
Samsonovich, A.V.: Toward a unified catalog of implemented cognitive architectures. In: BICA, vol. 221, pp. 195–244 (2010)
Scherer, K.R.: Emotions are emergent processes: they require a dynamic computational architecture. Philos. Trans. R. Soc. B: Biol. Sci. 364(1535), 3459–3474 (2009)
Scherer, K.R., Ekman, P., et al. (eds.): Approaches to Emotion. Psychology Press, New York (2014)
Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. (TOG) 24(3), 417–425 (2005)
Snell, R.: Clinical Neuroanatomy. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia (2010)
Terzopoulos, D., Waters, K.: Physically-based facial modelling, analysis, and animation. J. Visual. Comput. Animation 1(2), 73–80 (1990)
Tomasello, M., Kruger, A.C., Ratner, H.H.: Cultural learning. Behav. Brain Sci. 16(03), 495–511 (1993)
Trappenberg, T.: Fundamentals of Computational Neuroscience. Oxford University Press, New York (2010)
Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., D’Errico, F., Schröder, M.: Bridging the gap between social animal and unsocial machine: a survey of social signal processing. IEEE Trans. Affect. Comput. 3(1), 69–87 (2012)
Whiten, A.: Primate culture and social learning. Cogn. Sci. 24(3), 477–508 (2000)
Wu, T., Mithraratne, K., Sagar, M., Hunter, P.J.: Characterizing facial tissue sliding using ultrasonography. In: Lim, C.T., Goh, J.C.H. (eds.) WCB 2010, vol. 31, pp. 1566–1569. Springer, Heidelberg (2010)
Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)
Zhang, T., Gomes, H.M.: Technology survey on video face tracking. In: IS&T/SPIE Electronic Imaging, pp. 90270F–90270F. International Society for Optics and Photonics (2014)
Acknowledgement
We would like to acknowledge the support of the University of Auckland Strategic Development Fund, CFRIF, and SRIF, Auckland UniServices, Peter Hunter, Andrew Wong, Kieran Brennan, Auckland Bioengineering Institute (ABI): Paul Corballis, Ben Thompson, Centre for Brain Research (CBR), Annette Henderson, Early Learning Lab (ELLA), John Reynolds (Basal Ganglia Research Group and Alistair Knott, (University of Otago).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Sagar, M. et al. (2015). BL: A Visual Computing Framework for Interactive Neural System Models of Embodied Cognition and Face to Face Social Learning. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-21819-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21818-2
Online ISBN: 978-3-319-21819-9
eBook Packages: Computer ScienceComputer Science (R0)