Skip to main content

Computations with Grossone-Based Infinities

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9252))

Abstract

In this paper, a recent computational methodology is described. It has been introduced with the intention to allow one to work with infinities and infinitesimals numerically in a unique computational framework. It is based on the principle ‘The part is less than the whole’ applied to all quantities (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). The methodology uses as a computational device the Infinity Computer (patented in USA and EU) working numerically with infinite and infinitesimal numbers that can be written in a positional system with an infinite radix. On a number of examples dealing mainly with infinite sets and Turing machines with different infinite tapes it is shown that it becomes possible to execute a fine analysis of these mathematical objects. The accuracy of the obtained results is continuously compared with results obtained by traditional tools used to work with mathematical objects involving infinity.

Y.D. Sergeyev—This research was partially supported by the Russian Foundation for Basic Research, grant no. 15-01-06612.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The last two numerals, \(\doteq \) and Ĩ, are probably less known. The former belongs to the Maya numeral system where one horizontal line indicates five and two lines one above the other indicate ten. Dots are added above the lines to represent additional units. For instance, \(\doteq \) means eleven in this numeral system. The latter symbol, Ĩ, belongs to the Cyrillic numeral system derived from the Cyrillic script. This numeral system was developed in the late \(X^{th}\) century and was used by South and East Slavic peoples. The system was used in Russia as late as the early \(XVIII^{th}\) century when it was replaced with Arabic numerals. To distinguish numbers from text, a titlo, \(\tilde{}\), is drawn over the symbols showing so that this is a numeral and, therefore, it represents a number and not just a character of text.

  2. 2.

    Notice that nowadays not only positive integers but also zero is frequently included in \(\mathbb {N}\). However, since zero has been invented significantly later than positive integers used for counting objects, zero is not include in \(\mathbb {N}\) in this text.

  3. 3.

    This is a difference with respect to non-standard analysis where infinities it works with do not belong to \(\mathbb {N}\).

References

  1. Butterworth, B., Reeve, R., Reynolds, F., Lloyd, D.: Numerical thought with and without words: Evidence from indigenous Australian children. Proc. National Acad. Sci. United States Am. 105(35), 13179–13184 (2008)

    Article  Google Scholar 

  2. Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers. Dover Publications, New York (1955)

    Google Scholar 

  3. Conway, J.H., Guy, R.K.: The Book of Numbers. Springer-Verlag, New York (1996)

    Book  MATH  Google Scholar 

  4. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. D’Alotto, L.: A classification of two-dimensional cellular automata using infinite computations. Indian J. Math. 55, 143–158 (2013)

    MathSciNet  Google Scholar 

  7. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gödel, K.: The Consistency of the Continuum-Hypothesis. Princeton University Press, Princeton (1940)

    MATH  Google Scholar 

  9. Gordon, P.: Numerical cognition without words: evidence from Amazonia. Science 306, 496–499 (2004)

    Article  Google Scholar 

  10. Hardy, G.H.: Orders of Infinity. Cambridge University Press, Cambridge (1910)

    MATH  Google Scholar 

  11. Hilbert, D.: Mathematical problems: lecture delivered before the international congress of mathematicians at paris in 1900. Bull. Am. Math. Soci. 8, 437–479 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Interpretation of percolation in terms of infinity computations. Appl. Math. Comput. 218(16), 8099–8111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Infinity computations in cellular automaton forest-fire model. Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2015)

    Article  Google Scholar 

  14. Leder, G.C.: Mathematics for all? The case for and against national testing. In: Cho, S.J. (ed.) The Proceedings of the 12th International Congress on Mathematical Education: Intellectual and Attitudinal Chalenges, pp. 189–207. Springer, New York (2015)

    Google Scholar 

  15. Leibniz, G.W., Child, J.M.: The Early Mathematical Manuscripts of Leibniz. Dover Publications, New York (2005)

    Google Scholar 

  16. Levi-Civita, T.: Sui numeri transfiniti. Rend. Acc. Lincei, Series 5a 113, 7–91 (1898)

    Google Scholar 

  17. Lolli, G.: Infinitesimals and infinites in the history of mathematics: a brief survey. Appl. Math. Comput. 218(16), 7979–7988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lolli, G.: Metamathematical investigations on the theory of grossone. Appl. Math. Comput. 255, 3–14 (2015)

    Article  MathSciNet  Google Scholar 

  19. Margenstern, M.: Using grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers, Ultrametric Anal. Appl. 3(3), 196–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Margenstern, M.: An application of grossone to the study of a family of tilings of the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Margenstern, M.: Fibonacci words, hyperbolic tilings and grossone. Commun. Nonlinear Sci. Numer. Simul. 21(1–1), 3–11 (2015)

    Article  MathSciNet  Google Scholar 

  22. Pica, P., Lemer, C., Izard, V., Dehaene, S.: Exact and approximate arithmetic in an amazonian indigene group. Science 306, 499–503 (2004)

    Article  Google Scholar 

  23. Robinson, A.: Non-standard Analysis. Princeton Univ. Press, Princeton (1996)

    MATH  Google Scholar 

  24. Sergeyev, Y.D.: Arithmetic of infinity. Edizioni Orizzonti Meridionali, CS, 2003, 2d electronic ed. 2013

    Google Scholar 

  25. Sergeyev, Y.D.: Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons, Fractals 33, 50–75 (2007)

    Article  Google Scholar 

  26. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos, Solitons, Fractals 42(5), 3042–34046 (2009)

    Article  Google Scholar 

  28. Sergeyev, Y.D.: Numerical computations and mathematical modelling with infinite and infinitesimal numbers. J. Appl. Math. Comput. 29, 177–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Seri. A: Theor. Methods Appl. 71(12), e1688–e1707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sergeyev, Y.D.: Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. USA Patent 7, 860–914 (2010)

    Google Scholar 

  31. Sergeyev, Y.D.: Counting systems and the First Hilbert problem. Nonlinear Anal. Ser. A: Theor. Methods Appl. 72(3–4), 1701–1708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sergeyev, Y.D.: Lagrange Lecture: methodology of numerical computations with infinities and infinitesimals. Rend. del Seminario Matematico dell’Università e del Politecnico di Torino 68(2), 95–113 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Sergeyev, Y.D.: Higher order numerical differentiation on the infinity computer. Optim. Lett. 5(4), 575–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sergeyev, Y.D.: On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function. p-Adic Numbers, Ultrametric Anal. Appl. 3(2), 129–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–576 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Sergeyev, Y.D.: Numerical computations with infinite and infinitesimal numbers: theory and applications. In: Sorokin, A., Pardalos, P.M. (eds.) Dynamics of Information Systems: Algorithmic Approaches. SPMS, vol. 51. Springer, New York (2013)

    Google Scholar 

  37. Sergeyev, Y.D.: Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer. Appl. Math. Comput. 219(22), 10668–10681 (2013)

    Article  MathSciNet  Google Scholar 

  38. Sergeyev, Y.D.: Infinity computer and calculus. In: Simos, T.E., Tsitouras, C. (ed.), AIP Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), vol. 1648, pp. 150018. Melville, New York (2015)

    Google Scholar 

  39. Sergeyev, Y.D.: The olympic medals ranks, lexicographic ordering, and numerical infinities. The Mathematical Intelligencer, 37(2), 4–8 (2015)

    Article  MathSciNet  Google Scholar 

  40. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica nella Società e nella Cultura: Rivista della Unione Matematica Italiana Series I 8, 111–147 (2015)

    Google Scholar 

  41. Sergeyev, Y.D., Garro, A.: Observability of Turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Sergeyev, Y.D., Garro, A.: Single-tape and multi-tape Turing machines through the lens of the Grossone methodology. J. Supercomput. 65(2), 645–663 (2013)

    Article  Google Scholar 

  43. Ivoghlian, A., Wang, K.I.-K., Salcic, Z., Catapang, S.A.: An ultra-low power miniaturised wireless mote for ubiquitous data acquisition. In: Mason, A., Mukhopadhyay, S.C., Jayasundera, K.P. (eds.) Sensing Technology: Current Status and Future Trends IV. SSMI, vol. 12, pp. 139–169. Springer, Heidelberg (2015)

    Google Scholar 

  44. Vita, M.C., De Bartolo, S., Fallico, C., Veltri, M.: Usage of infinitesimals in the Menger’s Sponge model of porosity. Appl. Math. Comput. 218(16), 8187–8196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wallis, J.: Arithmetica infinitorum. 1656

    Google Scholar 

  46. Zhigljavsky, A.A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218(16), 8064–8076 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav D. Sergeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sergeyev, Y.D. (2015). Computations with Grossone-Based Infinities. In: Calude, C., Dinneen, M. (eds) Unconventional Computation and Natural Computation. UCNC 2015. Lecture Notes in Computer Science(), vol 9252. Springer, Cham. https://doi.org/10.1007/978-3-319-21819-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21819-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21818-2

  • Online ISBN: 978-3-319-21819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics