
Approximating Nearest Neighbor Distances∗

Michael B. Cohen† Brittany Terese Fasy‡ Gary L. Miller§

Amir Nayyeri¶ Donald R. Sheehy‖ Ameya Velingker∗∗

March 2, 2015

Abstract

Several researchers proposed using non-Euclidean metrics on point
sets in Euclidean space for clustering noisy data. Almost always, a
distance function is desired that recognizes the closeness of the points
in the same cluster, even if the Euclidean cluster diameter is large.
Therefore, it is preferred to assign smaller costs to the paths that stay
close to the input points.

In this paper, we consider the most natural metric with this prop-
erty, which we call the nearest neighbor metric. Given a point set P
and a path γ, our metric charges each point of γ with its distance to
P. The total charge along γ determines its nearest neighbor length,
which is formally defined as the integral of the distance to the input
points along the curve. We describe a (3+ε)-approximation algorithm
and a (1 + ε)-approximation algorithm to compute the nearest neigh-
bor metric. Both approximation algorithms work in near-linear time.
The former uses shortest paths on a sparse graph using only the input
points. The latter uses a sparse sample of the ambient space, to find
good approximate geodesic paths.

∗Partially supported by the NSF grant CCF-1065106.
†Massachusetts Institute of Technology, micohen@mit.edu
‡Department of Computer Science,Tulane University,

brittany.fasy@alumni.duke.edu
§Department of Computer Science, Carnegie Mellon University, glmiller@cs.cmu.edu
¶School of electrical engineering and computer science, Oregon State University,

nayyeria@eecs.oregonstate.edu
‖Computer Science and Engineering Department, University of Connecticut,

don.r.sheehy@gmail.com
∗∗Department of Computer Science, Carnegie Mellon University, avelingk@cs.cmu.edu

1

ar
X

iv
:1

50
2.

08
04

8v
1

 [
cs

.C
G

]
 2

7
Fe

b
20

15

1 Introduction

Many problems lie at the interface of computational geometry, machine
learning, and data analysis, including–but not limited to: clustering, man-
ifold learning, geometric inference, and nonlinear dimensionality reduction.
Although the input to these problems is often a Euclidean point cloud, a
different distance measure may be more intrinsic to the data. In particular,
we are interested in a distance that recognizes the closeness of two points in
the same cluster, even if their Euclidean distance is large, and conversely,
recognizes a large distance between points in different clusters, even if the
Euclidean distance is small. For example, in Figure 1, the distance between
a and b must be larger than the distance between b and c.

a

b c

Figure 1: The intrinsic density-based distance can differ from the Euclidean distance.

There are at least two seemingly different approaches to define a non-
Euclidean metric on a finite set of point on Rd. The first approach is to
form a graph metric on the point set. An example of such a graph is the
kth nearest neighbor graph where a point is only connected to another point
if one is a kth nearest neighbor of the other. The edge weights may be a
constant or the Euclidean distances. In this paper we consider the complete
graph but the edge lengths are a power of their Euclidean lengths. We are
particularly interested in the squared length, which we will refer to as the
edge-squared metric.

The second approach is to endow all of Rd with a new metric. We start
with a cost function c : Rd → R, which takes the point cloud into account.
Then, the length of a path γ is the integral of the cost function along the
path.

`c(γ) =

∫
γ
c(s)ds =

∫ 1

0
c(γ(t))

∣∣∣∣dγdt (t)

∣∣∣∣ dt. (1)

The distance between two points x, y ∈ Rd is then the length of the shortest
path between them:

dc(x, y) = inf
γ
`c(γ). (2)

2

Note that the constant function, c(x) = 1 for all x ∈ Rd, gives the Euclidean
metric; whereas, other functions allow space to be stretched in various ways.

In almost all applications mentioned above for cost-based metrics, in
order to reinforce paths within clusters, one would like to assign smaller
lengths to paths that stay close to the point cloud. Therefore, the simplest
natural cost function on Rd is the distance to the point cloud. More precisely,
given a finite point set P the cost c(x) for x ∈ Rd is chosen to be N(x), the
Euclidean distance from x to the nearest point in P . The nearest neighbor
length (N-length) `N(γ) of a curve is given by (1), where we set c(x) = N(x)
for all points x ∈ C. We refer to the corresponding metric given by (2) as
the nearest neighbor metric or simply the N-distance.

In this paper, we investigate approximation algorithms for N-distance
computation. We describe a (3 + ε)-approximation algorithm and a (1 + ε)-
approximation algorithm. The former comes from comparing the nearest
neighbor metric with the edge-squared metric. The latter is a tighter approx-
imation that samples the ambient space to find good approximate geodesics.

1.1 Overview

In Section 4, we describe a constant factor approximation algorithm ob-
tained via an elegant reduction into the edge-squared metric introduced
by [BRS11] and [VB03]. This metric is defined between pairs of points in
P by considering the graph distance on a complete weighted graph, where
the weight of each edge is the square of its Euclidean length. We show
that the N-distance and edge-squared metric are equivalent up to a factor
of three (after a scaling by a factor of four). As a result, because spanners
for the edge-squared metric can be computed in nearly linear time [LSV06],
we obtain a (3 + ε)-approximation algorithm for computing N-distance.

Theorem 1.1. Let P be a set of points in Rd, and let x, y ∈ P . The nearest
neighbor distance between x and y can be approximated within a (3 + ε)
factor in O(n log n+ nε−d) time, for any 0 < ε ≤ 1.

In Section 5, we describe a (1 + ε)-approximation algorithm for the N-
distance that works in time ε−O(d)n log n. Our algorithm computes a dis-
cretization of the space for points that are sufficiently far from P . Never-
theless, the sub-paths that are close to P are computed exactly. We can
adapt our algorithm to work for any Lipschitz cost function that is bounded
away from zero; thus, the algorithm can be applied to many of the scenarios
describe in Appendix 2.

3

Theorem 1.2. For any finite set of points P ⊂ Rd and any fixed number
0 < ε < 1, the shortest N-distance between any pair of points of the space
can be (1 + ε)-approximated in time O(ε−O(d)n log n).

2 Related Work

Computing the distance between a pair of points with respect to a cost func-
tion encompasses several significant problems that have been considered by
different research communities for at least a few centuries. As early as 1696,
Johann Bernoulli introduced the brachistochrone curve, the shortest path in
the presence of gravity, as “an honest, challenging problem, whose possible
solution will bestow fame and remain as a lasting monument” [Ber96]. With
six solutions to his problem published just one year after it was posed, this
event marked the birth of the field of calculus of variations. In this section,
we review some work related to computing shortest paths in a weighted
domain.

Models for Geometries. The cost function c(·) in (1) can be deliberately
picked so that the metric dc(·) coincides with well-known metrics. For ex-
ample, c(x, y) = 1 gives the Euclidean metric in the plane and c(x, y) = 1/y
gives the Poincaré metric in the half-plane model of hyperbolic (Lobachevsky)
geometry [Kat10].

Motion Planning. Rowe and Ross [RR90] as well as Kime and Hes-
panha [KH03] consider the problem of computing anisotropic shortest paths
on a terrain. An anisotropic path cost takes into account the (possibly
weighted) length of the path and the direction of travel. Note that this
problem can be translated into the problem of computing a shortest path
between two compact subspaces of R6 under a certain cost function.

Computational Geometry. Indeed, computational geometers are inter-
ested in different versions of this problem. In the simplest case, c takes
values from {1,∞}, i.e., the space is divided into free space and obstacles.
This problem can be solved in polynomial time using visibility graph in two
dimensions, and it can be ε-approximated in three dimensions. For example,
the computation of the Fréchet distance can be posed in this way [AG95]. A
slightly more complicated case occurs when we let c be a piecewise-constant
function. Mitchell and Papadimitriou [MP91] formulated this problem in
two dimensions and designed a linear-time algorithm to find the solution

4

within ε-accuracy. They list the problem for more general cost functions
as an open problem (See Section 10, problem number (3)). A series of
works [ALMS98, AMS00, RS00, AMS05] has resulted in an ε-approximation
algorithm that computes the shortest paths in a weighted polyhedral surface
in O((n/

√
ε) log(n/ε) log(1/ε) time.

Machine Learning. Sajama and Orlitsky [SO05] first applied density-
based distance (DBDs) to semi-supervised learning. Assuming that the
sample points are taken from an underlying distribution with density f , a
density-based distance can be defined by setting c(x) = f(x)−1/d in (1) and (2).1

The goal here is to place points that can be connected through dense re-
gions into the same cluster. Vincent and Bengio [VB03] and Bousquet et
al. [BCH04] suggest estimating f using a KDE and then approximating the
metric by discretizing the space in a similar fashion to Tsitsiklis [Tsi95].
However, they do not provide any analysis on the complexity of the dis-
cretized space. Bijral et al. [BRS11] bypass estimating f by building a
complete graph over a set of points {x1, x2, . . . , xn} sampled with respect
to f , in which the length of an edge (xi, xj) is ||xi − xj ||qp for fixed p and q,
and computing pairwise shortest paths in this graph. Hwang et al. [HDI14]
prove that for certain values of p and q, the latter metric and the density
based metric are equivalent up to a linear factor for sufficiently large values
of n.

The nearest neighbor metric can be viewed as a special case of density-
based distance when the underlying density is the nearest neighbor density
estimator.

3 Preliminaries

In this section, we define some basic concepts that are used in the paper.

3.1 Metrics

In this paper, we consider three metrics. Each metric is defined by a length
function on a set of paths between two points of the space. The distance
between two points is the length of the shortest path between them.

1The definition of DBDs in [SO05] is more general in that it allows for a choice of
discount functions (we take the inverse raised to the power 1/d as this seems to be the
most natural way of turning a measure of volumetric density to a measure of length).

5

Euclidean metric. This is the most natural metric defined by the Eu-
clidean length. We use `(γ) to denote the Euclidean length of a curve γ;
`(γ) can also be defined by setting c(x) = 1 for all x ∈ Rd in (1). We use
d(x, y) to denote the distance between two points x, y ∈ Rd based on the
Euclidean metric.

Nearest neighbor metric. As mentioned above, the nearest neighbor
length of a curve with respect to a set of points P , is defined by setting c(·)
to be N(·) in (1). The nearest neighbor length of a curve γ is denoted by
`N(γ), and the distance between two points x, y ∈ Rd with respect to the
nearest neighbor metric is denoted by dN(x, y).

Edge-squared metric. Finally, the edge-squared metric is defined as the
shortest path metric on a complete graph on a point set P , where the length
of each edge is its Euclidean length squared. The length of a path γ in this
graph is naturally the total length of its edges and it is denoted by `sq(γ).
The edge-squared distance between two points x, y ∈ P is the length of the
shortest path and is denoted by dsq(x, y).

3.2 Voronoi Diagrams and Delaunay Triangulations

Let P be a finite set of points, called sites, in Rn, for some n ≥ 1. The
Delaunay triangulation Del(P) is a decomposition of the plane into simplices
such that for each simplex σ ∈ Del(P), the Delaunay empty circle property
is satisfied; that is, there exists a circle C such that the vertices of σ are on
the boundary of C and int(C)∩ V is empty. The Voronoi diagram, denoted
Vor(P), is the planar dual to Del(P). We define the in-ball of a Voronoi
cell with site p to be the maximal ball centered at p that is contained in the
cell. The inradius of a Voronoi cell is the radius of its in-ball. We refer the
reader to [DBVKOS00] for more details.

4 Nearest Neighbor Distance Versus Edge-Squared
Distance

In this section, we show that the nearest neighbor distance of two points
x, y ∈ P can be approximated within a factor of three by looking at their
edge-squared distance. More precisely, dsq(x, y)/4 ≥ dN(x, y) ≥ dsq(x, y)/12
(see Lemma 4.1 and Lemma 4.4).

6

As a consequence, a constant factor approximation of the N-distance can
be obtained via computing shortest paths on a weighted graph, in nearly-
quadratic time. This approximation algorithm becomes more efficient, if the
shortest paths are computed on a Euclidean spanner of the points, which is
computable in nearly linear time [Hp11]. A result of Lukovszki et al. (Theo-
rem 16(ii) of [LSV06]) confirms that a (1+ε)-Euclidean spanner is a (1+ε)2-
spanner for the edge squared metric. Therefore, we obtain Theorem 1.1.

Before, starting the technical part of this section, we remark that both
the nearest neighbor and edge-squared metric can have Ω(log n) doubling
dimension. An illustrative example is a star with dense points sets on its
edges.

4.1 The Upper Bound

We show that the edge-squared distance between any pair of points x, y ∈ P
(with respect to the point set P) is always larger than four times the N-
distance between x and y (with respect to P). To this end, we consider any
shortest path with respect to the edge-squared measure and observe that its
N-length is an upper bound on the N-distance between its endpoints.

Lemma 4.1. Let P = {p1, p2, . . . , pn} be a set of points in Rd, and let
dN and dsq be the associated nearest neighbor and edge-squared distances,
respectively. Then, for any distinct points x, y ∈ P , we have that dN(x, y) ≤
1
4dsq(x, y).

Proof. Consider the shortest path x = q1 → q2 → · · · → qk = y with respect
to the edge-squared metric. Let γ be the same path in Rd parameterized by
arc length that uses straight line segments between each pair qi, qi+1. By
the definition of the edge-squared distance, we have

dsq(x, y) =

k−1∑
i=1

d(qi, qi+1)
2.

On the other hand, by the definition of N-distance we have

dN(x, y) ≤ `N(γ) =

∫
γ

N(s) ds.

7

The following sequence of equalities follow by basic rules of integration.∫
γ

N(s) ds =
k−1∑
i=1

∫
qi→qi+1

N(s) ds

=
k−1∑
i=1

(∫
qi→

qi+qi+1
2

N(s) ds+

∫
qi+qi+1

2
→qi+1

N(s) ds

)

≤
k−1∑
i=1

(∫
qi→

qi+qi+1
2

d(s, qi) ds+

∫
qi+qi+1

2
→qi+1

d(s, qi+1) ds

)

=

k−1∑
i=1

(∫ d(qi,qi+1)/2

0
t dt+

∫ d(qi,qi+1)/2

0
t dt

)

=
k−1∑
i=1

d(qi, qi+1)
2

4

=
1

4
dsq(x, y).

Thus, the proof is complete.

4.2 The Lower Bound

Next, we show that the edge-squared distance between any pair of points
from P cannot be larger than twelve times their N-distance. To this end, we
break a shortest path of the N-distance into segments in a certain manner,
and shadow the endpoints of each segment into their closest point of P to
obtain a short edge-squared path. The following definition formalizes our
method of discretizing paths.

Definition 4.1. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let
x, y ∈ P . Let γ : [0, 1]→ Rd be an (x, y)-path that is internally disjoint from
P . A sequence 0 < t0 ≤ t1 ≤ · · · ≤ tk < 1 is a proper breaking sequence
of γ if it has the following properties:

1. The nearest neighbors of γ(t0) and γ(tk) in P are x and y, respectively.

2. For all 1 ≤ i ≤ k, we have `(γ[ti−1, ti]) = 1
2(N(γ(ti−1)) + N(γ(ti)))

The following lemma guarantees the existence of breaking sequences.

Lemma 4.2. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let
x, y ∈ P . Let γ be a path from x to y that is internally disjoint from P .
There exists a proper breaking sequence of γ.

8

Proof. Pick t0 such that the closest neighbor to γ(t0) in P is x. Inductively,
pick ti > ti−1 so that property (2) of a proper breaking sequence holds until
γ(ti)’s closest neighbor is y.

We need to prove two properties: (I) a ti with property (2) always
exists, (II) this process ends after a finite number of steps (i.e., ti falls in
the Voronoi cell of y for some i).

Property I. Let ti−1 be the last selected point in the process. We prove
that a ti ∈ (ti−1, 1) exists such that

`(γ[ti−1, ti]) =
1

2
(N(γ(ti−1)) + N(γ(ti))).

Let the functions f : [ti−1, 1] → R and g : [ti−1, 1] → R be defined as
follows:

f(t) = `(γ[ti−1, t])

g(t) =
1

2
(N(γ(ti−1)) + N(γ(t))).

In particular, f(ti−1) = 0 and g(ti−1) = N(γ(ti−1)) > 0; so g(ti−1) > f(ti−1).
On the other hand,

f(1) = `(γ(ti−1, 1)) ≥ N(γ(ti−1)) > N(γ(ti−1))/2 = g(1).

The first inequality is a result of the Lipschitz property and the fact that
N(γ(1)) = N(y) = 0.

Since both f and g are continuous functions, the intermediate value
theorem implies the existence of a ti ∈ [ti−1, 1] such that f(ti) = g(ti),
which in turn implies property (I).

Property II. For t ∈ [t0, 1], let p(t) be the Euclidean distance from γ(t)
to P \ {y}. By definition, p(t) is positive everywhere. Since p is continuous
and defined on a closed interval, by the extreme value theorem, it attains a
minimum value pmin > 0. In any inductive step, if the nearest neighbor of
neither ti−1 nor ti is y then `(γ[ti−1, ti]) ≥ pmin, by the second property of a
breaking sequence. This implies the existence of a finite k such that γ(tk)’s
nearest neighbor in P is y.

Lemma 4.3. Let P = {p1, p2, · · · , pn} be a set of points in Rd. Furthermore,
let γ be any path in Rd and x be an endpoint of γ. If `(γ) = s, then
`N(γ) ≥ sN(x)− s2/2.

9

Proof. Let γu be a unit speed reparameterization of γ (i.e., |γu(t)| = 1 for
all t). Suppose, without loss of generality, that x = γ(0) = γu(0). Then, by
definition of the nearest neighbor metric,

`N(γ) = `N(γu) =

∫ s

0
N(γu(t))dt.

Then, the Lipschitz property of the N function implies:

`N(γ) ≥
∫ s

0
(N(γu(0))− t)dt

=

∫ s

0
(N(x)− t)dt

= sN(x)− s2/2.

Given a path γ that realizes the nearest neighbor distance between two
points x and y, in the proof of the following lemma we show how to obtain
another (x, y)-path with bounded edge-squared length. The proof heavily
relies on the idea of breaking sequences.

Lemma 4.4. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let
dN and dsq be the associated nearest neighbor and edge-squared distances,
respectively. Then, for any distinct points x, y ∈ P , dN(x, y) ≥ 1

12dsq(x, y).

Proof. Let γ be a path from x to y that realizes the nearest neighbor distance
between x and y, i.e., `N(γ) = dN(x, y).

Suppose, without loss of generality, that γ intersects P only at {x, y}.
Otherwise, we break γ into pieces that are internally disjoint from P and
prove the bound for each piece separately.

Let {t0, t1, . . . , tk} be a proper breaking sequence of γ. For 0 ≤ i ≤ k,
let ni ∈ P be the nearest neighbor of γ(ti); in particular n0 = x and nk = y.

Figure 2: Proof of Lemma 4.4

10

We show that `N(γ[ti−1, ti]) ≥ 1
12(d(ni−1, ni))

2 for any 1 ≤ i ≤ k, which
in turn implies

`N(γ) ≥ 1

12

k∑
i=1

(d(ni−1, ni))
2 ≥ 1

12
dsq(x, y).

Property 2 of a breaking sequence implies that `(γ[ti−1, ti]) = 2s, where
s = 1

4(N(γ(ti−1))+N(γ(ti))). We pick mi ∈ (ti−1, ti) so that `(γ[ti−1,mi]) =
`(γ[mi, ti]) = s. Lemma 4.3 implies

`N(γ[ti−1, ti]) = `N(γ[ti−1,mi]) + `N(γ[mi, ti])

≥ (sN(γ(ti−1))− s2/2) + (sN(γ(ti))− s2/2)

= 3s2. (3)

On the other hand, by the triangle inequality,

d(ni−1, ni) ≤ N(γ(ti−1)) + 2s+ N(γ(ti)) = 6s. (4)

The last equality follows by property I. Finally, Inequalities (3) and (4)
imply

`N(γi) ≥
1

12
(d(ni−1, ni))

2,

and the proof is complete.

5 A (1+ ε)-Approximation for the Nearest Neigh-
bor Metric

In this section, we describe a polynomial time approximation scheme to
compute the N-distance between a pair of points from a finite set P ⊂
Rd. The running time of our algorithm is ε−O(d)n log n for n points in
d-dimensional space. We start with Section 5.1, which describes an exact
algorithm for the simple case in which P consists of just one site. Section 5.3
describes how to obtain a piecewise linear path using infinitely many Steiner
points. Section 5.4 combines ideas from 5.3 and 5.1 to cut down the required
Steiner points to a finite number. Finally, Section 5.5 describes how to
generate the necessary Steiner points.

11

5.1 Nearest Neighbor Distance with One Site

We describe a method for computing dN for the special case that P is a single
point using complex analysis. This case will be important since distances
will go to zero at an input point and thus we must be more careful at
input points. Far away from input points, we will use a piecewise constant
approximation for the nearest neighbor function but near input points we
will us exact distances. More than likely this case has been solved by others
since the solution is so elegant. We refer the interested reader to [Str] for
more general methods to solve similar problems in the field of calculus of
variations.

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 3: To make the complex function one-to-one, one needs to extend the complex
plane to the two-fold cover called the two-fold Riemann Surface.

Suppose we want to compute dN(x, y) where P = {(0, 0)}. Writing
(x, y) ∈ C in polar coordinates as z = reiθ, we define the quadratic transfor-
mation f : C→ R by

f(z) = z2/2 = (r2/2)ei2θ,

where R is the two-fold Riemann surface; see Figure 3. The important point
here is that the image is a double covering of C. For example, the points 1
and −1 are mapped to different copies of 1/2. Therefore, on the Riemann
surface, the distance between 1 and −1 is one and the shortest path goes
through the origin. More generally, given any two nonzero points p and q
on the surface, the minimum angle between them (measured with respect
to the origin) will be between 0 and 2π. Moreover, if this angle is ≥ π, then
the shortest path between them will consist of the two straight lines [p, 0]
and [0, q]. Otherwise, the line [p, q] will be a line on the surface and, thus,
the geodesic from p to q.

Let dR denote the distance on the Riemann surface. We next show that
for a single point, the nearest neighbor geodesic is identical to the geodesic
on the Riemann surface.

Lemma 5.1. Let γ : [0, 1] → C be a curve. Then, the image of γ under f ,
denoted by f ◦ γ satisfies the following property:

dR(f ◦ γ) = `N(γ).

12

Proof. Suppose γ : [0, 1] → C is any piecewise differentiable curve, and let
α := f ◦ γ. The N-length `N(γ) of γ is the finite sum of the N-length of all
differentiable pieces of γ. If the path γ goes through the origin, we further
break the path at the origin so that α is also differentiable. Thus, it suffices
to consider (a, b) ⊂ [0, 1] so that γ[a, b] is a differentiable piece of γ. Then,
we have

`N(γ[a, b]) =

∫ b

a
|γ(t)||γ′(t)| dt | · | is modulus.

=

∫ b

a
|γ(t)γ′(t)| dt Modulus commutes with product.

=

∫ b

a
|α′(t)| dt Chain rule.

= `R(α[f(a), f(b)]).

Corollary 1 (Reduction to Euclidean Distances on a Riemann Surface).
Given three points x, y, and p in Rd such that p = NN(x) = NN(y), the
nearest neighbor geodesic G from x to y satisfies the following properties:

1. G is in the plane determined by x, y, p.

2. (a) If the angle formed by x, p, y is π/2 or more, then G consists of
the two straight segments xp and py.

(b) Otherwise, G is the preimage of the straight line from f(x) to
f(y), where f is the quadratic map in the plane given by x, y, p
to the Riemann Surface.

5.2 Discretizing a Path

First we approximate any (x, y)-path γ with a piecewise linear (x, y)-path
α that is composed of segments that are sufficiently long. The properties of
α, formalized in the following definition, are used in the rest of this section
to obtain a piecewise linear approximation using Steiner points.

Definition 5.1. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let
x, y ∈ P . Assume γ is a path from x to y that is internally disjoint from P .
Also, let 0 < εα < 1 be a real number. A sequence {0 = t0, t1, . . . , tk, tk+1 =
1} is a εα-discretizing sequence of γ if it has the following properties:

13

1. The nearest neighbor of both γ(t1) and γ(t2) is x, while the nearest
neighbor of both γ(tk−1) and γ(tk) is y.

2. For all 1 ≤ i ≤ k, we have d(γ(ti), γ(ti+1)) = εα ·N(γ(ti)).

In this case, the piecewise linear path α = {x, γ(t1), . . . , γ(tk), y} is a εα-
discretized path of γ.

The following lemma guarantees the existence of εα-discretizing sequences
and, hence, εα-discretized paths. Its proof is essentially the same as the proof
of Lemma 4.2.

Lemma 5.2. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let
x, y ∈ P . Let γ be a path from x to y that is internally disjoint from P and
0 < εα < 1 a real number. There exists a εα-discretizing sequence of γ.

Next, we show that the N-length of a εα-discretized path of γ is not
much longer than the N-length of γ.

Lemma 5.3. If α is a εα-discretized path of γ for some εα ≤ 1/2, then
`N(α) ≤ (1 + 4εα)`N(γ).

Proof. For 1 ≤ i ≤ k − 1, let αi be the line segment (γ(ti), γ(ti+1)). Fur-
thermore, let α0 and αk be the line segments (x, γ(t1)) and (γ(tk), y), re-
spectively. Also, let γi = γ[ti, ti+1], for 1 ≤ i ≤ k − 1, and γ0 = γ[0, t1] and
γk = γ[tk, 1].

We prove the stronger statement that `N(αi) ≤ (1 + 4εα)`N(γi), for any
0 ≤ i ≤ k. For i ∈ {0, k}, the straight line is indeed the shortest path in
the nearest neighbor metric (since N(γ(t1)) = γ(t0) = x and N(γ(tk)) =
γ(tk+1) = y), and so, `N(αi) ≤ `N(γi). For 1 ≤ i ≤ k − 1, by Lemma 5.4,

`N(αi) ≤ `N(γi) ·
N(γ(ti)) + `(αi)

N(γ(ti))− `(αi)
.

Then, by the second property of εα-discretizing sequences,

`N(αi) ≤ `N(γi) ·
N(γ(ti)) + εαN(γ(ti))

N(γ(ti))− εαN(γ(ti))
.

After simplifying and using the fact that εα ≤ 1/2, we obtain

`N(αi) ≤ `N(γi) ·
1 + εα
1− εα

≤ `N(γi) · (1 + 4εα).

14

5.3 Approximating with Steiner Points

Assume P ⊂ Rd, x, y ∈ P , and let γ be an arbitrary (x, y)-path. We show
how to approximate γ with a piecewise linear path through a collection of
Steiner points in Rd. To obtain an accurate estimation of γ, we require the
Steiner points to be sufficiently dense. The following definition formalizes
this density with a parameter δ.

Definition 5.2 (δ-sample). Let P = {p1, p2, · · · , pn} be a set of points in
Rd, and let D ⊆ Rd. For a real number 0 < δ < 1, a δ-sample is a (possibly
infinite) set of points T ⊆ D such that if z ∈ D \P , then d(z, T) ≤ δ ·N(z).

The following lemmas guarantees that an accurate estimation of γ can
be computed using a δ-sample.

Lemma 5.4. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let
x, y ∈ Rd. Let γ be any path from x to y, and l be the straight (x, y)-segment.
Assume further that N(x) > `(l). Then,

`N(l) ≤ `N(γ) · N(x) + `(l)

N(x)− `(l)

Proof. Let γ′ = γ ∩ B(x, `(l)). Observe that γ′ is a finite collection paths,
and let `(γ′) be the total length of these paths. For any point z ∈ B(x, `(l))

Figure 4: Proof of Lemma 5.4; γ′ is bold.

we have N(x) − `(l) ≤ N(z) ≤ N(x) + `(l) because N(·) is Lipschitz. Since
γ′ and l are both contained in B(x, `(l)), in particular, we have:

`N(γ′) ≥ `(γ′)(N(x)− `(l))

and
`N(l) ≤ `(l)(N(x) + `(l)) ≤ `(γ′)(N(x) + `(l)).

15

Thus, since γ′ ⊆ γ, we have `N(γ′) ≤ `N(γ). Finally, because both sides of
the inequalities are positive numbers, we have:

`N(l)

`N(γ)
≤ `N(l)

`N(γ′)
≤ N(x) + `(l)

N(x)− `(l)
.

Lemma 5.5. Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let S
be a δ-sample, and let 0 < δ < 1/10. Then, for any pair of points x, y ∈ P ,
there is a piecewise linear path η = (x, s1, . . . , sk, y), where s1, . . . , sk ∈ S,
such that:

`N(η) ≤ (1 + C1δ
2/3)dN(x, y),

and, for all 1 ≤ i ≤ k − 1,

`N((si, si+1)) ≤ C2 · δ2/3 ·N(si).

C1 and C2 are universal constants.

Proof. Let γ be an (x, y)-shortest path under the nearest neighbor metric.
We assume, without loss of generality, that γ is internally disjoint from P .
Of course, we can break any path to such pieces and use induction to prove
the lemma for the general case.

Let α = (x = γ(t0), γ(t1), . . . , γ(tk+1) = y) be a (2δ2/3)-discretization of
γ. For all 0 ≤ i ≤ k, let αi = (γ(ti), γ(ti+1)) for 0 ≤ i ≤ k, let mi be the
midpoint of αi, and let si ∈ S be the closest Steiner point to mi. Then, let
βi = (γ(ti), si, γ(ti+1)) be a two-segment path, and let β = β0 ◦ β1 ◦ · · · ◦ βk.
Finally, let η = (x, s1, s2, . . . , sk−1, y), and let ηi = (si, si+1) where 0 ≤ i < k
and s0 = x and sk = y to simplify notation.

We need to prove that `N(η) ≤ (1 + C1δ
2/3)`N(γ). Lemma 5.3 implies

that
`N(α) ≤ (1 + 8δ2/3)`N(γ)

Showing the following two facts imply the statement of the lemma.

`N(β) ≤ (1 + 20δ2/3)`N(α) (5)

`N(η) ≤ (1 + 8δ2/3)`N(β) (6)

16

Figure 5: The lines segment αi is blue, and the two-segment path βi is red.

A proof of Inequality (5): We prove the stronger statement that for all
0 ≤ i ≤ k, `N(βi) ≤ (1 + 8δ2/3)`N(αi). Recall that mi is the midpoint of αi
and si ∈ S is the closest Steiner point to mi. Let hi be the closes point of
αi to si; see Figure 5.

Because `(αi) ≈ δ2/3 N(mi), `((mi, si)) ≈ δ N(mi), and δ ≤ δ2/3, we have
(si, hi) is orthogonal to αi. Then, the following bound on the length of the
piecewise linear path βi = (γ(ti), si, γ(ti+1)) is implied by the Pythagorean
theorem using derivative to maximize a function.

`(βi) ≤ 2 ·

√(
`(αi)

2

)2

+ (`(si, hi))2 ≤ 2 ·
√(

δ2/3N(γ(ti))
)2

+ (δN(mi))
2 (7)

Then, the Lipschitz property of the N-function implies:

N(mi) ≤ N(γ(ti)) +
`(αi)

2
≤ N(γ(ti)) + δ2/3 ·N(γ(ti)) ≤ (1 + δ2/3)N(γ(ti)).

By substituting (1 + δ2/3)N(γ(ti)) for N(mi) in (7), we obtain

`(βi) ≤ 2 ·
√(

δ2/3N(γ(ti))
)2

+
(
δ(1 + δ2/3)N(γ(ti))

)2
= δ2/3N(γ(ti)) ·

√
1 +

(
δ1/3(1 + δ2/3)

)2
= `(αi) ·

(
1 + 2δ2/3

)

On the other hand, because both αi and βi are contained inB(γ(ti), εαN(γ(ti))),
for any point z ∈ αi ∪ βi we have N(γ(ti))(1− 2δ2/3) ≤ N(z) ≤ N(γ(ti))(1 +
2δ2/3) and so

`N(βi) ≤ `(βi) ·N(γ(ti))(1 + 2δ2/3).

and
`N(αi) ≥ `(αi) ·N(γ(ti))(1− 2δ2/3).

17

Last three inequalities together imply

`N(βi)

`N(αi)
≤ 1 + 2δ2/3

1− 2δ2/3
·
(

1 + 2δ2/3
)

≤ (1 + 20δ2/3).

Thus, we obtain Inequality (5) by summing over all αi’s and βi’s.

A proof of Inequality (6): First, by the triangle inequality, we obtain:

`(ηi) ≤ `(si, ti+1) + `(ti+1, si+1)

= 2δ2/3 ·
(

N(γ(ti)) + N(γ(ti+1))

2

)
≤ 2δ2/3 ·max (N(γ(ti)),N(γ(ti+1)))

Then, Lemma 5.4, letting x be the endpoint with larger N value, implies

`N(ηi) ≤ `N(si, ti+1, si+1) ·
1 + 2δ2/3

1− 2δ2/3
≤ `N(si, ti+1, si+1) · (1 + 8δ2/3).

Finally, by summing over all ηi’s we obtain Inequality 6, and the proof is
complete.

5.4 The Approximation Graph

So far we have shown that any shortest path can be approximated using a
δ-sample that is composed of infinitely many points. In addition, we know
how to compute the exact N-distance between any pair of points if they
reside in the same Voronoi cell of Vor(P). Here, we combine these two ideas
to be able to approximate any shortest path using only a finite number of
Steiner points. The high-level idea is to use the Steiner point approximation
while γ passes through regions that are far from P and switch to the exact
distance computation as soon as γ is sufficiently close to one of the points
in P .

Let P = {p1, p2, · · · , pn} be a set of points in Rd, and let B be any convex
body that contains P . Fix δ ∈ (0, 1), and for any 1 ≤ i ≤ n, let ri = rP (pi)
be the inradius of the Voronoi cell with site pi. Also, let ui = (1 − δ2/3)ri.
Finally, let S be a δ-sample on the domain B \

⋃
1≤i≤nB(pi, ui).

Definition 5.3 (Approximation Graph). The approximation graph A =
A(P, {u1, . . . , un}, S, δ) = (VA, EA) is a weighted undirected graph, with

18

weight function w : EA → R+. The vertices in VA are in one to one corre-
spondence with the points in S ∪P ; for simplicity we use the same notation
to refer to corresponding elements in S∪P and VA. The set EA is composed
of three types of edges:

1. If s1, s2 ∈ S and s1, s2 ∈ B(pi, ri) for any pi, then (s1, s2) ∈ EA and
w(s1, s2) = dN(s1, s2). We compute this distance using Corollary 1.

2. Otherwise, if s1, s2 ∈ S and `(s1, s2) ≤ C2δ
2/3 max(N(s1),N(s2)),

where C2 is the constant of Lemma 5.5, then (s1, s2) ∈ EA and w(s1, s2) =
max(N(s1),N(s2)) · `(s1, s2).

3. If s1 ∈ S and s1 ∈ B(pi, ri) then (pi, s1) ∈ EA and w(pi, s1) =
dN(pi, s1) = (d(pi, s1))

2/2; see Corollary 1.

For x, y ∈ VA let dA(x, y) denote the length of the shortest path from x to y
in the graph A.

The following lemma guarantees that the shortest paths in the approxi-
mation graph are sufficiently accurate estimations.

Lemma 5.6. Let {u1, . . . , un}, S and δ be defined as above. Let A(P, {u1, . . . , un}, S, δ)
be the approximation graph for P . For any pair of points x, y ∈ P we have:

(1− C2δ
2/3) · dN(x, y) ≤ dA(x, y) ≤ (1 + C4δ

2/3) · dN(x, y),

where C2 and C4 are constants computable in O(1) time.

Proof. First, we prove the upper bound. Let D = B \
⋃

1≤i≤nB(pi, ui),
and recall that S is a δ-sample on D. Let S+ be a δ-sample of B such
that S+ ∩ D = S. According to Lemma 5.5, there is a piecewise linear
path η = {x, s1, . . . , sk, y}, for s1, . . . , sk ∈ S+, such that `N(η) ≤ (1 +
C1δ

2/3)dN(x, y). We use η to obtain a (x, y)-path σ in A with length at
most (1 + 2C2δ

2/3)`N(η); C2 is the constant in Lemma 5.5.
Consider any maximal subpath η′ = (si, si+1, . . . , sj−1, sj) of η that re-

sides in B
(
pt, ut/(1− δ2/3)

)
for a pt ∈ P . The lengths of the type (2) edges

and the second inequality of Lemma 5.5 imply that si, sj /∈ B(pt, ut), which
in turn implies that si, sj ∈ D. Further, (si, sj) is a type (1) edge of A
and w(si, sj) = `N(si, sj) ≤ `N(η′). So, η′ in η corresponds to a single type
(1) edge (si, sj) in σ with no longer length. In fact, all type (1) edges of σ
correspond to not shorter paths in η.

Similarly, we consider maximal paths (p, si, si+1, . . . , sj−1, sj), where p
is an input point, and replacing them with type (3) edges of σ. Again, all
type (3) edges of σ correspond to not shorter paths of η.

19

It remains to show that type (2) edges of σ are not too long. Observe,
that each type (2) edge of σ corresponds to a line segment of η. Let (s1, s2) ∈
EA be a type (2) edge and let max(N(s1),N(s2)) = N(s1) without loss of
generality. By the Lipschitz property and the length property of type (2)
edges

`N(s1, s2) ≥ (N(s1)−`(s1, s2))`(s1, s2) ≥ (1−C2δ
2/3)N(s1)`(s1, s2) = (1−C2δ

2/3)w(s1, s2),

which implies
w(s1, s2) ≤ (1 + 2C2δ

2/3)`N(s1, s2),

and so, by Lemma 5.5,

`A(σ) ≤ (1 + 2C2δ
2/3)`N(η) ≤ (1 + C4δ

2/3)dN(x, y).

To prove the lower bound, let x, y ∈ VA and let σ = (x, s1, . . . , sk, y)
be a path from x to y in A. Also, let γ be the (x, y) path in Rd that hits
(x = s0, s1, . . . , sk, y = sk+1) in this order, and let the (si, sj) subpath of
γ be a line segment if (si, sj) is a type (2) edge in A and be the shortest
(si, sj) nearest neighbor path otherwise. Then, let γi be the subpath of γ
from si to si+1. We compare w(si, si+1) with `N(γi).

If (si, si+1) is type (1) or (3) then `N(γi) = w(s1, s2). Otherwise, (si, si+1)
is type (2) and by Lipschitz property

`N(s1, s2) ≤ (N(s1)+`(s1, s2))`(s1, s2) ≤ (1+C2δ
2/3)N(s1)`(s1, s2) = (1+C2δ

2/3)w(s1, s2).

Overall,
dN(x, y) ≤ `N(γ) ≤ (1 + C2δ

2/3)`A(σ),

and the proof is complete.

5.5 Construction of Steiner Points

The only remaining piece that we need to obtain an approximation scheme
is an algorithm for computing a δ-sample. For this section, given a point set
T and x ∈ T , let rT (x) denote the inradius of the Voronoi cell of Vor(T) that
contains x. Also, given a set T and an arbitrary point x (not necessarily in
T), let fT (x) denote the distance from x to its second nearest neighbor in
T .

We can apply existing algorithms for generating meshes and well-spaced
points to compute a δ-sample on D\

⋃
iB(pi, ui), where D ⊆ Rd is a domain,

and ui = (1− δ2/3)rP (pi). The procedure consists of two steps:

20

1. Use the algorithm of [MSV13] to construct a well-spaced point set M
(along with its associated approximate Delaunay graph) with aspect
ratio τ in time 2O(d)(n log n+ |M |).

2. Then over-refine M to S for the sizing function g(x) = 2δ
11τ fP (x) (while

maintaining aspect ratio τ) in time 2O(d)|S| by using the algorithm of
Section 3.7 in [She11]. (see also [HOMS10] for an earlier use of this
technique)

In the above algorithm, we will choose τ to be a fixed constant, say, τ = 6.
Both of the meshing algorithms listed above are chosen for their theoretical
guarantees on running time. In practice, one could use any quality Delau-
nay meshing algorithm, popular choices include Triangle [She96] in R2 and
Tetgen [Si11] or CGAL [ART+12] in R3.

From the guarantees in ([She11]), we know that

|S| = O

(∫
D

dx

g(x)d

)
= δ−O(d)n log ∆, (8)

where ∆ is the spread of P , i.e., the ratio of the largest distance between
two points in P to the smallest distance between two points in P .

Lemma 5.7. If x ∈ D \B(pi, ui), where pi = NN(x), then N(x) ≤ fP (x) ≤
5N(x).

Proof. Note that N(x) ≤ fP (x) is trivial. To prove the second half of the
inequality, let q be the closest point to p in P \ {pi}. Then, by the triangle
inequality, we have that

fP (x) ≤ d(x, q)

≤ d(x, pi) + d(pi, q)

≤ d(x, pi) + 2rP (pi)

≤ d(x, pi) +
2

1− δ2/3
d(x, pi)

= 5d(x, pi)

= 5N(x).

Now, it remains to show that the point set S is indeed a δ-sample on
D \

⋃
iB(pi, ui). This is provided by the following lemma.

Lemma 5.8. S is a δ-sample on D \
⋃
iB(pi, ui).

21

Proof. Let x ∈ D \
⋃
iB(pi, ui) be an arbitrary point. Then, let q be the

closest point to x that lies in S. Note that

d(x, q) ≤ τ · rS(q)

≤ τ

(
2δ

11τ
fP (q)

)
≤ 2δ

11
(fP (x) + d(x, q)).

This implies that

d(x, q) ≤ 2δ

11− 2δ
fP (x)

≤ 10δ

11− 2δ
N(x)

≤ δN(x),

as desired.

Now, we calculate the number of edges that will be present in the ap-
proximation graph defined in the previous section. For this, we require a
few lemmas.

Lemma 5.9. Let A = B(pi, rP (pi)) \ B(pi, ui) be an annulus around pi.
Then, |A ∩ S| = δ−O(d).

Proof. By the meshing guarantees of [She11], we know that for any point
s ∈ A ∩ S, B(s, t) does not contain a point from S \ {s} for t = Ω(rS(s)) =
Ω(δ · rP (p)). Thus, the desired result follows using a simple sphere packing
argument.

Lemma 5.10. If s ∈ S, then |B(s, C2δ
2/3N(s)) ∩ S| = δ−O(d), where C2 is

the constant in Lemma 5.5.

Proof. As in the previous lemma, meshing guarantees tell us that for any
s′ ∈ B(s, C2δ

2/3N(s)), we have that B(s′, t) does not contain a point from
S \ {s′} for t = Ω(δ ·N(s′)) = Ω(δ ·N(s)). Thus, we again obtain the desired
result from a sphere packing argument.

From the above lemmas, we see thatA is composed of |S| = δ−O(d)n log ∆
vertices and nδ−O(d) + |S| · δ−O(d) = |S| · δ−O(d) edges.
Remark. Note that the right hand side of (8) is in terms of the spread,
a non-combinatorial quantity. Indeed, one can construct examples of P for

22

which the integral in (8) is not bounded from above by any function of n.
However, for many classes of inputs, one can obtain a tighter analysis. In
particular, if P satisfies a property known as well-paced, one can show that
the resulting set S will satisfy |S| = 2O(d)n (see [MPS08, She12]).

In a more general setting (without requiring that P is well-paced), one
can modify the algorithms to produce output in the form of a hierarchical
mesh [MPS11]. This then produces an output of size 2O(d)n, and (1 + ε)-
approximation algorithm for the nearest neighbor metric can be suitably
modified so that the underlying approximation graph uses a hierarchical set
of points instead of a full δ-sample. However, we ignore the details here for
the sake of simplicity of exposition.

The above remark, along with the edge count of A and the running time
guarantees from [MSV13], yields Theorem 1.2, the main theorem of this
section.

6 Discussion

Motivated by estimating geodesic distances within subsets of Rn, we consider
two distance metrics in this paper: the N -distance and the edge-squared
distance. The main focus of this paper is to find an approximation of the
N -distance. One possible drawback of our (1 + ε)-approximation algorithm
is its exponential dependency on d. To alleviate this dependency a natural
approach is using a Johnson-Lindenstrauss type projection. Thereby, we
would like to ask which properties are preserved under random projections
such as those in Johnson-Lindenstrauss transforms.

We are currently working on implementing the approximation algorithm
presented in Section 4. We hope to show that this approximation is fast in
practice as well as in theory.

Acknowledgement

The authors would like to thank Larry Wasserman for helpful discussions.

References

[AG95] Helmut Alt and Michael Godau. Computing the Fréchet dis-
tance between two polygonal curves. International Journal
of Computational Geometry & Applications, 5(01n02):75–91,
1995.

23

[ALMS98] Lyudmil Aleksandrov, Mark Lanthier, Anil Maheshwari, and
Jörg-Rüdiger Sack. An epsilon-approximation for weighted
shortest paths on polyhedral surfaces. In 6th WS on Algo-
rithm Theory, pages 11–22, London, UK, UK, 1998.

[AMS00] Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger
Sack. Approximation algorithms for geometric shortest path
problems. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing, STOC ’00, pages 286–
295, New York, NY, USA, 2000. ACM.

[AMS05] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining
approximate shortest paths on weighted polyhedral surfaces.
J. ACM, 52(1):25–53, January 2005.

[ART+12] Pierre Alliez, Laurent Rineau, Stéphane Tayeb, Jane
Tournois, and Mariette Yvinec. 3D mesh generation. In
CGAL User and Reference Manual. CGAL Editorial Board,
4.1 edition, 2012.

[BCH04] Olivier Bousquet, Olivier Chapelle, and Matthias Hein. Mea-
sure based regularization. In 16th NIPS, 2004.

[Ber96] Johann Bernoulli. Branchistochrone problem. Acta Erudito-
rum, June 1696.

[BRS11] Avleen Singh Bijral, Nathan D. Ratliff, and Nathan Srebro.
Semi-supervised learning with density based distances. In
Fabio Gagliardi Cozman and Avi Pfeffer, editors, UAI, pages
43–50. AUAI Press, 2011.

[DBVKOS00] Mark De Berg, Marc Van Kreveld, Mark Overmars, and
Otfried Cheong Schwarzkopf. Computational Geometry.
Springer, 2000.

[HDI14] Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero
III. Shortest path through random points. 2014.
arXiv/1202.0045v3.

[HOMS10] Benôıt Hudson, Steve Y. Oudot, Gary L. Miller, and Don-
ald R. Sheehy. Topological inference via meshing. In SOCG:
Proceedings of the 26th ACM Symposium on Computational
Geometry, 2010.

24

[Hp11] Sariel Har-peled. Geometric Approximation Algorithms.
American Mathematical Society, Boston, MA, USA, 2011.

[Kat10] Svetlana Katok. Fuchsian groups, geodesic flows on sur-
faces of constant negative curvature and symbolic coding of
geodesics. http://www.personal.psu.edu/sxk37/cmi.pdf,
2010.

[KH03] J. Kim and J.P. Hespanha. Discrete approximations to contin-
uous shortest-path: Application to minimum-risk path plan-
ning for groups of uavs. In 42nd IEEE ICDC, Jan 2003.

[LSV06] Tams Lukovszki, Christian Schindelhauer, and Klaus Volbert.
Resource efficient maintenance of wireless network topolo-
gies. Journal of Universal Computer Science, 12(9):1292–
1311, 2006.

[MP91] Joseph S. B. Mitchell and Christos H. Papadimitriou. The
weighted region problem: finding shortest paths through a
weighted planar subdivision. J. ACM, 38(1):18–73, January
1991.

[MPS08] Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Linear-
size meshes. In CCCG: Canadian Conference in Computa-
tional Geometry, 2008.

[MPS11] Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Beating
the spread: Time-optimal point meshing. In SOCG: Proceed-
ings of the 27th ACM Symposium on Computational Geome-
try, 2011.

[MSV13] Gary L. Miller, Donald R. Sheehy, and Ameya Velingker. A
fast algorithm for well-spaced points and approximate delau-
nay graphs. In 29th SOCG, SoCG ’13, pages 289–298, New
York, NY, USA, 2013. ACM.

[RR90] Neil Rowe and Ron Ross. Optimal grid-free path planning
across arbitrarily contoured terrain with anisotropic friction
and gravity effects. pages 540–553, 1990.

[RS00] John Reif and Zheng Sun. An efficient approximation algo-
rithm for weighted region shortest path problem. In Pro-
ceedings of the 4th Workshop on Algorithmic Foundations of
Robotics, WAFR ’00, pages 191–203, 2000.

25

http://www.personal.psu.edu/sxk37/cmi.pdf

[She96] Jonathan Richard Shewchuk. Triangle: Engineering a 2D
quality mesh generator and Delaunay triangulator. In Applied
Computational Geometry, volume 1148 of Lecture Notes in
Computer Science, pages 203–222, 1996.

[She11] Donald Sheehy. Mesh Generation and Geometric Persistent
Homology. PhD thesis, Carnegie Mellon University, Pitts-
burgh, July 2011. CMU CS Tech Report CMU-CS-11-121.

[She12] Donald R. Sheehy. New Bounds on the Size of Optimal
Meshes. Computer Graphics Forum, 31(5):1627–1635, 2012.

[Si11] Hang Si. TetGen: A quality tetrahedral mesh generator and
a 3D Delaunay triangulator. http://tetgen.org/, January
2011.

[SO05] Sajama and Alon Orlitsky. Estimating and computing density
based distance metrics. In ICML ’05, pages 760–767, New
York, NY, USA, 2005. ACM.

[Str] John Strain. Calculus of variation. http://math.berkeley.
edu/~strain/170.S13/cov.pdf.

[Tsi95] John N. Tsitsiklis. Efficient algorithms for globally opti-
mal trajectories. IEEE Transactions on Automatic Control,
40:1528–1538, 1995.

[VB03] Pascal Vincent and Yoshua Bengio. Density sensitive metrics
and kernels. In Snowbird Workshop, 2003.

26

http://tetgen.org/
http://math.berkeley.edu/~strain/170.S13/cov.pdf
http://math.berkeley.edu/~strain/170.S13/cov.pdf

	1 Introduction
	1.1 Overview

	2 Related Work
	3 Preliminaries
	3.1 Metrics
	3.2 Voronoi Diagrams and Delaunay Triangulations

	4 Nearest Neighbor Distance Versus Edge-Squared Distance
	4.1 The Upper Bound
	4.2 The Lower Bound

	5 A (1+)-Approximation for the Nearest Neighbor Metric
	5.1 Nearest Neighbor Distance with One Site
	5.2 Discretizing a Path
	5.3 Approximating with Steiner Points
	5.4 The Approximation Graph
	5.5 Construction of Steiner Points

	6 Discussion

