Abstract
Several researchers proposed using non-Euclidean metrics on point sets in Euclidean space for clustering noisy data. Almost always, a distance function is desired that recognizes the closeness of the points in the same cluster, even if the Euclidean cluster diameter is large. Therefore, it is preferred to assign smaller costs to the paths that stay close to the input points.
In this paper, we consider a natural metric with this property, which we call the nearest neighbor metric. Given a point set P and a path \(\gamma \), this metric is the integral of the distance to P along \(\gamma \). We describe a \((3+\varepsilon )\)-approximation algorithm and a more intricate \((1+\varepsilon )\)-approximation algorithm to compute the nearest neighbor metric. Both approximation algorithms work in near-linear time. The former uses shortest paths on a sparse graph defined over the input points. The latter uses a sparse sample of the ambient space, to find good approximate geodesic paths.
Partially supported by the NSF grant CCF-1065106.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52(1), 25–53 (2005)
Alliez, P., Rineau, L., Tayeb, S., Tournois, J., Yvinec, M.: 3D mesh generation. In: CGAL User and Reference Manual. CGAL Editorial Board, 4.1 edn. (2012)
Bousquet, O., Chapelle, O., Hein, M.: Measure based regularization. In: 16th NIPS (2004)
Bernoulli, J.: Branchistochrone problem. Acta Eruditorum, June 1696
Bijral, A.S., Ratliff, N.D., Srebro, N.: Semi-supervised learning with density based distances. In: Cozman, F.G., Pfeffer, A. (eds.) UAI, pp. 43–50. AUAI Press (2011)
Cohen, M.B., Fasy, B.T., Miller, G.L., Nayyeri, A., Sheehy, D., Velingker, A.: Approximating nearest neighbor distances, 2015. CoRR, abs/1502.08048
De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer (2000)
Hwang, S.J., Damelin, S.B., Hero, A.O., III: Shortest path through random points (2014). arXiv/1202.0045v3
Hudson, B., Oudot, S.Y., Miller, G.L., Sheehy, D.R.: Topological inference via meshing. In: SOCG: Proceedings of the 26th ACM Symposium on Computational Geometry (2010)
Har-peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Boston (2011)
Kim, J., Hespanha, J.P.: Discrete approximations to continuous shortest-path: Application to minimum-risk path planning for groups of uavs. In: 42nd IEEE ICDC, January 2003
Lukovszki, Tamás, Schindelhauer, Christian, Volbert, Klaus: Resource efficient maintenance of wireless network topologies. Journal of Universal Computer Science 12(9), 1292–1311 (2006)
Joseph, S.B.: Mitchell and Christos H. Papadimitriou. The weighted region problem: finding shortest paths through a weighted planar subdivision. J. ACM 38(1), 18–73 (1991)
Miller, G.L., Phillips, T., Sheehy, D.R.: Linear-size meshes. In: CCCG: Canadian Conference in Computational Geometry (2008)
Miller, G.L., Phillips, T., Sheehy, D.R.: Beating the spread: Time-optimal point meshing. In: SOCG: Proceedings of the 27th ACM Symposium on Computational Geometry (2011)
Miller, G.L., Sheehy, D.R., Velingker, A.: A fast algorithm for well-spaced points and approximate delaunay graphs. In: 29th SOCG. SoCG 2013, pp. 289–298. ACM, New York (2013)
Rowe, Neil, Ross, Ron: Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects. IEEE Transactions on Robotics and Automation 6(5), 540–553 (1990)
Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, Dinesh (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)
Sheehy, D.: Mesh Generation and Geometric Persistent Homology. PhD thesis, Carnegie Mellon University, Pittsburgh, July 2011. CMU CS Tech Report CMU-CS-11-121
Sheehy, Donald R.: New Bounds on the Size of Optimal Meshes. Computer Graphics Forum 31(5), 1627–1635 (2012)
Si, H.: TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator, January 2011. http://tetgen.org/
Sajama and Orlitsky, A.: Estimating and computing density based distance metrics. In: ICML 2005, pp. 760–767. ACM, New York (2005)
Strain, J.: Calculus of variation. http://math.berkeley.edu/ strain/170.S13/cov.pdf
Tsitsiklis, John N.: Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 1528–1538 (1995)
Vincent, P., Bengio, Y.: Density sensitive metrics and kernels. In: Snowbird Workshop (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Cohen, M.B., Fasy, B.T., Miller, G.L., Nayyeri, A., Sheehy, D.R., Velingker, A. (2015). Approximating Nearest Neighbor Distances. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-21840-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21839-7
Online ISBN: 978-3-319-21840-3
eBook Packages: Computer ScienceComputer Science (R0)