Abstract
In this paper, we introduce and investigate the Minimum Eccentricity Shortest Path (MESP) problem in unweighted graphs. It asks for a given graph to find a shortest path with minimum eccentricity. We demonstrate that:
-
a minimum eccentricity shortest path plays a crucial role in obtaining the best to date approximation algorithm for a minimum distortion embedding of a graph into the line;
-
the MESP-problem is NP-hard on general graphs;
-
a 2-approximation, a 3-approximation, and an 8-approximation for the MESP-problem can be computed in \(\mathcal {O}(n^3)\) time, in \(\mathcal {O}(nm)\) time, and in linear time, respectively;
-
a shortest path of minimum eccentricity k in general graphs can be computed in \(\mathcal {O}(n^{2k+2}m)\) time;
-
the MESP-problem can be solved in linear time for trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the line. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 225–233. ACM (2005), Baltimore
BÇŽdoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In: Proceedings of the ACM/SIAM Symposium on Discrete Algorithms (2005)
Corneil, D.G., Olariu, S., Stewart, L.: Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs. SIAM J. Computing 28, 292–302 (1997)
Deogun, J.S., Kratsch, D.: Diametral path graphs. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 344–357. Springer, Heidelberg (1995)
Leitert, A., Dragan, F.F., Köhler, E.: Line-distortion, bandwidth and path-length of a graph. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 158–169. Springer, Heidelberg (2014)
Dragan, F.F., Leitert, A.: Minimum eccentricity shortest paths in some structured graph classes. In: WG 2015: 41st International Workshop on Graph-Theoretic Concepts in Computer Science, June 17–19, 2015, Munich, Germany, Lecture Notes in Computer Science (2015) (to appear)
Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion is fixed parameter tractable. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)
Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum distortion embedding. Theor. Comput. Sci. 412, 3530–3536 (2011)
Handler, G.Y.: Minimax location of a facility in an undirected tree graph. Transportation Science 7, 287–293 (1973)
Heggernes, P., Meister, D.: Hardness and approximation of minimum distortion embeddings. Information Processing Letters 110, 312–316 (2010)
Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion embeddings into a path of bipartite permutation graphs and threshold graphs. Theoretical Computer Science 412, 1275–1297 (2011)
Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Proceedings of FOCS 2001, pp. 10–35. IEEE (2005)
Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces, Handbook of Discrete and Computational Geometry, 2nd edn., pp. 177–196. CRC Press (2004)
Kratsch, D.: Domination and total domination on asteroidal triple-free graphs. Discrete Applied Mathematics 99, 111–123 (2000)
Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics 156, 291–298 (1996)
Slater, P.J.: Locating central paths in a graph. Transportation Science 16, 1–18 (1982)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dragan, F.F., Leitert, A. (2015). On the Minimum Eccentricity Shortest Path Problem. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-21840-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21839-7
Online ISBN: 978-3-319-21840-3
eBook Packages: Computer ScienceComputer Science (R0)