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Solving Problems on Graphs of High Rank-Width⋆
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Abstract. A modulator of a graphG to a specified graph classH is a set of
vertices whose deletion putsG into H. The cardinality of a modulator to var-
ious graph classes has long been used as a structural parameter which can be
exploited to obtain FPT algorithms for a range of hard problems. Here we in-
vestigate what happens when a graph contains a modulator which is large but
“well-structured” (in the sense of having bounded rank-width). Can such modu-
lators still be exploited to obtain efficient algorithms? And is it even possible to
find such modulators efficiently?
We first show that the parameters derived from such well-structured modulators
are strictly more general than the cardinality of modulators and rank-width itself.
Then, we develop an FPT algorithm for finding such well-structured modulators
to any graph class which can be characterized by a finite set offorbidden induced
subgraphs. We proceed by showing how well-structured modulators can be used
to obtain efficient parameterized algorithms for MINIMUM VERTEX COVER and
MAXIMUM CLIQUE. Finally, we use the concept of well-structured modulatorsto
develop an algorithmic meta-theorem for efficiently deciding problems express-
ible in Monadic Second Order (MSO) logic, and prove that thisresult is tight in
the sense that it cannot be generalized to LinEMSO problems.

1 Introduction

Many important graph problems are known to be NP-hard, and yet admit efficient so-
lutions in practice due to the inherent structure of instances. The parameterized com-
plexity paradigm [10,24] allows a more refined analysis of the complexity of various
problems and hence enables the design of more efficient algorithms. In particular, given
an instance of sizen and a numerical parameterk which captures some property of
the instance, one asks whether the instance can be solved in time f(k) · nO(1). Param-
eterized problems which admit such an algorithm are calledfixed parameter tractable
(FPT), and the algorithms themselves are often called FPTalgorithms.

Given the above, it is natural to ask what kind of structure can be exploited to
obtain FPT algorithms for a wide range of natural graph problems. There are two very
successful, mutually incomparable approaches which tackle this question.

A. Width measures.Treewidth has become an extremely successful structural parame-
ter with a wide range of applications in many fields of computer science. However,
treewidth is not suitable for use in dense graphs. This led tothe development of algo-
rithms that use the parameter clique-width [7], which can beviewed as a relaxation
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of treewidth towards dense graphs. However, while there areefficient theoretical
algorithms for computing tree-decompositions, this is notthe case for decomposi-
tions for clique-width. This shortcoming has later been overcome by the notion of
rank-width [25], which improves upon clique-width by allowing the efficient compu-
tation of rank-decompositions while retaining all of the positive algorithmic results
previously obtained for clique-width.

B. Modulators.A modulator is a vertex set whose deletion places the considered graph
into some specified graph class. A substantial amount of research has been placed
into finding as well as exploiting small modulators to various graph classes [11,3].
Popular notions such as vertex cover and feedback vertex setare also special cases
of modulators (to the classes of edgeless graphs and forests, respectively). One ad-
vantage of parameterizing by the size of modulators is that it allows us to build on
the vast array of research of polynomial-time algorithms onspecific graph classes
(see, for instance, [6,23]). In other fields of computer science, modulators are often
calledbackdoorsand have been successfully used to obtain efficient algorithms for,
e.g., Satisfiability and Constraint Satisfaction [14].

Our primary goal in this paper is to push the boundaries of tractability for a wide range
of problems above the state of the art for both of these approaches. We summarize our
contributions below.

1. We introduce a family of “hybrid” parameters that combineapproaches A and B.

Given a graphG and a fixed graph classH, the new parameters capture (roughly speak-
ing) the minimum rank-width of any modulator ofG into H. We call this thewell-
structure numberof G or wsnH(G). The formal definition of the parameter also relies
on the notion ofsplit decompositions[8] and is provided in Section 3, where we also
prove that for any graph classH of unbounded rank-width,wsnH is not larger and in
many cases much smaller than both rank-width and the size of amodulator toH.

2. We develop an FPT algorithm for computingwsnH.

As with most structural parameters, virtually all algorithmic applications of the well-
structure number rely on having access to an appropriate decomposition. In Section 4
we provide an FPT algorithm for computingwsnH along with the corresponding decom-
position for any graph classH which can be characterized by a finite set of forbidden
induced subgraphs (obstructions). This is achieved by building on the polynomial algo-
rithm for computing split-decompositions [18] in combination with the FPT algorithm
for computing rank-width [20].

3. We design FPT algorithms for Minimum Vertex Cover (MINVC) and Maximum
Clique (MAX CLQ) parameterized bywsnH.

Specifically, in Section 5 we show that for any graph classH (which can be character-
ized by a finite set of obstructions) such that the problem is polynomial-time tractable
on H, the problem becomes fixed parameter tractable when parameterized bywsnH.
We also give an overview of possible choices ofH for M INVC and MAX CLQ.

4. We develop ameta-theoremto obtain FPT algorithms for problems definable in
Monadic Second Order (MSO) logic [7] parameterized bywsnH.
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The meta-theorem requires that the problem is FPT when parameterized by the cardi-
nality of a modulator toH. We prove that this condition is not only sufficient but also
necessary, in the sense that the weaker condition of polynomial-time tractability onH
used for MINVC and MAX CLQ is not sufficient for FPT-time MSO model checking.
Formal statements and proofs can be found in Section 6.

5. We show that, in general, solving LinEMSO problems [7,12]is not FPT when pa-
rameterized bywsnH.

In particular, in the concluding Section 7 we give a proof that these problems are in
general paraNP-hard when parameterized bywsnH under the same conditions as those
used for MSO model checking.

2 Preliminaries

The set of natural numbers (that is, positive integers) willbe denoted byN. For i ∈ N

we write [i] to denote the set{1, . . . , i}. If ∼ is an equivalence relation over a setA,
then fora ∈ A we use[a]∼ to denote the equivalence class containinga.

Graphs We will use standard graph theoretic terminology and notation (cf. [9]). All
graphs considered in this document are simple and undirected. The non-leaf vertices of
a tree are called itsinternal nodes. If S is a set of leaves ofT , thenT (S) denotes the
smallest connected subtree spanningS.

Given a graphG = (V (G), E(G)) andA ⊆ V (G), we denote byN(A) the set
of neighbors ofA in V (G) \ A; if A contains a single vertexv, we useN(v) instead
of N({v}). We useV andE as shorthand forV (G) andE(G), respectively, when the
graph is clear from context. Two vertex setsA,B areoverlappingif A∩B,A\B,B\A
are all nonempty.G−A denotes the subgraph ofG obtained by deletingA.

Given a graphG = (V,E) and a graph classH, a setX ⊆ V is called amodulator
to H if G − X ∈ H. A graph class is calledhereditary if it is closed under vertex
deletion. A graphH is an induced subgraphof G if H can be obtained by deleting
vertices (along with all of their incident edges) fromG. ForA ⊆ V (G) we useG[A] to
denote the subgraph ofG obtained by deletingV (G)\A. LetF be a finite set of graphs;
then the class ofF -freegraphs is the class of all graphs which do not contain any graph
in F as an induced subgraph. We will often refer to elements ofF asobstructions, and
we say that the class ofF -free graphs ischaracterized byF .

Fixed-Parameter Tractability.We refer the reader to [10,24] for an introduction to pa-
rameterized complexity. Aparameterized problemP is a subset ofΣ∗ × N for some
finite alphabetΣ. For a problem instance(x, k) ∈ Σ∗×N we callx the main part andk
the parameter. A parameterized problemP is fixed-parameter tractable(FPT in short)
if a given instance(x, k) can be solved in timeO(f(k) · p(|x|)) wheref is an arbitrary
computable function ofk andp is a polynomial function.

Splits and Graph Labeled TreesA split of a connected graphG = (V,E) is a vertex
bipartition{A,B} of V such that every vertex ofA′ = N(B) has the same neighbor-
hood inB′ = N(A). The setsA′ andB′ are calledfrontiersof the split. A split is said
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to benon-trivial if both sides have at least two vertices. A connected graph which does
not contain a non-trivial split is calledprime. A bipartition istrivial if one of its parts is
the empty set or a singleton. Cliques and stars are calleddegenerategraphs; notice that
every non-trivial bipartition of their vertices is a split.

LetG = (V,E) be a graph. To simplify our exposition, we will use the notionof
split-modulesinstead of splits where suitable. A setA ⊆ V is called asplit-moduleof
G if there exists a connected componentG′ = (V ′, E′) of G such that{A, V ′ \ A}
forms a split ofG′. Notice that ifA is a split-module thenA can be partitioned intoA1

andA2 such thatN(A2) ⊆ A and for eachv1, v2 ∈ A1 it holds thatN(v1)∩(V ′\A) =
N(v2)∩ (V ′ \A). For technical reasons,V and∅ are also considered split-modules. We
say that two disjoint split-modulesX,Y ⊆ V areadjacentif there existx ∈ X and
y ∈ Y such thatx andy are adjacent.

A graph-labeled treeis a pair(T,F), whereT is a tree andF is a set of graphs
such that each internal nodeu of T is labeledby a graphG(u) ∈ F and there is a
bijection between the edges ofT incident tou and vertices ofG(u). When clear from
the context, we may useu as a shorthard forG(u) ∈ F ; for instance, we useV (u) to
denoteV (G(u)) and we say that an edge ofT incident tou is incidentto the vertex of
G(u) mapped to it. Graph-labeled trees were introduced in [16,17] and in the following
paragraphs we recall some useful definitions and theorems that appear in [18].

For an internal nodeu of T , the vertices ofV (u) are calledmarker vertices and
the edges ofE(u) are calledlabel-edges. Edges ofT incident to two internal nodes are
calledtree-edges. Marker vertices incident to a tree-edgee are called theextremitiesof
e, and each leafv is associated withthe unique marker vertexq (in the neighbor ofv)
mapped to the edge incident tov. Perhaps the most important notion for graph-labeled
trees with respect to split decomposition is that ofaccessibility.

Definition 1. Let (T,F) be a graph-labeled tree. The marker verticesq and q′ are
accessible from one another if there is a sequenceΠ of marker verticesq, . . . , q′ such
that the two following conditions holds.

1. Every two consecutive elements ofΠ are either the vertices of a label-edge or the
extremities of a tree-edge;

2. the sequence of edges obtained above alternates between tree-edges and label-
edges.

Two leaves are accessible if their associated marker vertices are accessible. The
accessibility graphof graph-labeled tree(T,F), denotedGr(T,F), is the graph whose
vertices are leaves ofT and which has an edge between two distinct leavesl andl′ if
and only if they are accessible from one another. Conversely, we may say that(T,F) is
the graph-labeled tree ofGr(T,F).

Definition 2 ([18]). Lete be a tree-edge incident to internal nodesu andu′ in a graph-
labeled tree, and letq ∈ V (u) andq′ ∈ V (u′) be the extremities ofe. Thenode-joinof
u, u′ replacesu andu′ with a new internal nodev labeled by the graph formed from the
disjoint union ofG(u) andG(u′) as follows: all possible label-edges are added between
N(q) andN(q′), and thenq andq′ are deleted. The new nodev is made adjacent to all
neighbors ofu andu′ in T . Thenode-splitis then the inverse of the node-join.
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Fig. 1. A graph-labeled tree (right) and its accessibility graph (left).

Notice that the node-join operation and the node-split operation preserve the acces-
sibility graph of the GLT. A graph-labeled tree isreducedif all its labels are either prime
or degenerate, and no node-join of two cliques or two stars ispossible.

Theorem 1 ([8,16,17,18]).For any connected graphG, there exists a unique, reduced
graph-labeled tree(T,F) such thatG = Gr(T,F).

The unique graph-labeled tree guaranteed by the previous theorem is thesplit-tree,
and is denotedST (G).

Theorem 2 ([8,16,17,18]).Let (T,F) be the split-tree of a connected graphG. Any
split ofG is the bipartition (of leaves) induced by removing an internal tree-edge from
T ′, whereT ′ = T or T ′ is obtained fromT by exactly one node-split of a degenerate
node.

Theorem 3 ([18]). The split-treeST (G) of a connected graphG = (V,E) with n
vertices and m edges can be built incrementally in timeO(n +m)α(n +m), whereα
is the inverse Ackermann function.

Rank-width For a graphG andU,W ⊆ V (G), let AG[U,W ] denote theU × W -
submatrix of the adjacency matrix over the two-element fieldGF(2), i.e., the entry
au,w, u ∈ U andw ∈ W , of AG[U,W ] is 1 if and only if {u,w} is an edge ofG. The
cut-rankfunctionρG of a graphG is defined as follows: For a bipartition(U,W ) of the
vertex setV (G), ρG(U) = ρG(W ) equals the rank ofAG[U,W ] overGF(2).

A rank-decompositionof a graphG is a pair(T, µ) whereT is a tree of maximum
degree 3 andµ : V (G) → {t : t is a leaf ofT} is a bijective function. For an edgee
of T , the connected components ofT−e induce a bipartition(X,Y ) of the set of leaves
of T . Thewidthof an edgee of a rank-decomposition(T, µ) is ρG(µ−1(X)). Thewidth
of (T, µ) is the maximum width over all edges ofT . The rank-widthof G, rw(G) in
short, is the minimum width over all rank-decompositions ofG. We denote byRi the
class of all graphs of rank-width at mosti, and say that a graph classH is of unbounded
rank-widthif H 6⊆ Ri for anyi ∈ N.
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Fig. 2. A rank-decomposition of the cycleC5.

Theorem 4 ([20]).Let k ∈ N be a constant andn ≥ 2. For ann-vertex graphG, we
can output a rank-decomposition of width at mostk or confirm that the rank-width of
G is larger thank in timef(k) · n3, wheref is a computable function.

Monadic Second Order Logic on GraphsWe assume that we have an infinite supply
of individual variables, denoted by lowercase lettersx, y, z, and an infinite supply of
set variables, denoted by uppercase lettersX,Y, Z. Formulasof monadic second-order
logic (MSO) are constructed from atomic formulasE(x, y), X(x), andx = y using
the connectives¬ (negation),∧ (conjunction) and existential quantification∃x over in-
dividual variables as well as existential quantification∃X over set variables. Individual
variables range over vertices, and set variables range oversets of vertices. The atomic
formulaE(x, y) expresses adjacency,x = y expresses equality, andX(x) expresses
that vertexx in the setX . From this, we define the semantics of monadic second-order
logic in the standard way (this logic is sometimes called MSO1).

Free and bound variablesof a formula are defined in the usual way. Asentenceis a
formula without free variables. We writeϕ(X1, . . . , Xn) to indicate that the set of free
variables of formulaϕ is {X1, . . . , Xn}. If G = (V,E) is a graph andS1, . . . , Sn ⊆
V we writeG |= ϕ(S1, . . . , Sn) to denote thatϕ holds inG if the variablesXi are
interpreted by the setsSi, for i ∈ [n]. For a fixed MSO sentenceϕ, the MSO Model
Checking problem (MSO-MCϕ) asks whether an input graphG satisfiesG |= ϕ.

It is known that MSO formulas can be checked efficiently as long as the graph has
bounded rank-width.

Theorem 5 ([12]).Let ϕ andψ = ψ(X) be fixed MSO formulas. Given ann-vertex
graphG and a setS ⊆ V (G), there exists a computable functionf such that we can
decide whetherG |= ϕ and whetherG |= ψ(S) in timef(rw(G)) · n3.

We review MSOtypesroughly following the presentation in [22]. Thequantifier
rank of an MSO formulaϕ is defined as the nesting depth of quantifiers inϕ. For
non-negative integersq and l, let MSOq,l consist of all MSO formulas of quantifier
rank at mostq with free set variables in{X1, . . . , Xl}.

Let ϕ = ϕ(X1, . . . , Xl) andψ = ψ(X1, . . . , Xl) be MSO formulas. We sayϕ
andψ areequivalent, written ϕ ≡ ψ, if for all graphsG andU1, . . . , Ul ⊆ V (G),
G |= ϕ(U1, . . . , Ul) if and only if G |= ψ(U1, . . . , Ul). Given a setF of formulas,
let F/≡ denote the set of equivalence classes ofF with respect to≡. A system of
representatives ofF/≡ is a setR ⊆ F such thatR ∩ C 6= ∅ for each equivalence class
C ∈ F/≡. The following statement has a straightforward proof usingnormal forms
(see [22, Proposition 7.5] for details).
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Fact 1. Let q andl be fixed non-negative integers. The set MSOq,l/≡ is finite, and one
can compute a system of representatives of MSOq,l/≡.

We will assume that for any pair of non-negative integersq andl the system of repre-
sentatives of MSOq,l/≡ given by Fact 1 is fixed.

Definition 3 (MSO Type). Let q, l be non-negative integers. For a graphG and an
l-tupleU of sets of vertices ofG, we definetypeq(G,U) as the set of formulasϕ ∈
MSOq,l such thatG |= ϕ(U ). We calltypeq(G,U ) the MSOq-type ofU in G.

It follows from Fact 1 that up to logical equivalence, every type contains only finitely
many formulas. This allows us to represent types using MSO formulas as follows.

Lemma 1 ([13]).Let q and l be non-negative integer constants, letG be a graph, and
letU be anl-tuple of sets of vertices ofG. One can compute a formulaΦ ∈ MSOq,l such
that for any graphG′ and anyl-tupleU ′ of sets of vertices ofG′ we haveG′ |= Φ(U ′)
if and only if typeq(G,U ) = typeq(G

′,U ′). Moreover,Φ can be computed in time
O(f(rw(G)) · |V |O(1)).

Proof. Let R be a system of representatives of MSOq,l/≡ given by Fact 1. Becauseq
andl are constant, we can consider both the cardinality ofR and the time required to
compute it as constants. LetΦ ∈ MSOq,l be the formula defined asΦ =

∧

ϕ∈S ϕ ∧
∧

ϕ∈R\S ¬ϕ, whereS = {ϕ ∈ R | G |= ϕ(U) }. We can computeΦ by deciding
G |= ϕ(U ) for eachϕ ∈ R. Since the number of formulas inR is a constant, this
can be done in timeO(f(rw(G)) · |V |O(1)) if G |= ϕ(U ) can be decided in time
f(rw(G)) · |V |O(1).

LetG′ be an arbitrary graph and letU ′ be anl-tuple of subsets ofV (G′). We claim
thattypeq(G,U ) = typeq(G

′,U ′) if and only ifG′ |= Φ(U ′). SinceΦ ∈ MSOq,l the
forward direction is trivial. For the converse, assumetypeq(G,U ) 6= typeq(G

′,U ′).
First supposeϕ ∈ typeq(G,U)\typeq(G

′,U ′). The setR is a system of representatives
of MSOq,l/≡ , so there has to be aψ ∈ R such thatψ ≡ ϕ. ButG′ |= Φ(U ′) implies
G′ |= ψ(U ′) by construction ofΦ and thusG′ |= ϕ(U ′), a contradiction. Now suppose
ϕ ∈ typeq(G

′,U ′) \ typeq(G,U ). An analogous argument proves that there has to be
aψ ∈ R such thatψ ≡ ϕ andG′ |= ¬ψ(U ′). It follows thatG′ 6|= ϕ(U ′), which again
yields a contradiction. ⊓⊔

Definition 4 (Partial isomorphism). LetG,G′ be graphs, and letV = (V1, . . . , Vl)
andU = (U1, . . . , Ul) be tuples of sets of vertices withVi ⊆ V (G) andUi ⊆ V (G′)
for eachi ∈ [l]. Letv = (v1, . . . , vm) andu = (u1, . . . , um) be tuples of vertices with
vi ∈ V (G) andui ∈ V (G′) for eachi ∈ [m]. Then(v,u) defines apartial isomorphism
between(G,V ) and(G′,U) if the following conditions hold:

– For everyi, j ∈ [m],

vi = vj ⇔ ui = uj andvivj ∈ E(G) ⇔ uiuj ∈ E(G′).

– For everyi ∈ [m] andj ∈ [l],

vi ∈ Vj ⇔ ui ∈ Uj.

7



Definition 5. LetG andG′ be graphs, and letV0 be ak-tuple of subsets ofV (G) and
let U0 be ak-tuple of subsets ofV (G′). Let q be a non-negative integer. Theq-round
MSO game onG andG′ starting from(V0,U0) is played as follows. The game pro-
ceeds in rounds, and each round consists of one of the following kinds of moves.

– Point move The Spoiler picks a vertex in eitherG or G′; the Duplicator responds
by picking a vertex in the other graph.

– Set move The Spoiler picks a subset ofV (G) or a subset ofV (G′); the Duplicator
responds by picking a subset of the vertex set of the other graph.

Let v = (v1, . . . , vm), vi ∈ V (G) andu = (u1, . . . , um), ui ∈ V (G′) be the point
moves played in theq-round game, and letV = (V1, . . . , Vl), Vi ⊆ V (G) andU =
(U1, . . . , Ul), Ui ⊆ V (G′) be the set moves played in theq-round game, so thatl+m =
q and moves belonging to same round have the same index. Then the Duplicator wins
the game if(v,u) is a partial isomorphism of(G,V0 ∪ V ) and (G′,U0 ∪ U). If the

Duplicator has a winning strategy, we write(G,V0) ≡MSO
q (G′,U0).

Theorem 6 ([22], Theorem 7.7).Given two graphsG andG′ and twol-tuplesV0,U0

of sets of vertices ofG andG′, we have

typeq(G,V0) = typeq(G,U0) ⇔ (G,V0) ≡
MSO
q (G′,U0).

3 Well-Structured Modulators

Definition 6. Let H be a hereditary graph class and letG be a graph. A setX of
pairwise-disjoint split-modules ofG is called ak-well-structured modulatortoH if

1. |X| ≤ k, and
2.

⋃

Xi∈X
Xi is a modulator toH, and

3. rw(G[Xi]) ≤ k for eachXi ∈ X.

Fig. 3. A graph with a2-well-structured modulator toK3-free graphs (in the two shaded areas)

For the sake of brevity and when clear from context, we will sometimes identify
X with

⋃

Xi∈X
Xi (for instanceG − X is shorthand forG −

⋃

Xi∈X
Xi). To allow

a concise description of our parameters, for any hereditarygraph classH we let the
well-structure number(wsnH in short) denote the minimumk such thatG has ak-well-
structured modulator toH. Similarly, we letmodH(G) denote the minimumk such
thatG has a modulator of cardinalityk toH.

8



Proposition 1. LetH beanyhereditary graph class of unbounded rank-width.

1. rw(G) ≥ wsnH(G) for any graphG. Furthermore, for everyi ∈ N there exists a
graphGi such thatrw(Gi) ≥ wsnH(Gi) + i, and

2. modH(G) ≥ wsnH(G) for any graphG. Furthermore, for everyi ∈ N there exists
a graphGi such thatmodH(Gi) ≥ wsnH(Gi) + i.

Proof. 1. Forrw(G) ≥ wsnH(G) notice that for any graphG of rank-widthk, the set
{V (G)} is ak-well-structured modulator to the empty graph. For the second claim,
sinceH has unbounded rank-width, for everyi ∈ N it contains some graphGi such
thatrw(Gi) > i; by definition,wsnH(Gi) = 0.

2. FormodH(G) ≥ wsnH(G), letG be a graph containing a modulatorX = {v1, . . . ,
vk} to H. It is easy to check thatX = {{v1}, . . . , {vk}} is a k-well-structured
modulator toH. For the second claim, letG′ 6∈ H and letk = rw(G′). Consider
the graphGi consisting ofi + 1 + k disjoint copies ofG′ and a vertexq which is
adjacent to every other vertex ofG. SinceH is hereditary, we may assume without
loss of generality that it contains the single-vertex graph. It is then easy to check
that{V (G) \ {q}} forms ak-well-structured modulator inG to H. Now consider
any setX ⊆ V (G) of cardinality at mosti + k. Clearly, there must exist some
copy ofG′, sayG′

j , such thatX ∩ V (G′
j) = ∅. SinceG′

j 6∈ H, it follows from the
hereditarity ofH thatG − X 6∈ H and henceX cannot be a modulator toH. We
concludemodH(Gi) > i + k = i+ wsnH(Gi). ⊓⊔

4 Finding Well-Structured Modulators

The objective of this subsection is to prove the following theorem. Interestingly, our
approach only allows us to find well-structured modulators if the rank-width of the
graph is sufficiently large. This never becomes a problem though, since on graphs with
small rank-width we can always directly use rank-width as our parameter.

Theorem 7. Let H be a graph class characterized by a finite obstruction set. There
exists anFPT algorithm parameterized byk which for any graphG of rank-width at
leastk + 2 either finds ak-well-structured modulator toH or correctly detects that it
does not exist.

We begin by stating several useful properties of splits in graphs. We remark that for
most of this section we will restrict ourselves to connectedgraphs, and show how to deal
with general graphs later on; this allows us to use the following result by Cunningham.

Theorem 8 ([8]).Let{A,C}, {B,D} be splits of a connected graphG such that|A∩
B| ≥ 2 andA ∪B 6= V (G). Then{A ∩B,C ∪D} is a split ofG.

Lemma 2. If A andB are overlapping split-modules of a connected graphG = (V,E),
thenA ∪B is also a split-module. Moreover, ifA ∪B 6= V , then alsoA ∩B is a split-
module.

Proof. If V = A ∪ B, thenA ∪ B is clearly a split-module. So, assumeA ∪ B 6= V
and letC = V \ A andD = V \B; note thatC ∪D 6= V sinceA,B are overlapping.
We make the following exhaustive case distinction:

9



– if |A ∩B| = 1 and|C ∩D| = 1, then bothA ∩B andA ∪ B = V \ (C ∩D) are
easily seen to be split-modules;

– if |A ∩ B| ≥ 2 and|C ∩D| = 1, thenA ∩ B is a split-module by Theorem 8 and
A ∪B is also a split-module becauseC ∩D is a split-module;

– if |A ∩ B| = 1 and |C ∩ D| ≥ 2, thenA ∩ B is a split-module andA ∪ B is
also a split-module becauseC,D satisfy the conditions of Theorem 8 and hence
C ∩D = V \ (A ∪B) forms a split-module;

– if |A ∩ B| ≥ 2 and|C ∩D| ≥ 2, thenA ∩ B is a split-module by Theorem 8 and
A ∪B is also a split-module becauseC,D satisfy the conditions of Theorem 8, as
in the previous case. ⊓⊔

Lemma 3. Let G = (V,E) be a connected graph andA,B be overlapping split-
modules. ThenA \B is also a split-module.

Proof. The lemma clearly holds if|A \ B| ≤ 1, so we may assume that|A \ B| ≥ 2.
Let Z = V \ B; sinceB is a split module, so isZ. Furthermore, sinceA andB are
overlapping, it holds thatB\A is nonempty and henceV 6= Z∪A. SinceZ∩A = A\B,
we have|Z ∩ A| ≥ 2 and hence we conclude thatZ ∩ A = A \ B is a split module by
Theorem 8. ⊓⊔

Lemma 4. Let k ∈ N be a constant,G = (V,E) a graph, andA, B, C be pairwise
disjoint split-modules such thatA ∪ B ∪ C = V . Let a, b, c be arbitrary vertices
such thata ∈ N(A), b ∈ N(B), andc ∈ N(C). If max

(

rw(G[A ∪ {a}]), rw(G[B ∪

{b}]), rw(G[C ∪ {c}])
)

≤ k, thenrw(G) ≤ k.

Proof. Let TA = (TA, µA), TB = (TB, µB), andTC = (TC , µC) be witnessing rank
decompositions ofG[A], G[B], andG[C], respectively.

We construct a rank decompositionT = (T, µ) of G as follows.
Let la be the leaf (note thatµA is bijective) ofTA such thatµA(a) = la. Similarly,

let lb andlc be the leaves such thatµB(b) = lb andµC(c) = lc, respectively. We obtain
T from TA by adding disjoint copies ofTB andTC and then identifyingla with the
copies oflb andlb. SinceTA, TB, andTC are subcubic, so isT .

We define the mappingµ : V (G) → { t | t is a leaf ofT } by

µ(v) =











µa(v) if v ∈ A,

c(µb(v)) if v ∈ B,

c(µc(v)) otherwise,

wherec maps internal nodes inTB ∪ TC to their copies inT . The mappingsµA, µB ,
andµC are bijections andc is injective, soµ is injective. By construction, the image of
V (G) underµ is the set of leaves ofT , soµ is a bijection. ThusT = (T, µ) is a rank
decomposition ofG.

We prove that the width ofT is at mostk. Given a rank decompositionT ∗ =
(T ∗, µ∗) and an edgee of T ∗, the connected components ofT ∗ − e induce a bipartition
(X,Y ) of the leaves ofT ∗. We setf : (T ∗, e) 7→ (µ∗−1(X), µ∗−1(Y )). Take any edge
e of T . There is a natural bijectionβ from the edges inT to the edges ofTA ∪TB ∪TC .
Accordingly, we distinguish three cases fore′ = β(e):
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1. e′ ∈ TA. Let (U,W ) = f(TA, e′). Without loss of generality assume thata ∈ W .
Then by construction ofT , we havef(T , e) = (U,W ∪ B ∪ C). Let u ∈ A and
v ∈ B ∪ C. SinceA is split-module eitherv /∈ N(A) andAG(u, v) = 0 for all
u ∈ A, orv ∈ N(A) in which caseAG(u, v) = AG(u, a) for all u ∈ A. Therefore,
to obtainAG(U,W ∪B ∪C) one can simply copy the column corresponding toa
in AG(U,W ) or add some empty columns. This does not increase the rank of the
matrix.

2. e′ ∈ TB. This case is symmetric to case 1, withA andB switching their roles and
b taking the role ofa.

3. e′ ∈ TC . This case is symmetric to case 1, withA andC switching their roles and
c taking the role ofa.

Sinceβ is bijective, this proves that the rank of any bipartite adjacency matrix induced
by removing an edgee ∈ T is bounded byk. We conclude that the width ofT is at
mostk and thusrw(G) ≤ k. ⊓⊔

By repeating the proof technique of Lemma 4 without the setC, we obtain the
following corollary.

Corollary 1. Letk ∈ N be a constant,G = (V,E) a graph, andA,B pairwise disjoint
split-modules such thatA∪B = V . Leta, b ∈ V be such thata ∈ N(A) andb ∈ N(B).
If max

(

rw(G[A ∪ {a}]), rw(G[B ∪ {b}])
)

≤ k, thenrw(G) ≤ k.

Lemma 5. Let k ∈ N be a constant. LetG = (V,E) be a connected graph and let
M1,M2 be split-modules ofG such thatM1∪M2 = V andmax(rw(G[M1]), rw(G[M2])) ≤
k. Thenrw(G) ≤ k + 1.

Proof. Let M22 = M2 \M1. Clearly,{M1,M22} is a split. Since rank-width is pre-
served by taking induced subgraphs, the graphG[M22] has rank-width at mostk. Let
v1 ∈ N(M22) andv2 ∈ N(M1). It is easy to see that graphsG1 = G[M1 ∪ {v2}] and
G2 = G[M22 ∪ {v1}] have rank-width at mostk + 1. We finish the proof by applying
Corollary 1, withM1,M22 in roles ofA,B andv1, v2 in roles ofa, b, respectively. ⊓⊔

The following lemma in essence shows that the relation of being in a split-module of
small rank-width is transitive (assuming sufficiently highrank-width). The significance
of this will become clear later on.

Lemma 6. Letk ∈ N be a constant. LetG = (V,E) be a connected graph with rank-
width at leastk + 2 and letM1,M2 be split-modules ofG such thatM1 ∩M2 6= ∅
andmax(rw(G[M1]), rw(G[M2])) ≤ k. ThenM1 ∪ M2 is a split-module ofG and
rw(G[M1 ∪M2]) ≤ k.

Proof. If M1 ⊆ M2 orM2 ⊆ M1 the result is immediate, hence we may assume that
they are overlapping. Lemma 5 andrw(G) ≥ k+2 together imply thatM1 ∪M2 6= V .
LetM11 =M1\M2,M22 =M2\M1, andM12 =M1∩M2. It follows from Lemma 2
and Lemma 3 that these sets are split-modules ofG. Let v11 ∈ N(V \M11), v22 ∈
N(V \ M22), andv12 ∈ N(V \ M12). We show thatrw(G[M1 ∪ M2]) ≤ k. By
assumption, bothG[M1] andG[M2] have rank-width at mostk. Since rank-width is
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preserved by taking induced subgraphs, the graphsG11 = G[M11 ∪ {v12}], G12 =
G[M12∪{v22}], andG22 = G[M22∪{v12}] also have rank-width at mostk. We finish
the proof by applying Lemma 4, withM11, M22, M12 taking the roles ofA, B, andC
andv12, v12, andv22 taking the roles ofa, b, andc, respectively. ⊓⊔

Definition 7. Let G be a graph andk ∈ N. We define a relation∼G
k on V (G) by

letting v ∼G
k w if and only if there is a split-moduleM of G with v, w ∈ M and

rw(G[M ]) ≤ k. We drop the superscript from∼G
k if the graphG is clear from context.

Using Lemma 6 to deal with transitivity, we prove the following.

Proposition 2. For everyk ∈ N and graphG = (V,E) with rank-width at leastk + 2,
the relation∼k is an equivalence relation, and each equivalence classU of ∼k is a
split-module ofG with rw(G[U ]) ≤ k.

Proof. Let G be a graph andk ∈ N. For everyv ∈ V , the singleton{v} is a split-
module ofG, so∼k is reflexive. Symmetry of∼k is trivial. For transitivity, letu, v, w ∈
V be such thatu ∼k v andv ∼k w. Then there are split-modulesM1,M2 of G such
that u, v ∈ M1, v, w ∈ M2, and rw(G[M1]), rw(G[M2]) ≤ k; in particular, since
rw(G) ≥ k+2 this implies that there exists a connected componentG′ ofG containing
u, v, w. By Lemma 6,M1 ∪M2 is a split-module ofG′ (and hence also ofG) such that
rw(G[M1 ∪M2]) ≤ k. In combination withu,w ∈ M1 ∪M2 that impliesu ∼k w.
This concludes the proof that∼k is an equivalence relation.

Now let v ∈ V , G′ be the connected component containingv, and letU = [v]∼k
.

For eachu ∈ U there is a split-moduleWu of G′ (and ofG) with u, v ∈ Wu and
rw(G[Wu]) ≤ k. By Lemma 6,W =

⋃

u∈U Wu is a split-module ofG′ (and hence
also ofG) andrw(G[W ]) ≤ k. Clearly,[v]∼k

⊆W . On the other hand,u ∈W implies
v ∼k u by definition of∼k, soW ⊆ [v]∼k

. That is,W = [v]∼k
.

Corollary 2. Any graphG of rank-width at leastk + 2 has its vertex set uniquely
partitioned by the equivalence classes of∼k into inclusion-maximal split-modules of
rank-width at mostk.

Next, we state a simple but useful observation.

Observation 1. Letk ∈ N, G be a disconnected graph with rank-width at leastk + 2,
andC(G) be the set of connected components ofG. Then∼G

k =
⋃

G′∈C(G) ∼
G′

k .

Now that we know∼k is an equivalence, we show how to compute it in FPT time.

Proposition 3. Let k ∈ N be a constant. Given ann-vertex graphG of rank-width at
leastk + 2 and two verticesv, w, we can decide whetherv ∼k w in timeO(n3).

Proof. From Observation 1 it follows that if the proposition holds for connected graphs,
then it holds for disconnected graphs as well; hence we may assume thatG is con-
nected. By Theorem 3 we can compute the unique split-treeST (G) = (T,F) in
O(m + n)α(m + n) time. Due to Theorem 2, every split inG is the bipartition of
leaves ofT induced either by removing an internal tree-edge ofT or an edge created by
a node-split of a degenerate vertex ofT .
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Vertices ofG are leaves ofT and we can find a pathP betweenv andw in T in
time linear in size ofT . There are at most linearly many vertices on the path and we
can split every degenerate vertex onP in a way that every degenerate vertex on a new
pathP ′ betweenu andv will have3 vertices. Denote the new tree byT ′.

Now every edge betweenP ′ andT ′\P ′ corresponds to a minimal split-module con-
taining v andw. Conversely, as a consequence of Theorem 2 every minimal split-
module containingv andw is induced by removing an edge betweenP ′ andT ′ \ P ′,
and letMvw be the set containing all of these at most|T | minimal split modules. Hence,
v ∼k w if and only if there is a split-moduleX in Mvw such thatrw(G[X ]) ≤ k. By
Theorem 4 we can decide, for each suchX , whetherrw(G[X ]) ≤ k in time f(k) · n3,
wheref is some computable function. ⊓⊔

In the rest of this section we show how to find ak-well-structured modulator to any
graph classH characterized by a finite obstruction setF . We first present the algorithm
and then show its running time and correctness.

Algorithm 1: FindWSMF

Input :k ∈ N0, n-vertex graphG, equivalence∼ over a superset ofV (G)
Output :A k-cardinality setX of subsets ofV (G), or False

1 if G does not contain anyD ∈ F as an induced subgraphthen
2 return ∅
3 else
4 D′ := an induced subgraph ofG isomorphic to an arbitraryD ∈ F ;
5 end
6 if k = 0 then return False
7 foreach [a]∼ ofG which intersects withV (D′) do
8 X = FindWSMF(k − 1, G− [a]∼,∼);
9 if X 6= Falsethen

10 return X ∪ {[a]∼}
11 end
12 end
13 return False

We will use∼k as the input forFindWSMF , however considering general equiva-
lences as inputs is useful for proving correctness. Recall that the equivalence∼k (or,
more precisely, the set of its equivalence classes) can be computed in timen2 ·f(k) ·n3

for some functionf thanks to Proposition 3, and this only needs to be done once before
starting the algorithm. The following two lemmas show that Algorithm 1 is correct and
runs in FPT time.

Lemma 7. There exists a constantc such thatFindWSMF runs in timeck · nO(1).

Proof. The time required to perform the steps on rows2-6 isnO(1) sinceF is finite. For
the same reason, it holds that|V (D′)| and hence also the number of times the procedure
on rows8-13 is called are bounded by a constant, sayc (to be precise,c is bounded by
the order of the largest graph inF ).
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For the rest of the proof, we proceed by induction onk. First, if k = 0, then the
algorithm is polynomial by the above. So assume thatk ≥ 1 and the algorithm fork−1
runs in time at mostck−1 · nO(1). Then the algorithm fork will run in polynomial time
up to rows8− 13, where it will make at mostc calls to the algorithm fork − 1, which
implies that the running time fork is bounded byck · nO(1). ⊓⊔

Lemma 8. Let k ≥ 0, G = (V,E) be a graph and∼ an equivalence over a superset
ofV . ThenFindWSMF (k,G,∼) outputs a setX of at mostk equivalence classes of∼
such thatG−X isF -free.

Proof. If G does not contain anyD as an induced subgraph, then we correctly return
the empty set. So, assume there exists an induced subgraphD′ of G isomorphic toD.
We prove the lemma by induction onk.

Clearly, ifk = 0 but there exists some obstruction, then the algorithm outputsFalse
and this is correct; ifk = 0 and no obstruction exists, then the algorithm correctly
outputs∅. Let k ≥ 1 and assume that the algorithm is correct fork − 1. If G does not
contain any suchX, then for any equivalence class[a]∼, FindWSMF(k−1, G−[a]∼,∼
) will correctly outputFalse.

On the other hand, assumeG does contain someX with the desired properties. In
particular, this implies thatX must intersectV (D′). LetXi be an arbitrary equivalence
class ofX which intersectsV (D′). ThenX ′ \ {Xi} is a set of at mostk − 1 equiva-
lence classes of∼ in G − Xi, and hence FindWSMF(k − 1, G − X ′

i,∼) will output
some solutionX ′′ forG−X ′

i by our inductive assumption. Since any obstruction inG
intersectingX ′

i is removed byX ′
i andG−X ′

i is madeF -free byX ′′, we observe that
X ′′ ∪X ′

i intersects every obstruction inG and hence the proof is complete. ⊓⊔

From Lemma 8 and Corollary 2 we obtain the following.

Corollary 3. Let k ∈ N, G be a graph of rank-width at leastk + 2 and∼k be the
equivalence computed by Proposition 3. ThenFindWSMF(k,G,∼k) outputs ak-wsm
toH or correctly detects that no suchk-wsm exists inG.

Proof (of Theorem 7).The theorem follows by using Proposition 3 and then Algo-
rithm 1 in conjunction with Lemma 7 and 8. ⊓⊔

5 Examples of Algorithmic Applications

In this section, we show how to use the notion ofk-well-structured modulators to design
efficient parameterized algorithms for two classical NP-hard graph problems, specif-
ically M INIMUM VERTEX COVER (M INVC) and MAXIMUM CLIQUE (MAX CLQ).
Given a graphG, we call a setX ⊆ V (G) a vertex coverif every edge is incident to at
least onev ∈ X and acliqueif G[X ] is a complete graph.

M INVC, MAX CLQ

Instance: A graphG and an integerm.
Task(M INVC): Find a vertex cover inG of cardinality at mostm, or deter-
mine that it does not exist.
Task(MAX CLQ): Find a clique inG of cardinality at leastm, or determine
that it does not exist.
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Establishing the following theorem is the main objective ofthis section.

Theorem 9. Let P ∈ {M INVC,MAX CLQ} and H be a graph class characterized
by a finite obstruction set. ThenP is FPT parameterized bywsnH if and only ifP is
polynomial-time tractable onH.

SincewsnH(G) = 0 for anyF -free graphG, the “only if” direction is immediate;
in other words, being polynomial-time tractable onH is clearly a necessary condition
for being fixed parameter tractable when parameterized bywsnH(G). Below we prove
that for the selected problems this condition is also sufficient.

Lemma 9. If M INVC is polynomial-time tractable on a graph classH characterized
by a finite obstruction set, thenM INVC[wsnH] is FPT.

Proof. LetG = (V,E) be a graph and letk = wsnH(G). If rw(G) ≤ k+2, then we sim-
ply use known algorithms to solve the problem in FPT time [12]. Otherwise, we proceed
by using Theorem 7 to compute ak-well-structured modulatorX = {X1, . . . , Xk} in
FPT time. For eachi ∈ [k], we letAi be the frontier ofXi and we letBi = N(Ai).

Since for eachi ∈ [k] the graphG[Ai ∪ Bi] contains a complete bipartite graph,
any vertex cover ofG must be a superset of eitherAi orBi. We can branch over these
options for eachi in 2k time; formally, we branch over all of the at most2k functions
f : [i] → {A,B}, and refer to these assignatures. Each vertex coverY of G can
be associated with at least one signaturef , constructed in the following way: for each
i ∈ [k] such thatAi ⊆ Y , we setf(i) = A, and otherwise we setf(i) = B.

Our algorithm then proceeds as follows. For a graphG and a signaturef , we con-
struct a partial vertex coverZ =

⋃

i∈[k] f(i). We letG′ = G − Z. Consider any
connected componentC of G′. If C intersects someXi, then by the construction ofZ
it must hold thatC ⊆ Xi. Hence it follows thatC either has rank-width at mostk (in
the caseC ⊆ Xi for somei), orC is inH (if C does not intersectX), or both. Then we
find a minimum vertex cover for each connected component ofG′ independently, by ei-
ther calling the known FPT algorithm (ifC has bounded rank-width) or the polynomial
algorithm (ifC is inH) at most|C| times. LetZ ′ be the union of the obtained minimum
vertex covers over all the components ofG′, and letYf = Z ∪Z ′. After branching over
all possible functionsf , we compare the obtained cardinalities ofYf and choose any
Yf of minimum cardinality. Finally, we compare|Yf | and the value ofm provided in
the input.

We argue correctness in two steps. First, assume for a contradiction thatG contains
an edgee which is not covered byYf for somef . Thene cannot have both endpoints in
G′, sinceYf contains a (minimum) vertex cover for each connected component ofG′,
but e cannot have an endpoint outside ofG′, sinceZ ⊆ Yf . Hence eachYf is a vertex
cover ofG.

Second, assume for a contradiction that there exists a vertex coverY ′ of G which
has a lower cardinality than the vertex cover found by the algorithm described above.
Let f be the signature ofY ′. Then it follows thatZ ⊆ Y ′, and sinceZ ⊆ Yf , there
would exist a componentC of G \ Z such that|Y ′ ∩ C| ≤ |Yf ∩ C|. However, this
would contradict the minimality ofZ ′ ∩C = Yf ∩C. Hence we conclude that no such
Y ′ can exist, and the algorithm is correct. ⊓⊔

15



We deal with the second problem below.

Lemma 10. If MAX CLQ is polynomial-time tractable on a graph classH character-
ized by a finite obstruction set, thenMAX CLQ[wsnH] is FPT.

Proof. We begin in the same way as for MINVC: let G = (V,E) be a graph and let
k = wsnH(G). If rw(G) ≤ k + 2, then we simply use known algorithms to solve the
problem in FPT time [12]. Otherwise, we proceed by using Theorem 7 to compute a
k-well-structured modulatorX = {X1, . . . , Xk} in FPT time. For eachi ∈ [k], we let
Ai be the frontier ofXi and we letBi = N(Ai).

LetX0 = G −X and lets ⊆ {0} ∪ [k]. Then any cliqueC in G can be uniquely
associated with asignatures by lettingi ∈ s if and only ifXi ∩ C 6= ∅. The algorithm
proceeds by branching over all of the at most2k+1 possible non-empty signaturess. If
|s| = 1, then the algorithm simply computes a maximum-cardinalityclique inXs (by
calling the respective FPT or polynomial algorithm at most alinear number of times)
and stores it asYs.

If |s| ≥ 2, then the algorithm makes two checks before proceeding. First, if 0 ∈ s
then it constructs the setX ′

0 of all verticesx ∈ X0 such thatx is adjacent to everyAi

for i ∈ s \ {0}. If X ′
0 = ∅ then the current choice ofs is discarded and the algorithm

proceeds to the next choice ofs. Second, for everya 6= b such thata, b ∈ s \ {0} it
checks thatX ′

a = Aa andX ′
b = Ab are adjacent; again, if this is not the case, then

we discard this choice ofs and proceed to the next choice ofs. Finally, if the current
choice ofs passed both tests then for eachi ∈ s we compute a maximum clique in each
G[X ′

i] and save their union asYs. In the end, we choose a maximum-cardinality setYs
and compare its cardinality to the value ofm provided in the input.

We again argue correctness in two steps. First, assume for a contradiction thatYs
is not a clique, i.e., there exist distinct non-adjacenta, b ∈ Ys. SinceYs consists of a
union of cliques within subsets ofX ′

i∈s, it follows that there would have to exist distinct
c, d ∈ s such thata ∈ X ′

c andb ∈ X ′
d. This can however be ruled out forc or d equal

to 0 by the construction ofX ′
0. Similarly, if c andd are both non-zero, then this is

impossible by the second check which tests adjacency of every pair ofX ′
c andX ′

d for
everyc, d ∈ s.

Second, assume for a contradiction that there exists a clique Y ′ in G which has
a higher cardinality than the largest clique obtained by theabove algorithm. Lets be
the signature ofY ′. If |s| = 1 then |Ys| ≥ |Y ′| by the correctness of the respective
FPT or polynomial algorithm used for eachXs. If |s| ≥ 2 thenY ′ may only intersect
the setsX ′ constructed above fors. Moreover, if there existsi ∈ [k] ∪ {0} such that
|Y ′ ∩ X ′

i| > |Ys ∩ X ′
i| then we again arrive at a contradiction with the correctnessof

the respective FPT or polynomial algorithms used forX ′
i. Hence we conclude that no

suchY ′ can exist, and the algorithm is correct. ⊓⊔

Finally, let us review some concrete graph classes for use inTheorem 9. We use
Ki,Ci andPi to denote thei-vertex complete graph, cycle, and path, respectively.2K2

denotes the disjoint union of twoK2 graphs, and thefork graph is depicted for instance
in [1]. TheK3,3-e, banner, twin-houseandT2,2,2 graphs are defined in [4,15].

Fact 2. M INVC is polynomial-time tractable on the following graph classes:
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1. (2K2, C4, C5)-free graphs (split graphs);
2. P5-free graphs;
3. fork-free graphs;
4. (banner, T2,2,2)-free graphs and(banner,K3,3-e, twin-house)-free graphs.

Proof. 1. Split graphs are graphs whose vertex set can be partitioned into one clique
and one independent set, and this partitioning can be found in linear time. If each
vertex in the clique is adjacent to at least one independent vertex, then the clique
is a minimum vertex cover, otherwise the clique without a pendant-free vertex is a
minimum vertex cover.

2. See [23].
3. See [1].
4. See [15] and [4]. ⊓⊔

Fact 3. MAX CLQ is polynomial-time tractable on the following graph classes:

1. Any complementary graph class to the classes listed in Fact 2 (such as cofork-free
graphs and split graphs);

2. Graphs of bounded degree.

Proof. 1. It is well-known that each maximum clique corresponds to amaximum in-
dependent set (and vice-versa) in the complement graph.

2. The degree bounds the size of a maximum clique, again resulting in a simple folk-
lore branching algorithm. The class of graphs of degree at most d is exactly the
class ofF -free graphs forF containing all(d + 1)-vertex supergraphs of the star
with d leaves. ⊓⊔

6 MSO Model Checking with Well-Structured Modulators

Here we show how well-structured modulators can be used to solve the MSO Model
Checking problem, as formalized in Theorem 10 below. Note that our meta-theorem
captures not only the generality of MSO model checking problems, but also applies to a
potentially unbounded number of choices of the graph classH. Thus, the meta-theorem
supports two dimensions of generality.

Theorem 10. For every MSO sentenceφ and every graph classH characterized by
a finite obstruction set such thatMSO-MCφ is FPTparameterized bymodH(G), the
problemMSO-MCφ is FPTparameterized bywsnH(G).

The condition that MSO-MCφ is FPT parameterized bymodH(G) is a necessary con-
dition for the theorem to hold by Proposition 1. However, it is natural to ask whether
it is possible to use a weaker necessary condition instead, specifically that MSO-MCφ
is polynomial-time tractable in the class ofF -free graphs (as was done for specific
problems in Section 5). Before proceeding towards a proof ofTheorem 10, we make a
digression and show that the weaker condition used in Theorem 9 is in fact not sufficient
for the general case of MSO model checking.
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Lemma 11. There exists an MSO sentenceφ and a graph classH characterized by
a finite obstruction set such thatMSO-MCφ is polynomial-time tractable onH but
NP-hard on the class of graphs withwsnH(G) ≤ 2 or evenmodH(G) ≤ 2.

Proof. Consider the sentenceφ which describes the existence of a proper5-coloring
of the vertices ofG, and letH be the class of graphs of degree at most4 (in other
words, letF contain all6-vertex supergraphs of the star with5 leaves). There exists a
trivial greedy algorithm to obtain a proper5-coloring of any graph of degree at most4,
hence MSO-MCφ is polynomial-time tractable onH. Now consider the class of graphs
obtained fromH by adding, to any graph inH, two adjacent verticesy, z which are
both adjacent to every other vertex in the graph. By construction, any graphG′ from
this new class satisfiesmodH(G′) ≤ 2 and hence alsowsnH(G′) ≤ 2. However,G′

admits a proper5-coloring if and only ifG′−{y, z} admits a proper3-coloring. Testing
3-colorability on graphs of degree at most4 is known to be NP-hard [21], and hence the
proof is complete. ⊓⊔

Our strategy for proving Theorem 10 relies on a replacement technique, where each
split-module in the well-structured modulator is replacedby a small representative. We
use the notion ofsimilarity defined below to prove that this procedure does not change
the outcome of MSO-MCϕ.

Definition 8 (Similarity). Let q andk be non-negative integers,H be a graph class,
and letG andG′ be graphs withk-well-structured modulatorsX = {X1, . . . , Xk}
andX′ = {X ′

1, . . . , X
′
k} to H, respectively. For1 ≤ i ≤ k, letSi contain the frontier

of split moduleXi and similarly letS′
i contain the frontier of split moduleX ′

i. We say
that (G,X) and(G′,X ′) areq-similar if all of the following conditions are met:

1. There exists an isomorphismτ betweenG−X andG′ −X ′.
2. For everyv ∈ V (G) \X andi ∈ [k], it holds thatv is adjacent toSi if and only if
τ(v) is adjacent toS′

i.
3. if k ≥ 2, then for every1 ≤ i < j ≤ k it holds thatSi andSj are adjacent if and

only if S′
i andS′

j are adjacent.
4. For eachi ∈ [k], it holds thattypeq(G[Xi], Si) = typeq(G

′[X ′
i], S

′
i).

Lemma 12. Let q and k be non-negative integers,H be a graph class, and letG
andG′ be graphs withk-well-structured modulatorsX = {X1, . . . , Xk} andX′ =
{X ′

1, . . . , X
′
k} toH, respectively. If(G,X) and(G′,X ′) areq-similar, thentypeq(G, ∅) =

typeq(G
′, ∅).

Proof. For i ∈ [k], we writeGi = G[Xi] andG′
i = G′[X ′

i]. Let X0 = V (G) \ X

andX ′
0 = V (G′) \ X′. By Theorem 6, Condition 4 of Definition 8 is equivalent to

(Gi, Si) ≡MSO
q (G′

i, S
′
i). That is, for eachi ∈ [k], Duplicator has a winning strategy

πi in theq-round MSO game played onGi andG′
i starting from(Si, S

′
i). We construct

a strategy witnessing(G, ∅) ≡MSO
q (G′, ∅) in the following way:

1. Suppose Spoiler makes a set moveW and assume without loss of generality that
W ⊆ V (G). For i ∈ [k], letWi = Xi ∩W , and letW ′

i be Duplicator’s response
to Wi according toπi. Furthermore, letW ′

0 = { τ(v) | v ∈ W ∩ X0 }. Then
Duplicator responds withW ′ =W ′

0 ∪
⋃k

i=1W
′
i .
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2. Suppose Spoiler makes a point moves and again assume without loss of generality
that s ∈ V (G). If s ∈ Xi for somei ∈ [k], then Duplicator responds withs′ ∈
X ′

i according toπi; otherwise, Duplicator responds withτ(s) as per Definition 8
point 1.

Assume Duplicator plays according to this strategy and consider a play of theq-round
MSO game onG andG′ starting from(∅, ∅). Letv = (v1, . . . , vm) andu = (u1, . . . , um)
be the point moves inV (G) andV (G′) respectively, and letV = (V1, . . . , Vl) and
U = (U1, . . . , Ul) be the set moves inV (G) andV (G′) respectively, so thatl+m = q
and the moves made in the same round have the same index. We claim that (v,u) de-
fines a partial isomorphism between(G,V ) and(G′,U).

– Let j1, j2 ∈ [m] and letvj1 , vj2 ∈ X0. Sinceτ is an isomorphism as per Defini-
tion 8 point 1, it follows thatvj1 = vj2 if and only if uj1 = uj2 andvj1vj2 ∈ E(G)
if and only if uj1uj2 ∈ E(G′).

– Let j1, j2 ∈ [m] and leti ∈ [k] be such thatvj1 ∈ X0 andvj2 ∈ Xi. Then clearly
vj1 6= vj2 anduj1 6= uj2 . Consider the casevj1vj2 ∈ E(G). Thenvj2 must lie in
the frontier ofXi, and hencevj2 ∈ Si. Since Duplicator’s strategyπi is winning
for (Gi, Si) and(G′

i, S
′
i), it must hold thatuj2 ∈ S′

i. By Definition 8 point 2, it
then follows thatτ(vj1 )uj2 ∈ E(G′). So, consider the casevj1vj2 6∈ E(G). Then
eithervj2 6∈ Si, in which case it holds thatuj2 6∈ S′

i because of the choice ofπi
and hence there cannot be an edgeuj2uj1 in G′, or vj2 ∈ Si, in which case it holds
once again thatuj2uj1 6∈ E(G′) by Definition 8 point 2.

– Let j1, j2 ∈ [m] and let i ∈ [k] be such thatvj1 , vj2 ∈ Xi. Since Duplicator
plays according to a winning strategyπi in the game onGi andG′

i, the restriction
(v|i,u|i) defines a partial isomorphism between(Gi, (V )|i) and (G′

i, (U)|i). It
follows that(vj1 , vj2) ∈ E(G) if and only if (uj1 , uj2) ∈ E(G′) andvj1 = vj2 if
and only ifuj1 = uj2 .

– Let j1, j2 ∈ [m] and leti1, i2 ∈ [k] be pairwise distinct numbers such thatvj1 ∈
Xi1 andvj2 ∈ Xi2 . Thenvj1 6= vj2 and alsouj1 6= uj2 sinceuj1 ∈ X ′

i1
and

uj2 ∈ X ′
i2

by the Duplicator’s strategy. Supposevj1vj2 ∈ E(G). Thenvj1 ∈ Si1 ,
andvj2 ∈ Si2 , andSi1 andSi2 are adjacent inG. From the correctness ofπi1 and
πi2 it follows thatuj1 ∈ S′

i1
anduj2 ∈ S′

i2
, and from Definition 8 point 3 it follows

thatS′
i1

andS′
i2

are adjacent inG′, which together impliesuj1uj2 ∈ E(G′). On
the other hand, supposevj1vj2 6∈ E(G). Then eithervj1 6∈ Si1 , or vj2 6∈ Si2 , orSi1

andSi2 are not adjacent inG. In the first case we haveuj1 6∈ S′
i1

, in the second case
we haveuj2 6∈ S′

i2
, and in the third case it holds thatS′

1 andS′
2 are not adjacent in

G′; any of these three cases implyuj1uj2 6∈ E(G′).
– Let j ∈ [m] such thatvj ∈ X0. Then by the Duplicator’s strategy onX0 it follows

that for anyVq such thatvj ∈ Vq it holds thatuj ∈ Uq and for anyVq such that
vj 6∈ Vq it holds thatuj 6∈ Uq.

– Let j ∈ [m] andi ∈ [k] such thatvj ∈ Xk. Let Vq be such thatvj ∈ Vq. Sinceπi
is a winning strategy for Duplicator, it must be the case thatuj ∈ Uq. Similarly, if
vj 6∈ Vq then the correctness ofπi guarantetes thatuj 6∈ Uq. ⊓⊔

Next, we show that small representatives can be computed efficiently.
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Lemma 13. Let q be a non-negative integer constant. LetG be a graph of rank-width
at mostk andS ⊆ V (G). Then there exists a functionf such that one can in time
f(k) · |V (G)|O(1) compute a graphG′ and a setS′ ⊆ V (G′) such that|V (G′)| is
bounded by a constant andtypeq(G,S) = typeq(G

′, S′).

Proof. By Lemma 1 we can compute a formulaΦ(Q) capturing the typeT of (G,S)
in timef(k) · |V (G)|O(1). GivenΦ(Q), a constant-size model(G′, S′) satisfyingΦ(Q)
can be computed as follows. We start enumerating all graphs (by brute force and in
any order with a non-decreasing number of vertices), and check for each graphG∗ and
every vertex-subsetS∗ ⊆ V (G∗) whetherG∗ |= Φ(S∗). If this is the case, we stop and
output(G∗, S∗). SinceG |= Φ(S) this procedure must terminate eventually. Fixing the
order in which graphs are enumerated, the number of graphs wehave to check depends
only onT . By Fact 1 the number ofq-types is finite for eachq, so we can think of the
total number of checks and the size of each checked graphG∗ as bounded by a constant.
Moreover the time spent on each check depends only onT and the size of the graph
G∗. Consequently, after we computeΦ(Q) it is possible to find a model forΦ(Q) in
constant time. ⊓⊔

Finally, in Lemma 14 below we use Lemma 13 to replace any well-structured mod-
ulator by a small but “equivalent” modulator.

Lemma 14. Let q be a non-negative integer constant andH be a graph class. Then
given a graphG and ak-well-structured modulatorX = {X1, . . . Xk} of G into H,
there exists a functionf such that one can in timef(k)·|V (G)|O(1) compute a graphG′

with a k-well-structured modulatorX′ = {X ′
1, . . . X

′
k} into H such that(G,X) and

(G′,X′) areq-similar and for eachi ∈ [k] it holds that|X ′
i| is bounded by a constant.

Proof. For i ∈ [k], let Si ⊆ Xi be the frontier of split-moduleXi, let Gi = G[Xi]
and letG0 = G \ G[X ]. We compute a graphG′

i of constant size and a setS′
i ⊆

V (G′
i) with the same MSOq-type as(Gi, Si). By Lemma 13, this can be done in

time f(k) · |V (G)|O(1) for some functionf . Now letG′ be the graph obtained by the
following procedure:

1. Perform a disjoint union ofG0 andG′
i for eachi ∈ [k];

2. If k ≥ 2 then for each1 ≤ i < j ≤ k such thatSi andSk are adjacent inG, we
add edges between everyv ∈ S′

i andw ∈ S′
j .

3. for everyv ∈ V (G0) andi ∈ [k] such thatSi and{v} are adjacent, we add edges
betweenv and everyw ∈ S′

i.

It is easy to verify that(G,X) and(G′,X ′), whereX ′ = {V (G′
1), . . . , V (G′

k)},
areq-similar. ⊓⊔

Proof (of Theorem 10).LetG be a graph,k = wsnH(G) andq be the nesting depth of
quantifiers inφ. By Theorem 7 it is possible to find ak-well-structured modulator to
H in time f(k) · |V |O(1). We proceed by constructing(G′,X ′) by Lemma 14. Since
eachX ′

i ∈ X ′ has size bounded by a constant and|X ′| ≤ k, it follows that
⋃

X ′ is
a modulator to the class ofF -free graphs of cardinalityO(k). Hence MSO-MCφ can
be decided in FPT time onG′. Finally, sinceG andG′ areq-similar, it follows from
Lemma 12 thatG |= φ if and only ifG′ |= φ. ⊓⊔
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We conclude the section by showcasing an example application of Theorem 10.c-
COLORING asks whether the vertices of an input graphG can be colored byc colors
so that each pair of neighbors have distinct colors. From theconnection betweenc-
COLORING, its generalization LIST c-COLORING and modulators [5, Theorem 3.3]
and tractability results for LIST-c-COLORING [19, Page 5], we obtain the following.

Corollary 4. c-COLORING parameterized bywsnP5-free is FPT for eachc ∈ N.

7 Conclusion

We have introduced a family of structural parameters which push the frontiers of fixed
parameter tractability beyond rank-width and modulator size for a wide range of prob-
lems. In particular, the well-structure number can be computed efficiently (Theorem 7)
and used to design FPT algorithms for MINIMUM VERTEX COVER, MAXIMUM CLIQUE

(Theorem 9) as well as any problem which can be described by a sentence in MSO logic
(Theorem 10).

In the wake of Theorem 10 and the positive results for the two problems in Sec-
tion 5, one would expect that it should be possible to strengthen Theorem 10 to also
cover LinEMSO problems [7,12] (which extend MSO Model Checking by allowing the
minimization/maximization of linear expressions over free set variables). Surprisingly,
as our last result we will show that this is in fact not possible if we wish to retain the
same conditions. For our hardness proof, it suffices to consider a simplified variant of
LinEMSO, defined below. Letϕ be an MSO formula with one free set variable.

MSO-OPT≤ϕ
Instance: A graphG and an integerr ∈ N.
Question: Is there a setS ⊆ V (G) such thatG |= ϕ(S) and|S| ≤ r?

The following lemma will be useful later on. We say thatS ⊆ V (G) is adominating
setif every vertex inG either is inS or has a neighbor inS.

Lemma 15. The problem of finding ap-cardinality dominating set in a graphG with a
k-cardinality modulatorX ⊆ V (G) to the class of graphs of degree at most3 is FPT
when parameterized byp+ k.

Proof. LetL = V (G)\X and consider the following algorithm. We begin withD = ∅,
and choose an arbitrary vertexv ∈ L which is not yet dominated byD. We branch over
the at mostk + 4 verticesq in {v} ∪ N(v), and addq toD. If |D| = p and there still
exists an undominated vertex inG, we discard the current branch; hence this procedure
produces a total of at most(k + 4)p branches.

Now consider a branch where|D| < p but the only vertices left to dominate lie in
X . Fora, b ∈ L, we leta ≡ b if and only if N(a) ∩ X = N(b) ∩ X . Notice that≡
has at most2k equivalence classes and that these may be computed in polynomial time.
For each non-empty equivalence class of≡, we choose an arbitrary representative and
construct the setP of all such chosen representatives. We then branch over all subsetsQ
of P ∪X of cardinality at mostp−|D|, and addQ intoD. Since|P ∪X | ≤ 2k+k, this
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can be done in time bounded byO(2p·k). Finally, we test whether thisD is a dominating
set, and output the minimum dominating set obtained in this manner.

It is easily observed from the description that the running time is FPT. For correct-
ness, from the final check it follows that any set outputed by the algorithm will be a
dominating set. It remains to show that if there exists a dominating set of cardinality
p, then the algorithm will find such a set. So, assume there exists ap-cardinality dom-
inating setD′ in G. Consider the branch arising from the first branching rule obtained
as follows. Letv1 be the first undominated vertex inL chosen by the algorithm, and
consider the branch where an arbitraryq ∈ D′ ∩N(v1) is placed intoD. Hence, after
the first branching, there is a branch whereD ⊆ D′. Similarly, there exists a branch
whereD ⊆ D′ for eachvi chosen in thei-th step of the first branching. IfD′ = D after
the first branching, then we are done; so, letD′

1 = D′ \ D be non-empty. LetD1 be
obtained fromD′

1 by replacing eachw ∈ D′
1 by the representative of[w]≡ chosen to

lie in P . SinceD′ dominates all vertices inL andD1 dominates the same vertices inX
asD′

1, it follows thatD∗ = (D′ \D′
1)∪D1 is also a dominating set ofG. Furthermore,

|D∗| = |D′|. However, sinceD1 ⊆ P and|D1| ≤ p− |D|, there must exist a branch in
the second branching which setsQ = D1. Hence there exists a branch in the algorithm
which obtains and outputs the setD∗ = D ∪D1. ⊓⊔

Theorem 11. There exists an MSO formulaϕ and a graph classH characterized by a
finite obstruction set such thatMSO-OPT≤ϕ is FPTparameterized bymodH butparaNP-
hard parameterized bywsnH.

Proof. To prove Theorem 11, we letdom(S) express thatS is a dominating set in
G, and letcyc(S) express thatS intersects everyC4 (cycle of length4). Then we set
ϕ(S) = dom(S) ∨ cyc(S) and letH be the class ofC4-free graphs of degree at most
3 (obtained by letting the obstrucion setF containC4 and all5-vertex supergraphs of
K1,4).

Claim. MSO-OPT≤ϕ is FPT parameterized by the cardinality of a modulator toH.

Proof (of Claim).Let (G = (V,E), r) be the input of MSO-OPT≤ϕ andk be the cardi-
nality of a modulator inG to H. We begin by computing some modulatorX ⊆ V of
cardinalityk in G to H; this can be done in FPT time by a simple branching algorithm
on any of the obstruction fromF located inG. LetL = V \X . Next, we comparer and
k, and ifr ≥ k then we output YES. This is correct, since eachC4 in G must intersect
X and hence settingS = X satisfiesϕ(S).

So, assumer < k. Then we check whether there exists a setA of cardinality at
mostr which intersects everyC4; this can be done in timeO∗(4r) by a simple FPT
branching algorithm. Next, we check whether there exists a dominating setB in G of
cardinality at mostr; this can also be done in FPT time by Lemma 15.

Finally, if A orB exists, then we output YES and otherwise we output NO. �

Claim. MSO-OPT≤ϕ is paraNP-hard parameterized bywsnH(G).

Proof (of Claim).It is known that the DOMINATING SET problem, which takes as input
a graphG and an integerj and asks to find a dominating set of size at mostj, is NP-hard
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onC4-free graphs of degree at most3 [2]. We use this fact as the basis of our reduction.
Let (G, j) be aC4-free instance of DOMINATING SET with degree at most3. Then we
constructG′ fromG by adding(|G|+2)-many copies ofC4, a single vertexq adjacent
to every vertex of every suchC4, and a single vertexq′ adjacent toq and an arbitrary
vertex ofG. It is easy to check thatwsnH(G′) ≤ 2.

We claim that(G, j) is a YES-instance of DOMINATING SET if and only if (G′, j+
1) is a yes-instance of MSO-OPT≤ϕ . Indeed, assume there exists a dominating setD in
G of cardinalityj. Then the setD ∪ {q} is a dominating set inG′, and hence satisfies
ϕ.

On the other hand, assume there exists a setD′ of cardinality at mostj + 1 which
satisfiesϕ. If j + 1 ≥ |G| + 2 then clearly(G, j) is a YES-instance of DOMINATING

SET, so assume this is not the case. But thenD′ cannot intersect everyC4, and hence
D′ must be a dominating set ofG′ of cardinality at mostj+1. But this is only possible
if q ∈ D′. Furthermore, ifq′ ∈ D′, then replacingq′ with the neighbor ofq′ in G
is also a dominating set ofG′. Hence we may assume, w.l.o.g., thatD′ ∩ V (G) is a
dominating set of cardinality at mostj in V (G). Consequently,(G, j) is a YES-instance
of DOMINATING SET and the proof is complete. �

⊓⊔

We conclude with two remarks on Theorem 11. On one hand, the fixed parameter
tractability of LinEMSO traditionally follows from the methods used for FPT MSO
model checking, and in this respect the theorem is surprising. But on the other hand,
our parameters are strictly more general than rank-width and hence one should expect
that some results simply cannot be lifted to this more general setting.
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