Solving Problems on Graphs of High Rank-Width ${ }^{\star}$

Eduard Eiben, Robert Ganian, and Stefan Szeider
Algorithms and Complexity Group, Institute of Computer Graphics and Algorithms
TU Wien, Vienna, Austria

Abstract

A modulator of a graph G to a specified graph class \mathcal{H} is a set of vertices whose deletion puts G into \mathcal{H}. The cardinality of a modulator to various graph classes has long been used as a structural parameter which can be exploited to obtain FPT algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but "well-structured" (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are strictly more general than the cardinality of modulators and rank-width itself. Then, we develop an FPT algorithm for finding such well-structured modulators to any graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use the concept of well-structured modulators to develop an algorithmic meta-theorem for efficiently deciding problems expressible in Monadic Second Order (MSO) logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.

1 Introduction

Many important graph problems are known to be NP-hard, and yet admit efficient solutions in practice due to the inherent structure of instances. The parameterized complexity paradigm [10|24] allows a more refined analysis of the complexity of various problems and hence enables the design of more efficient algorithms. In particular, given an instance of size n and a numerical parameter k which captures some property of the instance, one asks whether the instance can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$. Parameterized problems which admit such an algorithm are called fixed parameter tractable (FPT), and the algorithms themselves are often called FPT algorithms.

Given the above, it is natural to ask what kind of structure can be exploited to obtain FPT algorithms for a wide range of natural graph problems. There are two very successful, mutually incomparable approaches which tackle this question.
A. Width measures. Treewidth has become an extremely successful structural parameter with a wide range of applications in many fields of computer science. However, treewidth is not suitable for use in dense graphs. This led to the development of algorithms that use the parameter clique-width [7], which can be viewed as a relaxation

[^0]of treewidth towards dense graphs. However, while there are efficient theoretical algorithms for computing tree-decompositions, this is not the case for decompositions for clique-width. This shortcoming has later been overcome by the notion of rank-width [25], which improves upon clique-width by allowing the efficient computation of rank-decompositions while retaining all of the positive algorithmic results previously obtained for clique-width.
B. Modulators. A modulator is a vertex set whose deletion places the considered graph into some specified graph class. A substantial amount of research has been placed into finding as well as exploiting small modulators to various graph classes [113]. Popular notions such as vertex cover and feedback vertex set are also special cases of modulators (to the classes of edgeless graphs and forests, respectively). One advantage of parameterizing by the size of modulators is that it allows us to build on the vast array of research of polynomial-time algorithms on specific graph classes (see, for instance, [6|23]). In other fields of computer science, modulators are often called backdoors and have been successfully used to obtain efficient algorithms for, e.g., Satisfiability and Constraint Satisfaction [14].

Our primary goal in this paper is to push the boundaries of tractability for a wide range of problems above the state of the art for both of these approaches. We summarize our contributions below.

1. We introduce a family of "hybrid" parameters that combine approaches A and B.

Given a graph G and a fixed graph class \mathcal{H}, the new parameters capture (roughly speaking) the minimum rank-width of any modulator of G into \mathcal{H}. We call this the wellstructure number of G or $w s n^{\mathcal{H}}(G)$. The formal definition of the parameter also relies on the notion of split decompositions [8] and is provided in Section 3] where we also prove that for any graph class \mathcal{H} of unbounded rank-width, $w s n^{\mathcal{H}}$ is not larger and in many cases much smaller than both rank-width and the size of a modulator to \mathcal{H}.
2. We develop an FPT algorithm for computing $w s n^{\mathcal{H}}$.

As with most structural parameters, virtually all algorithmic applications of the wellstructure number rely on having access to an appropriate decomposition. In Section 4 we provide an FPT algorithm for computing $w s n^{\mathcal{H}}$ along with the corresponding decomposition for any graph class \mathcal{H} which can be characterized by a finite set of forbidden induced subgraphs (obstructions). This is achieved by building on the polynomial algorithm for computing split-decompositions [18] in combination with the FPT algorithm for computing rank-width [20].
3. We design FPT algorithms for Minimum Vertex Cover (MinVC) and Maximum Clique (MAXCLQ) parameterized by $w s n^{\mathcal{H}}$.
Specifically, in Section 5 we show that for any graph class \mathcal{H} (which can be characterized by a finite set of obstructions) such that the problem is polynomial-time tractable on \mathcal{H}, the problem becomes fixed parameter tractable when parameterized by $w s n^{\mathcal{H}}$. We also give an overview of possible choices of \mathcal{H} for MinVC and MaxCle.
4. We develop a meta-theorem to obtain FPT algorithms for problems definable in Monadic Second Order (MSO) logic [7] parameterized by wsn ${ }^{\mathcal{H}}$.

The meta-theorem requires that the problem is FPT when parameterized by the cardinality of a modulator to \mathcal{H}. We prove that this condition is not only sufficient but also necessary, in the sense that the weaker condition of polynomial-time tractability on \mathcal{H} used for MInVC and MAXCLQ is not sufficient for FPT-time MSO model checking. Formal statements and proofs can be found in Section 6
5. We show that, in general, solving LinEMSO problems [7|12] is not FPT when parameterized by wsn ${ }^{\mathcal{H}}$.
In particular, in the concluding Section 7 we give a proof that these problems are in general paraNP-hard when parameterized by wsn ${ }^{\mathcal{H}}$ under the same conditions as those used for MSO model checking.

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by \mathbb{N}. For $i \in \mathbb{N}$ we write $[i]$ to denote the set $\{1, \ldots, i\}$. If \sim is an equivalence relation over a set A, then for $a \in A$ we use $[a]_{\sim}$ to denote the equivalence class containing a.

Graphs We will use standard graph theoretic terminology and notation (cf. [9]). All graphs considered in this document are simple and undirected. The non-leaf vertices of a tree are called its internal nodes. If S is a set of leaves of T, then $T(S)$ denotes the smallest connected subtree spanning S.

Given a graph $G=(V(G), E(G))$ and $A \subseteq V(G)$, we denote by $N(A)$ the set of neighbors of A in $V(G) \backslash A$; if A contains a single vertex v, we use $N(v)$ instead of $N(\{v\})$. We use V and E as shorthand for $V(G)$ and $E(G)$, respectively, when the graph is clear from context. Two vertex sets A, B are overlapping if $A \cap B, A \backslash B, B \backslash A$ are all nonempty. $G-A$ denotes the subgraph of G obtained by deleting A.

Given a graph $G=(V, E)$ and a graph class \mathcal{H}, a set $X \subseteq V$ is called a modulator to \mathcal{H} if $G-X \in \mathcal{H}$. A graph class is called hereditary if it is closed under vertex deletion. A graph H is an induced subgraph of G if H can be obtained by deleting vertices (along with all of their incident edges) from G. For $A \subseteq V(G)$ we use $G[A]$ to denote the subgraph of G obtained by deleting $V(G) \backslash A$. Let \mathcal{F} be a finite set of graphs; then the class of \mathcal{F}-free graphs is the class of all graphs which do not contain any graph in \mathcal{F} as an induced subgraph. We will often refer to elements of \mathcal{F} as obstructions, and we say that the class of \mathcal{F}-free graphs is characterized by \mathcal{F}.

Fixed-Parameter Tractability. We refer the reader to [10]24] for an introduction to parameterized complexity. A parameterized problem \mathcal{P} is a subset of $\Sigma^{*} \times \mathbb{N}$ for some finite alphabet Σ. For a problem instance $(x, k) \in \Sigma^{*} \times \mathbb{N}$ we call x the main part and k the parameter. A parameterized problem \mathcal{P} is fixed-parameter tractable (FPT in short) if a given instance (x, k) can be solved in time $O(f(k) \cdot p(|x|))$ where f is an arbitrary computable function of k and p is a polynomial function.

Splits and Graph Labeled Trees A split of a connected graph $G=(V, E)$ is a vertex bipartition $\{A, B\}$ of V such that every vertex of $A^{\prime}=N(B)$ has the same neighborhood in $B^{\prime}=N(A)$. The sets A^{\prime} and B^{\prime} are called frontiers of the split. A split is said
to be non-trivial if both sides have at least two vertices. A connected graph which does not contain a non-trivial split is called prime. A bipartition is trivial if one of its parts is the empty set or a singleton. Cliques and stars are called degenerate graphs; notice that every non-trivial bipartition of their vertices is a split.

Let $G=(V, E)$ be a graph. To simplify our exposition, we will use the notion of split-modules instead of splits where suitable. A set $A \subseteq V$ is called a split-module of G if there exists a connected component $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G such that $\left\{A, V^{\prime} \backslash A\right\}$ forms a split of G^{\prime}. Notice that if A is a split-module then A can be partitioned into A_{1} and A_{2} such that $N\left(A_{2}\right) \subseteq A$ and for each $v_{1}, v_{2} \in A_{1}$ it holds that $N\left(v_{1}\right) \cap\left(V^{\prime} \backslash A\right)=$ $N\left(v_{2}\right) \cap\left(V^{\prime} \backslash A\right)$. For technical reasons, V and \emptyset are also considered split-modules. We say that two disjoint split-modules $X, Y \subseteq V$ are adjacent if there exist $x \in X$ and $y \in Y$ such that x and y are adjacent.

A graph-labeled tree is a pair (T, \mathcal{F}), where T is a tree and \mathcal{F} is a set of graphs such that each internal node u of T is labeled by a graph $G(u) \in \mathcal{F}$ and there is a bijection between the edges of T incident to u and vertices of $G(u)$. When clear from the context, we may use u as a shorthard for $G(u) \in \mathcal{F}$; for instance, we use $V(u)$ to denote $V(G(u))$ and we say that an edge of T incident to u is incident to the vertex of $G(u)$ mapped to it. Graph-labeled trees were introduced in [16|7] and in the following paragraphs we recall some useful definitions and theorems that appear in [18].

For an internal node u of T, the vertices of $V(u)$ are called marker vertices and the edges of $E(u)$ are called label-edges. Edges of T incident to two internal nodes are called tree-edges. Marker vertices incident to a tree-edge e are called the extremities of e, and each leaf v is associated with the unique marker vertex q (in the neighbor of v) mapped to the edge incident to v. Perhaps the most important notion for graph-labeled trees with respect to split decomposition is that of accessibility.

Definition 1. Let (T, \mathcal{F}) be a graph-labeled tree. The marker vertices q and q^{\prime} are accessible from one another if there is a sequence Π of marker vertices q, \ldots, q^{\prime} such that the two following conditions holds.

1. Every two consecutive elements of Π are either the vertices of a label-edge or the extremities of a tree-edge;
2. the sequence of edges obtained above alternates between tree-edges and labeledges.

Two leaves are accessible if their associated marker vertices are accessible. The accessibility graph of graph-labeled tree (T, \mathcal{F}), denoted $\operatorname{Gr}(T, \mathcal{F})$, is the graph whose vertices are leaves of T and which has an edge between two distinct leaves l and l^{\prime} if and only if they are accessible from one another. Conversely, we may say that (T, \mathcal{F}) is the graph-labeled tree of $\operatorname{Gr}(T, \mathcal{F})$.

Definition 2 ([18]). Let e be a tree-edge incident to internal nodes u and u^{\prime} in a graphlabeled tree, and let $q \in V(u)$ and $q^{\prime} \in V\left(u^{\prime}\right)$ be the extremities of e. The node-join of u, u^{\prime} replaces u and u^{\prime} with a new internal node v labeled by the graph formed from the disjoint union of $G(u)$ and $G\left(u^{\prime}\right)$ as follows: all possible label-edges are added between $N(q)$ and $N\left(q^{\prime}\right)$, and then q and q^{\prime} are deleted. The new node v is made adjacent to all neighbors of u and u^{\prime} in T. The node-split is then the inverse of the node-join.

Fig. 1. A graph-labeled tree (right) and its accessibility graph (left).

Notice that the node-join operation and the node-split operation preserve the accessibility graph of the GLT. A graph-labeled tree is reduced if all its labels are either prime or degenerate, and no node-join of two cliques or two stars is possible.

Theorem $1([\mathbf{8}, \mathbf{1 6 1 7 | 1 8}])$. For any connected graph G, there exists a unique, reduced graph-labeled tree (T, \mathcal{F}) such that $G=\operatorname{Gr}(T, \mathcal{F})$.

The unique graph-labeled tree guaranteed by the previous theorem is the split-tree, and is denoted $S T(G)$.

Theorem $2([\mathbf{8}, \mathbf{1 6 | 1 7 | 1 8]})$. Let (T, \mathcal{F}) be the split-tree of a connected graph G. Any split of G is the bipartition (of leaves) induced by removing an internal tree-edge from T^{\prime}, where $T^{\prime}=T$ or T^{\prime} is obtained from T by exactly one node-split of a degenerate node.

Theorem 3 ([18]). The split-tree $S T(G)$ of a connected graph $G=(V, E)$ with n vertices and m edges can be built incrementally in time $O(n+m) \alpha(n+m)$, where α is the inverse Ackermann function.

Rank-width For a graph G and $U, W \subseteq V(G)$, let $\boldsymbol{A}_{G}[U, W]$ denote the $U \times W$ submatrix of the adjacency matrix over the two-element field $\mathrm{GF}(2)$, i.e., the entry $a_{u, w}, u \in U$ and $w \in W$, of $\boldsymbol{A}_{G}[U, W]$ is 1 if and only if $\{u, w\}$ is an edge of G. The cut-rank function ρ_{G} of a graph G is defined as follows: For a bipartition (U, W) of the vertex set $V(G), \rho_{G}(U)=\rho_{G}(W)$ equals the rank of $\boldsymbol{A}_{G}[U, W]$ over GF (2).

A rank-decomposition of a graph G is a pair (T, μ) where T is a tree of maximum degree 3 and $\mu: V(G) \rightarrow\{t: t$ is a leaf of $T\}$ is a bijective function. For an edge e of T, the connected components of $T-e$ induce a bipartition (X, Y) of the set of leaves of T. The width of an edge e of a rank-decomposition (T, μ) is $\rho_{G}\left(\mu^{-1}(X)\right)$. The width of (T, μ) is the maximum width over all edges of T. The rank-width of $G, r w(G)$ in short, is the minimum width over all rank-decompositions of G. We denote by \mathcal{R}_{i} the class of all graphs of rank-width at most i, and say that a graph class \mathcal{H} is of unbounded rank-width if $\mathcal{H} \nsubseteq \mathcal{R}_{i}$ for any $i \in \mathbb{N}$.

Fig. 2. A rank-decomposition of the cycle C_{5}.
Theorem 4 ([|20|). Let $k \in \mathbb{N}$ be a constant and $n \geq 2$. For an n-vertex graph G, we can output a rank-decomposition of width at most k or confirm that the rank-width of G is larger than k in time $f(k) \cdot n^{3}$, where f is a computable function.

Monadic Second Order Logic on Graphs We assume that we have an infinite supply of individual variables, denoted by lowercase letters x, y, z, and an infinite supply of set variables, denoted by uppercase letters X, Y, Z. Formulas of monadic second-order logic (MSO) are constructed from atomic formulas $E(x, y), X(x)$, and $x=y$ using the connectives \neg (negation), \wedge (conjunction) and existential quantification $\exists x$ over individual variables as well as existential quantification $\exists X$ over set variables. Individual variables range over vertices, and set variables range over sets of vertices. The atomic formula $E(x, y)$ expresses adjacency, $x=y$ expresses equality, and $X(x)$ expresses that vertex x in the set X. From this, we define the semantics of monadic second-order logic in the standard way (this logic is sometimes called MSO_{1}).

Free and bound variables of a formula are defined in the usual way. A sentence is a formula without free variables. We write $\varphi\left(X_{1}, \ldots, X_{n}\right)$ to indicate that the set of free variables of formula φ is $\left\{X_{1}, \ldots, X_{n}\right\}$. If $G=(V, E)$ is a graph and $S_{1}, \ldots, S_{n} \subseteq$ V we write $G \models \varphi\left(S_{1}, \ldots, S_{n}\right)$ to denote that φ holds in G if the variables X_{i} are interpreted by the sets S_{i}, for $i \in[n]$. For a fixed MSO sentence φ, the MSO Model Checking problem (MSO-MC ${ }_{\varphi}$) asks whether an input graph G satisfies $G \models \varphi$.

It is known that MSO formulas can be checked efficiently as long as the graph has bounded rank-width.

Theorem 5 ([12]). Let φ and $\psi=\psi(X)$ be fixed MSO formulas. Given an n-vertex graph G and a set $S \subseteq V(G)$, there exists a computable function f such that we can decide whether $G \models \varphi$ and whether $G \models \psi(S)$ in time $f(\operatorname{rw}(G)) \cdot n^{3}$.

We review MSO types roughly following the presentation in [22]. The quantifier rank of an MSO formula φ is defined as the nesting depth of quantifiers in φ. For non-negative integers q and l, let $\mathrm{MSO}_{q, l}$ consist of all MSO formulas of quantifier rank at most q with free set variables in $\left\{X_{1}, \ldots, X_{l}\right\}$.

Let $\varphi=\varphi\left(X_{1}, \ldots, X_{l}\right)$ and $\psi=\psi\left(X_{1}, \ldots, X_{l}\right)$ be MSO formulas. We say φ and ψ are equivalent, written $\varphi \equiv \psi$, if for all graphs G and $U_{1}, \ldots, U_{l} \subseteq V(G)$, $G \models \varphi\left(U_{1}, \ldots, U_{l}\right)$ if and only if $G \models \psi\left(U_{1}, \ldots, U_{l}\right)$. Given a set F of formulas, let F / \equiv denote the set of equivalence classes of F with respect to \equiv. A system of representatives of F / \equiv is a set $R \subseteq F$ such that $R \cap C \neq \emptyset$ for each equivalence class $C \in F / \equiv$. The following statement has a straightforward proof using normal forms (see [22, Proposition 7.5] for details).

Fact 1. Let q and l be fixed non-negative integers. The set $M S O_{q, l} / \equiv$ is finite, and one can compute a system of representatives of $\mathrm{MSO}_{q, l} / \equiv$.

We will assume that for any pair of non-negative integers q and l the system of representatives of $\mathrm{MSO}_{q, l} / \equiv$ given by Fact 1 is fixed.
Definition 3 (MSO Type). Let q, l be non-negative integers. For a graph G and an l-tuple \boldsymbol{U} of sets of vertices of G, we define type (G, \boldsymbol{U}) as the set of formulas $\varphi \in$ $M S O_{q, l}$ such that $G \models \varphi(\boldsymbol{U})$. We call type ${ }_{q}(G, \boldsymbol{U})$ the MSO q-type of \boldsymbol{U} in G.

It follows from Fact 1 that up to logical equivalence, every type contains only finitely many formulas. This allows us to represent types using MSO formulas as follows.

Lemma 1 ([13]). Let q and l be non-negative integer constants, let G be a graph, and let \boldsymbol{U} be an l-tuple of sets of vertices of G. One can compute a formula $\Phi \in M S O_{q, l}$ such that for any graph G^{\prime} and any l-tuple \boldsymbol{U}^{\prime} of sets of vertices of G^{\prime} we have $G^{\prime} \models \Phi\left(\boldsymbol{U}^{\prime}\right)$ if and only if type $(G, \boldsymbol{U})=$ type $_{q}\left(G^{\prime}, \boldsymbol{U}^{\prime}\right)$. Moreover, Φ can be computed in time $\mathcal{O}\left(f(r w(G)) \cdot|V|^{\mathcal{O}(1)}\right)$.

Proof. Let R be a system of representatives of $\mathrm{MSO}_{q, l} / \equiv$ given by Fact 1 Because q and l are constant, we can consider both the cardinality of R and the time required to compute it as constants. Let $\Phi \in \mathrm{MSO}_{q, l}$ be the formula defined as $\Phi=\bigwedge_{\varphi \in S} \varphi \wedge$ $\bigwedge_{\varphi \in R \backslash S} \neg \varphi$, where $S=\{\varphi \in R \mid G \models \varphi(\boldsymbol{U})\}$. We can compute Φ by deciding $G \models \varphi(\boldsymbol{U})$ for each $\varphi \in R$. Since the number of formulas in R is a constant, this can be done in time $\mathcal{O}\left(f(\operatorname{rw}(G)) \cdot|V|^{\mathcal{O}(1)}\right)$ if $G \models \varphi(\boldsymbol{U})$ can be decided in time $f(\operatorname{rw}(G)) \cdot|V|^{\mathcal{O}(1)}$.

Let G^{\prime} be an arbitrary graph and let \boldsymbol{U}^{\prime} be an l-tuple of subsets of $V\left(G^{\prime}\right)$. We claim that type $_{q}(G, \boldsymbol{U})=$ type $_{q}\left(G^{\prime}, \boldsymbol{U}^{\prime}\right)$ if and only if $G^{\prime} \models \Phi\left(\boldsymbol{U}^{\prime}\right)$. Since $\Phi \in \mathbf{M S O}_{q, l}$ the forward direction is trivial. For the converse, assume type $_{q}(G, \boldsymbol{U}) \neq$ type $_{q}\left(G^{\prime}, \boldsymbol{U}^{\prime}\right)$. First suppose $\varphi \in$ type $_{q}(G, \boldsymbol{U}) \backslash$ type $_{q}\left(G^{\prime}, \boldsymbol{U}^{\prime}\right)$. The set R is a system of representatives of $\mathbf{M S O}_{q, l} / \equiv$, so there has to be a $\psi \in R$ such that $\psi \equiv \varphi$. But $G^{\prime} \models \Phi\left(\boldsymbol{U}^{\prime}\right)$ implies $G^{\prime} \models \psi\left(\boldsymbol{U}^{\prime}\right)$ by construction of Φ and thus $G^{\prime} \models \varphi\left(\boldsymbol{U}^{\prime}\right)$, a contradiction. Now suppose $\varphi \in \operatorname{type}_{q}\left(G^{\prime}, \boldsymbol{U}^{\prime}\right) \backslash$ type $_{q}(G, \boldsymbol{U})$. An analogous argument proves that there has to be a $\psi \in R$ such that $\psi \equiv \varphi$ and $G^{\prime} \models \neg \psi\left(\boldsymbol{U}^{\prime}\right)$. It follows that $G^{\prime} \notin \varphi\left(\boldsymbol{U}^{\prime}\right)$, which again yields a contradiction.

Definition 4 (Partial isomorphism). Let G, G^{\prime} be graphs, and let $\boldsymbol{V}=\left(V_{1}, \ldots, V_{l}\right)$ and $\boldsymbol{U}=\left(U_{1}, \ldots, U_{l}\right)$ be tuples of sets of vertices with $V_{i} \subseteq V(G)$ and $U_{i} \subseteq V\left(G^{\prime}\right)$ for each $i \in[l]$. Let $\boldsymbol{v}=\left(v_{1}, \ldots, v_{m}\right)$ and $\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right)$ be tuples of vertices with $v_{i} \in V(G)$ and $u_{i} \in V\left(G^{\prime}\right)$ for each $i \in[m]$. Then $(\boldsymbol{v}, \boldsymbol{u})$ defines a partial isomorphism between (G, \boldsymbol{V}) and $\left(G^{\prime}, \boldsymbol{U}\right)$ if the following conditions hold:

- For every $i, j \in[m]$,

$$
v_{i}=v_{j} \Leftrightarrow u_{i}=u_{j} \text { and } v_{i} v_{j} \in E(G) \Leftrightarrow u_{i} u_{j} \in E\left(G^{\prime}\right) .
$$

- For every $i \in[m]$ and $j \in[l]$,

$$
v_{i} \in V_{j} \Leftrightarrow u_{i} \in U_{j} .
$$

Definition 5. Let G and G^{\prime} be graphs, and let V_{0} be a k-tuple of subsets of $V(G)$ and let U_{0} be a k-tuple of subsets of $V\left(G^{\prime}\right)$. Let q be a non-negative integer. The q-round MSO game on G and G^{\prime} starting from $\left(\boldsymbol{V}_{\mathbf{0}}, \boldsymbol{U}_{\mathbf{0}}\right)$ is played as follows. The game proceeds in rounds, and each round consists of one of the following kinds of moves.

- Point move The Spoiler picks a vertex in either G or G^{\prime}; the Duplicator responds by picking a vertex in the other graph.
- Set move The Spoiler picks a subset of $V(G)$ or a subset of $V\left(G^{\prime}\right)$; the Duplicator responds by picking a subset of the vertex set of the other graph.

Let $\boldsymbol{v}=\left(v_{1}, \ldots, v_{m}\right), v_{i} \in V(G)$ and $\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right), u_{i} \in V\left(G^{\prime}\right)$ be the point moves played in the q-round game, and let $\boldsymbol{V}=\left(V_{1}, \ldots, V_{l}\right), V_{i} \subseteq V(G)$ and $\boldsymbol{U}=$ $\left(U_{1}, \ldots, U_{l}\right), U_{i} \subseteq V\left(G^{\prime}\right)$ be the set moves played in the q-round game, so that $l+m=$ q and moves belonging to same round have the same index. Then the Duplicator wins the game if $(\boldsymbol{v}, \boldsymbol{u})$ is a partial isomorphism of $\left(G, \boldsymbol{V}_{\mathbf{0}} \cup \boldsymbol{V}\right)$ and $\left(G^{\prime}, \boldsymbol{U}_{\mathbf{0}} \cup \boldsymbol{U}\right)$. If the Duplicator has a winning strategy, we write $\left(G, \boldsymbol{V}_{\mathbf{0}}\right) \equiv_{q}^{M S O}\left(G^{\prime}, \boldsymbol{U}_{\mathbf{0}}\right)$.

Theorem 6 ([22], Theorem 7.7). Given two graphs G and G^{\prime} and two l-tuples $\boldsymbol{V}_{\mathbf{0}}, \boldsymbol{U}_{\mathbf{0}}$ of sets of vertices of G and G^{\prime}, we have

$$
\operatorname{type}_{q}\left(G, \boldsymbol{V}_{\mathbf{0}}\right)=\operatorname{type}_{q}\left(G, \boldsymbol{U}_{\mathbf{0}}\right) \Leftrightarrow\left(G, \boldsymbol{V}_{\mathbf{0}}\right) \equiv_{q}^{M S O}\left(G^{\prime}, \boldsymbol{U}_{\mathbf{0}}\right)
$$

3 Well-Structured Modulators

Definition 6. Let \mathcal{H} be a hereditary graph class and let G be a graph. A set \boldsymbol{X} of pairwise-disjoint split-modules of G is called $a k$-well-structured modulator to \mathcal{H} if

1. $|\boldsymbol{X}| \leq k$, and
2. $\bigcup_{X_{i} \in X} X_{i}$ is a modulator to \mathcal{H}, and
3. $\operatorname{rw}\left(G\left[X_{i}\right]\right) \leq k$ for each $X_{i} \in \boldsymbol{X}$.

Fig. 3. A graph with a 2 -well-structured modulator to K_{3}-free graphs (in the two shaded areas)
For the sake of brevity and when clear from context, we will sometimes identify \boldsymbol{X} with $\bigcup_{X_{i} \in \boldsymbol{X}} X_{i}$ (for instance $G-\boldsymbol{X}$ is shorthand for $G-\bigcup_{X_{i} \in \boldsymbol{X}} X_{i}$). To allow a concise description of our parameters, for any hereditary graph class \mathcal{H} we let the well-structure number ($w \mathrm{wn}^{\mathcal{H}}$ in short) denote the minimum k such that G has a k-wellstructured modulator to \mathcal{H}. Similarly, we let $\bmod ^{\mathcal{H}}(G)$ denote the minimum k such that G has a modulator of cardinality k to \mathcal{H}.

Proposition 1. Let \mathcal{H} be any hereditary graph class of unbounded rank-width.

1. $\operatorname{rw}(G) \geq \operatorname{wsn}^{\mathcal{H}}(G)$ for any graph G. Furthermore, for every $i \in \mathbb{N}$ there exists a graph G_{i} such that $\operatorname{rw}\left(G_{i}\right) \geq \mathrm{wsn}^{\mathcal{H}}\left(G_{i}\right)+i$, and
2. $\bmod ^{\mathcal{H}}(G) \geq \operatorname{wsn}^{\mathcal{H}}(G)$ for any graph G. Furthermore, for every $i \in \mathbb{N}$ there exists a graph G_{i} such that $\bmod ^{\mathcal{H}}\left(G_{i}\right) \geq \operatorname{wsn}^{\mathcal{H}}\left(G_{i}\right)+i$.

Proof. 1. For $r w(G) \geq w s n^{\mathcal{H}}(G)$ notice that for any graph G of rank-width k, the set $\{V(G)\}$ is a k-well-structured modulator to the empty graph. For the second claim, since \mathcal{H} has unbounded rank-width, for every $i \in \mathbb{N}$ it contains some graph G_{i} such that $r w\left(G_{i}\right)>i$; by definition, wsn ${ }^{\mathcal{H}}\left(G_{i}\right)=0$.
2. For $\bmod ^{\mathcal{H}}(G) \geq \operatorname{wsn}^{\mathcal{H}}(G)$, let G be a graph containing a modulator $X=\left\{v_{1}, \ldots\right.$, $\left.v_{k}\right\}$ to \mathcal{H}. It is easy to check that $\boldsymbol{X}=\left\{\left\{v_{1}\right\}, \ldots,\left\{v_{k}\right\}\right\}$ is a k-well-structured modulator to \mathcal{H}. For the second claim, let $G^{\prime} \notin \mathcal{H}$ and let $k=r w\left(G^{\prime}\right)$. Consider the graph G_{i} consisting of $i+1+k$ disjoint copies of G^{\prime} and a vertex q which is adjacent to every other vertex of G. Since \mathcal{H} is hereditary, we may assume without loss of generality that it contains the single-vertex graph. It is then easy to check that $\{V(G) \backslash\{q\}\}$ forms a k-well-structured modulator in G to \mathcal{H}. Now consider any set $X \subseteq V(G)$ of cardinality at most $i+k$. Clearly, there must exist some copy of G^{\prime}, say G_{j}^{\prime}, such that $X \cap V\left(G_{j}^{\prime}\right)=\emptyset$. Since $G_{j}^{\prime} \notin \mathcal{H}$, it follows from the hereditarity of \mathcal{H} that $G-X \notin \mathcal{H}$ and hence X cannot be a modulator to \mathcal{H}. We conclude $\bmod ^{\mathcal{H}}\left(G_{i}\right)>i+k=i+\operatorname{wsn}^{\mathcal{H}}\left(G_{i}\right)$.

4 Finding Well-Structured Modulators

The objective of this subsection is to prove the following theorem. Interestingly, our approach only allows us to find well-structured modulators if the rank-width of the graph is sufficiently large. This never becomes a problem though, since on graphs with small rank-width we can always directly use rank-width as our parameter.

Theorem 7. Let \mathcal{H} be a graph class characterized by a finite obstruction set. There exists an FPT algorithm parameterized by k which for any graph G of rank-width at least $k+2$ either finds a k-well-structured modulator to \mathcal{H} or correctly detects that it does not exist.

We begin by stating several useful properties of splits in graphs. We remark that for most of this section we will restrict ourselves to connected graphs, and show how to deal with general graphs later on; this allows us to use the following result by Cunningham.

Theorem 8 ([|8|). Let $\{A, C\},\{B, D\}$ be splits of a connected graph G such that $\mid A \cap$ $B \mid \geq 2$ and $A \cup B \neq V(G)$. Then $\{A \cap B, C \cup D\}$ is a split of G.

Lemma 2. If A and B are overlapping split-modules of a connected graph $G=(V, E)$, then $A \cup B$ is also a split-module. Moreover, if $A \cup B \neq V$, then also $A \cap B$ is a splitmodule.

Proof. If $V=A \cup B$, then $A \cup B$ is clearly a split-module. So, assume $A \cup B \neq V$ and let $C=V \backslash A$ and $D=V \backslash B$; note that $C \cup D \neq V$ since A, B are overlapping. We make the following exhaustive case distinction:

- if $|A \cap B|=1$ and $|C \cap D|=1$, then both $A \cap B$ and $A \cup B=V \backslash(C \cap D)$ are easily seen to be split-modules;
- if $|A \cap B| \geq 2$ and $|C \cap D|=1$, then $A \cap B$ is a split-module by Theorem 8 and $A \cup B$ is also a split-module because $C \cap D$ is a split-module;
- if $|A \cap B|=1$ and $|C \cap D| \geq 2$, then $A \cap B$ is a split-module and $A \cup B$ is also a split-module because C, D satisfy the conditions of Theorem 8 and hence $C \cap D=V \backslash(A \cup B)$ forms a split-module;
- if $|A \cap B| \geq 2$ and $|C \cap D| \geq 2$, then $A \cap B$ is a split-module by Theorem 8 and $A \cup B$ is also a split-module because C, D satisfy the conditions of Theorem 8 as in the previous case.

Lemma 3. Let $G=(V, E)$ be a connected graph and A, B be overlapping splitmodules. Then $A \backslash B$ is also a split-module.

Proof. The lemma clearly holds if $|A \backslash B| \leq 1$, so we may assume that $|A \backslash B| \geq 2$. Let $Z=V \backslash B$; since B is a split module, so is Z. Furthermore, since A and B are overlapping, it holds that $B \backslash A$ is nonempty and hence $V \neq Z \cup A$. Since $Z \cap A=A \backslash B$, we have $|Z \cap A| \geq 2$ and hence we conclude that $Z \cap A=A \backslash B$ is a split module by Theorem 8

Lemma 4. Let $k \in \mathbb{N}$ be a constant, $G=(V, E)$ a graph, and A, B, C be pairwise disjoint split-modules such that $A \cup B \cup C=V$. Let a, b, c be arbitrary vertices such that $a \in N(A), b \in N(B)$, and $c \in N(C)$. If $\max (\operatorname{rw}(G[A \cup\{a\}]), \operatorname{rw}(G[B \cup$ $\{b\}]), \operatorname{rw}(G[C \cup\{c\}])) \leq k$, then $\operatorname{rw}(G) \leq k$.

Proof. Let $\mathcal{T}_{A}=\left(T_{A}, \mu_{A}\right), \mathcal{T}_{B}=\left(T_{B}, \mu_{B}\right)$, and $\mathcal{T}_{C}=\left(T_{C}, \mu_{C}\right)$ be witnessing rank decompositions of $G[A], G[B]$, and $G[C]$, respectively.

We construct a rank decomposition $\mathcal{T}=(T, \mu)$ of G as follows.
Let l_{a} be the leaf (note that μ_{A} is bijective) of T_{A} such that $\mu_{A}(a)=l_{a}$. Similarly, let l_{b} and l_{c} be the leaves such that $\mu_{B}(b)=l_{b}$ and $\mu_{C}(c)=l_{c}$, respectively. We obtain T from T_{A} by adding disjoint copies of T_{B} and T_{C} and then identifying l_{a} with the copies of l_{b} and l_{b}. Since T_{A}, T_{B}, and T_{C} are subcubic, so is T.

We define the mapping $\mu: V(G) \rightarrow\{t \mid \mathrm{t}$ is a leaf of $T\}$ by

$$
\mu(v)= \begin{cases}\mu_{a}(v) & \text { if } v \in A \\ c\left(\mu_{b}(v)\right) & \text { if } v \in B \\ c\left(\mu_{c}(v)\right) & \text { otherwise }\end{cases}
$$

where c maps internal nodes in $T_{B} \cup T_{C}$ to their copies in T. The mappings μ_{A}, μ_{B}, and μ_{C} are bijections and c is injective, so μ is injective. By construction, the image of $V(G)$ under μ is the set of leaves of T, so μ is a bijection. Thus $\mathcal{T}=(T, \mu)$ is a rank decomposition of G.

We prove that the width of \mathcal{T} is at most k. Given a rank decomposition $\mathcal{T}^{*}=$ $\left(T^{*}, \mu^{*}\right)$ and an edge e of T^{*}, the connected components of $T^{*}-e$ induce a bipartition (X, Y) of the leaves of T^{*}. We set $f:\left(\mathcal{T}^{*}, e\right) \mapsto\left(\mu^{*-1}(X), \mu^{*-1}(Y)\right)$. Take any edge e of T. There is a natural bijection β from the edges in T to the edges of $T_{A} \cup T_{B} \cup T_{C}$. Accordingly, we distinguish three cases for $e^{\prime}=\beta(e)$:

1. $e^{\prime} \in T_{A}$. Let $(U, W)=f\left(\mathcal{T}_{A}, e^{\prime}\right)$. Without loss of generality assume that $a \in W$. Then by construction of \mathcal{T}, we have $f(\mathcal{T}, e)=(U, W \cup B \cup C)$. Let $u \in A$ and $v \in B \cup C$. Since A is split-module either $v \notin N(A)$ and $\mathbf{A}_{G}(u, v)=0$ for all $u \in A$, or $v \in N(A)$ in which case $\mathbf{A}_{G}(u, v)=\mathbf{A}_{G}(u, a)$ for all $u \in A$. Therefore, to obtain $\mathbf{A}_{G}(U, W \cup B \cup C)$ one can simply copy the column corresponding to a in $\mathbf{A}_{G}(U, W)$ or add some empty columns. This does not increase the rank of the matrix.
2. $e^{\prime} \in T_{B}$. This case is symmetric to case 1 with A and B switching their roles and b taking the role of a.
3. $e^{\prime} \in T_{C}$. This case is symmetric to case 1, with A and C switching their roles and c taking the role of a.

Since β is bijective, this proves that the rank of any bipartite adjacency matrix induced by removing an edge $e \in T$ is bounded by k. We conclude that the width of \mathcal{T} is at most k and thus $r w(G) \leq k$.

By repeating the proof technique of Lemma 4 without the set C, we obtain the following corollary.

Corollary 1. Let $k \in \mathbb{N}$ be a constant, $G=(V, E)$ a graph, and A, B pairwise disjoint split-modules such that $A \cup B=V$. Let $a, b \in V$ be such that $a \in N(A)$ and $b \in N(B)$. If $\max (\operatorname{rw}(G[A \cup\{a\}]), \operatorname{rw}(G[B \cup\{b\}])) \leq k$, then $\operatorname{rw}(G) \leq k$.

Lemma 5. Let $k \in \mathbb{N}$ be a constant. Let $G=(V, E)$ be a connected graph and let M_{1}, M_{2} be split-modules of G such that $M_{1} \cup M_{2}=V$ and $\max \left(\operatorname{rw}\left(G\left[M_{1}\right]\right), r w\left(G\left[M_{2}\right]\right)\right) \leq$ k. Then $\operatorname{rw}(G) \leq k+1$.

Proof. Let $M_{22}=M_{2} \backslash M_{1}$. Clearly, $\left\{M_{1}, M_{22}\right\}$ is a split. Since rank-width is preserved by taking induced subgraphs, the graph $G\left[M_{22}\right]$ has rank-width at most k. Let $v_{1} \in N\left(M_{22}\right)$ and $v_{2} \in N\left(M_{1}\right)$. It is easy to see that graphs $G_{1}=G\left[M_{1} \cup\left\{v_{2}\right\}\right]$ and $G_{2}=G\left[M_{22} \cup\left\{v_{1}\right\}\right]$ have rank-width at most $k+1$. We finish the proof by applying Corollary 1, with M_{1}, M_{22} in roles of A, B and v_{1}, v_{2} in roles of a, b, respectively.

The following lemma in essence shows that the relation of being in a split-module of small rank-width is transitive (assuming sufficiently high rank-width). The significance of this will become clear later on.

Lemma 6. Let $k \in \mathbb{N}$ be a constant. Let $G=(V, E)$ be a connected graph with rankwidth at least $k+2$ and let M_{1}, M_{2} be split-modules of G such that $M_{1} \cap M_{2} \neq \emptyset$ and $\max \left(\operatorname{rw}\left(G\left[M_{1}\right]\right), \operatorname{rw}\left(G\left[M_{2}\right]\right)\right) \leq k$. Then $M_{1} \cup M_{2}$ is a split-module of G and $\operatorname{rw}\left(G\left[M_{1} \cup M_{2}\right]\right) \leq k$.

Proof. If $M_{1} \subseteq M_{2}$ or $M_{2} \subseteq M_{1}$ the result is immediate, hence we may assume that they are overlapping. Lemma 5 and $r w(G) \geq k+2$ together imply that $M_{1} \cup M_{2} \neq V$. Let $M_{11}=M_{1} \backslash M_{2}, M_{22}=M_{2} \backslash M_{1}$, and $M_{12}=M_{1} \cap M_{2}$. It follows from Lemma2 and Lemma 3 that these sets are split-modules of G. Let $v_{11} \in N\left(V \backslash M_{11}\right), v_{22} \in$ $N\left(V \backslash M_{22}\right)$, and $v_{12} \in N\left(V \backslash M_{12}\right)$. We show that $r w\left(G\left[M_{1} \cup M_{2}\right]\right) \leq k$. By assumption, both $G\left[M_{1}\right]$ and $G\left[M_{2}\right]$ have rank-width at most k. Since rank-width is
preserved by taking induced subgraphs, the graphs $G_{11}=G\left[M_{11} \cup\left\{v_{12}\right\}\right], G_{12}=$ $G\left[M_{12} \cup\left\{v_{22}\right\}\right]$, and $G_{22}=G\left[M_{22} \cup\left\{v_{12}\right\}\right]$ also have rank-width at most k. We finish the proof by applying Lemma 4 with M_{11}, M_{22}, M_{12} taking the roles of A, B, and C and v_{12}, v_{12}, and v_{22} taking the roles of a, b, and c, respectively.

Definition 7. Let G be a graph and $k \in \mathbb{N}$. We define a relation \sim_{k}^{G} on $V(G)$ by letting $v \sim_{k}^{G} w$ if and only if there is a split-module M of G with $v, w \in M$ and $\operatorname{rw}(G[M]) \leq k$. We drop the superscript from \sim_{k}^{G} if the graph G is clear from context.

Using Lemma6to deal with transitivity, we prove the following.
Proposition 2. For every $k \in \mathbb{N}$ and graph $G=(V, E)$ with rank-width at least $k+2$, the relation \sim_{k} is an equivalence relation, and each equivalence class U of \sim_{k} is a split-module of G with $\operatorname{rw}(G[U]) \leq k$.

Proof. Let G be a graph and $k \in \mathbb{N}$. For every $v \in V$, the singleton $\{v\}$ is a splitmodule of G, so \sim_{k} is reflexive. Symmetry of \sim_{k} is trivial. For transitivity, let $u, v, w \in$ V be such that $u \sim_{k} v$ and $v \sim_{k} w$. Then there are split-modules M_{1}, M_{2} of G such that $u, v \in M_{1}, v, w \in M_{2}$, and $\operatorname{rw}\left(G\left[M_{1}\right]\right), \operatorname{rw}\left(G\left[M_{2}\right]\right) \leq k$; in particular, since $\operatorname{rw}(G) \geq k+2$ this implies that there exists a connected component G^{\prime} of G containing u, v, w. By Lemma6, $M_{1} \cup M_{2}$ is a split-module of G^{\prime} (and hence also of G) such that $\operatorname{rw}\left(G\left[M_{1} \cup M_{2}\right]\right) \leq k$. In combination with $u, w \in M_{1} \cup M_{2}$ that implies $u \sim_{k} w$. This concludes the proof that \sim_{k} is an equivalence relation.

Now let $v \in V, G^{\prime}$ be the connected component containing v, and let $U=[v]_{\sim_{k}}$. For each $u \in U$ there is a split-module W_{u} of G^{\prime} (and of G) with $u, v \in W_{u}$ and $r w\left(G\left[W_{u}\right]\right) \leq k$. By Lemma 6, $W=\bigcup_{u \in U} W_{u}$ is a split-module of G^{\prime} (and hence also of G) and $\operatorname{rw}(G[W]) \leq k$. Clearly, $[v]_{\sim_{k}} \subseteq W$. On the other hand, $u \in W$ implies $v \sim_{k} u$ by definition of \sim_{k}, so $W \subseteq[v]_{\sim_{k}}$. That is, $W=[v]_{\sim_{k}}$.

Corollary 2. Any graph G of rank-width at least $k+2$ has its vertex set uniquely partitioned by the equivalence classes of \sim_{k} into inclusion-maximal split-modules of rank-width at most k.

Next, we state a simple but useful observation.
Observation 1. Let $k \in \mathbb{N}$, G be a disconnected graph with rank-width at least $k+2$, and $\mathcal{C}(G)$ be the set of connected components of G. Then $\sim_{k}^{G}=\bigcup_{G^{\prime} \in \mathcal{C}(G)} \sim_{k}^{G^{\prime}}$.

Now that we know \sim_{k} is an equivalence, we show how to compute it in FPT time.
Proposition 3. Let $k \in \mathbb{N}$ be a constant. Given an n-vertex graph G of rank-width at least $k+2$ and two vertices v, w, we can decide whether $v \sim_{k} w$ in time $\mathcal{O}\left(n^{3}\right)$.

Proof. From Observation 1 it follows that if the proposition holds for connected graphs, then it holds for disconnected graphs as well; hence we may assume that G is connected. By Theorem 3 we can compute the unique split-tree $S T(G)=(T, \mathcal{F})$ in $O(m+n) \alpha(m+n)$ time. Due to Theorem 2 , every split in G is the bipartition of leaves of T induced either by removing an internal tree-edge of T or an edge created by a node-split of a degenerate vertex of T.

Vertices of G are leaves of T and we can find a path P between v and w in T in time linear in size of T. There are at most linearly many vertices on the path and we can split every degenerate vertex on P in a way that every degenerate vertex on a new path P^{\prime} between u and v will have 3 vertices. Denote the new tree by T^{\prime}.

Now every edge between P^{\prime} and $T^{\prime} \backslash P^{\prime}$ corresponds to a minimal split-module containing v and w. Conversely, as a consequence of Theorem 2 every minimal splitmodule containing v and w is induced by removing an edge between P^{\prime} and $T^{\prime} \backslash P^{\prime}$, and let $M_{v w}$ be the set containing all of these at most $|T|$ minimal split modules. Hence, $v \sim_{k} w$ if and only if there is a split-module X in $M_{v w}$ such that $r w(G[X]) \leq k$. By Theorem4 we can decide, for each such X, whether $r w(G[X]) \leq k$ in time $f(k) \cdot n^{3}$, where f is some computable function.

In the rest of this section we show how to find a k-well-structured modulator to any graph class \mathcal{H} characterized by a finite obstruction set \mathcal{F}. We first present the algorithm and then show its running time and correctness.

```
Algorithm 1: FindWSM \(\mathcal{F}^{\prime}\)
    Input \(\quad: k \in \mathbb{N}_{0}, n\)-vertex graph \(G\), equivalence \(\sim\) over a superset of \(V(G)\)
    Output : A \(k\)-cardinality set \(\boldsymbol{X}\) of subsets of \(V(G)\), or False
    if \(G\) does not contain any \(D \in \mathcal{F}\) as an induced subgraph then
        return \(\emptyset\)
    else
        \(D^{\prime}:=\) an induced subgraph of \(G\) isomorphic to an arbitrary \(D \in \mathcal{F} ;\)
    end
    if \(k=0\) then return False
    foreach \([a]_{\sim}\) of \(G\) which intersects with \(V\left(D^{\prime}\right)\) do
        \(\boldsymbol{X}=\operatorname{FindWSM}_{\mathcal{F}}\left(k-1, G-[a]_{\sim}, \sim\right)\);
        if \(\boldsymbol{X} \neq\) False then
            return \(\boldsymbol{X} \cup\left\{[a]_{\sim}\right\}\)
        end
    end
    return False
```

We will use \sim_{k} as the input for FindWSM $\mathcal{F}_{\mathcal{F}}$, however considering general equivalences as inputs is useful for proving correctness. Recall that the equivalence \sim_{k} (or, more precisely, the set of its equivalence classes) can be computed in time $n^{2} \cdot f(k) \cdot n^{3}$ for some function f thanks to Proposition 3, and this only needs to be done once before starting the algorithm. The following two lemmas show that Algorithm 1 is correct and runs in FPT time.

Lemma 7. There exists a constant c such that FindWSM $_{\mathcal{F}}$ runs in time $c^{k} \cdot n^{\mathcal{O}(1)}$.
Proof. The time required to perform the steps on rows 2-6 is $n^{O(1)}$ since \mathcal{F} is finite. For the same reason, it holds that $\left|V\left(D^{\prime}\right)\right|$ and hence also the number of times the procedure on rows 8-13 is called are bounded by a constant, say c (to be precise, c is bounded by the order of the largest graph in \mathcal{F}).

For the rest of the proof, we proceed by induction on k. First, if $k=0$, then the algorithm is polynomial by the above. So assume that $k \geq 1$ and the algorithm for $k-1$ runs in time at most $c^{k-1} \cdot n^{O(1)}$. Then the algorithm for k will run in polynomial time up to rows $8-13$, where it will make at most c calls to the algorithm for $k-1$, which implies that the running time for k is bounded by $c^{k} \cdot n^{O(1)}$.

Lemma 8. Let $k \geq 0, G=(V, E)$ be a graph and \sim an equivalence over a superset of V. Then FindWSM $_{\mathcal{F}}(k, G, \sim)$ outputs a set \boldsymbol{X} of at most k equivalence classes of \sim such that $G-\boldsymbol{X}$ is \mathcal{F}-free.

Proof. If G does not contain any D as an induced subgraph, then we correctly return the empty set. So, assume there exists an induced subgraph D^{\prime} of G isomorphic to D. We prove the lemma by induction on k.

Clearly, if $k=0$ but there exists some obstruction, then the algorithm outputs False and this is correct; if $k=0$ and no obstruction exists, then the algorithm correctly outputs \emptyset. Let $k \geq 1$ and assume that the algorithm is correct for $k-1$. If G does not contain any such \boldsymbol{X}, then for any equivalence class $[a]_{\sim}, \operatorname{FindWSM}_{\mathcal{F}}\left(k-1, G-[a]_{\sim}, \sim\right.$) will correctly output False.

On the other hand, assume G does contain some \boldsymbol{X} with the desired properties. In particular, this implies that \boldsymbol{X} must intersect $V\left(D^{\prime}\right)$. Let X_{i} be an arbitrary equivalence class of \boldsymbol{X} which intersects $V\left(D^{\prime}\right)$. Then $\boldsymbol{X}^{\prime} \backslash\left\{X_{i}\right\}$ is a set of at most $k-1$ equivalence classes of $\sim \operatorname{in} G-X_{i}$, and hence $\operatorname{FindWSM}_{\mathcal{F}}\left(k-1, G-X_{i}^{\prime}, \sim\right)$ will output some solution $\boldsymbol{X}^{\prime \prime}$ for $G-X_{i}^{\prime}$ by our inductive assumption. Since any obstruction in G intersecting X_{i}^{\prime} is removed by X_{i}^{\prime} and $G-X_{i}^{\prime}$ is made \mathcal{F}-free by $\boldsymbol{X}^{\prime \prime}$, we observe that $\boldsymbol{X}^{\prime \prime} \cup X_{i}^{\prime}$ intersects every obstruction in G and hence the proof is complete.

From Lemma 8 and Corollary 2 we obtain the following.
Corollary 3. Let $k \in \mathbb{N}$, G be a graph of rank-width at least $k+2$ and \sim_{k} be the equivalence computed by Proposition 3 Then $\operatorname{FindWSM}_{\mathcal{F}}\left(k, G, \sim_{k}\right)$ outputs a k-wsm to \mathcal{H} or correctly detects that no such k-wsm exists in G.

Proof (of Theorem [7). The theorem follows by using Proposition 3 and then Algorithm 1 in conjunction with Lemma 7 and 8 .

5 Examples of Algorithmic Applications

In this section, we show how to use the notion of k-well-structured modulators to design efficient parameterized algorithms for two classical NP-hard graph problems, specifically Minimum Vertex Cover (MinVC) and Maximum Clique (MaxClQ). Given a graph G, we call a set $X \subseteq V(G)$ a vertex cover if every edge is incident to at least one $v \in X$ and a clique if $G[X]$ is a complete graph.

```
MinVC, MaxCle
Instance: A graph \(G\) and an integer \(m\).
Task (MinVC): Find a vertex cover in \(G\) of cardinality at most \(m\), or deter-
mine that it does not exist.
Task (MAXCLQ): Find a clique in \(G\) of cardinality at least \(m\), or determine
that it does not exist.
```

Establishing the following theorem is the main objective of this section.
Theorem 9. Let $\mathcal{P} \in\{$ MinVC, MaxCle $\}$ and \mathcal{H} be a graph class characterized by a finite obstruction set. Then \mathcal{P} is FPT parameterized by $w s n^{\mathcal{H}}$ if and only if \mathcal{P} is polynomial-time tractable on \mathcal{H}.

Since $w s n^{\mathcal{H}}(G)=0$ for any \mathcal{F}-free graph G, the "only if" direction is immediate; in other words, being polynomial-time tractable on \mathcal{H} is clearly a necessary condition for being fixed parameter tractable when parameterized by $w s n^{\mathcal{H}}(G)$. Below we prove that for the selected problems this condition is also sufficient.

Lemma 9. If MinVC is polynomial-time tractable on a graph class \mathcal{H} characterized by a finite obstruction set, then $\operatorname{MinVC}\left[w s n^{\mathcal{H}}\right]$ is FPT.

Proof. Let $G=(V, E)$ be a graph and let $k=w \operatorname{si}^{\mathcal{H}}(G)$. If $r w(G) \leq k+2$, then we simply use known algorithms to solve the problem in FPT time [12]. Otherwise, we proceed by using Theorem 7 to compute a k-well-structured modulator $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{k}\right\}$ in FPT time. For each $i \in[k]$, we let A_{i} be the frontier of X_{i} and we let $B_{i}=N\left(A_{i}\right)$.

Since for each $i \in[k]$ the graph $G\left[A_{i} \cup B_{i}\right]$ contains a complete bipartite graph, any vertex cover of G must be a superset of either A_{i} or B_{i}. We can branch over these options for each i in 2^{k} time; formally, we branch over all of the at most 2^{k} functions $f:[i] \rightarrow\{A, B\}$, and refer to these as signatures. Each vertex cover Y of G can be associated with at least one signature f, constructed in the following way: for each $i \in[k]$ such that $A_{i} \subseteq Y$, we set $f(i)=A$, and otherwise we set $f(i)=B$.

Our algorithm then proceeds as follows. For a graph G and a signature f, we construct a partial vertex cover $Z=\bigcup_{i \in[k]} f(i)$. We let $G^{\prime}=G-Z$. Consider any connected component C of G^{\prime}. If C intersects some X_{i}, then by the construction of Z it must hold that $C \subseteq X_{i}$. Hence it follows that C either has rank-width at most k (in the case $C \subseteq X_{i}$ for some i), or C is in \mathcal{H} (if C does not intersect \boldsymbol{X}), or both. Then we find a minimum vertex cover for each connected component of G^{\prime} independently, by either calling the known FPT algorithm (if C has bounded rank-width) or the polynomial algorithm (if C is in \mathcal{H}) at most $|C|$ times. Let Z^{\prime} be the union of the obtained minimum vertex covers over all the components of G^{\prime}, and let $Y_{f}=Z \cup Z^{\prime}$. After branching over all possible functions f, we compare the obtained cardinalities of Y_{f} and choose any Y_{f} of minimum cardinality. Finally, we compare $\left|Y_{f}\right|$ and the value of m provided in the input.

We argue correctness in two steps. First, assume for a contradiction that G contains an edge e which is not covered by Y_{f} for some f. Then e cannot have both endpoints in G^{\prime}, since Y_{f} contains a (minimum) vertex cover for each connected component of G^{\prime}, but e cannot have an endpoint outside of G^{\prime}, since $Z \subseteq Y_{f}$. Hence each Y_{f} is a vertex cover of G.

Second, assume for a contradiction that there exists a vertex cover Y^{\prime} of G which has a lower cardinality than the vertex cover found by the algorithm described above. Let f be the signature of Y^{\prime}. Then it follows that $Z \subseteq Y^{\prime}$, and since $Z \subseteq Y_{f}$, there would exist a component C of $G \backslash Z$ such that $\left|Y^{\prime} \cap C\right| \leq\left|Y_{f} \cap C\right|$. However, this would contradict the minimality of $Z^{\prime} \cap C=Y_{f} \cap C$. Hence we conclude that no such Y^{\prime} can exist, and the algorithm is correct.

We deal with the second problem below.
Lemma 10. If MAXCLQ is polynomial-time tractable on a graph class \mathcal{H} characterized by a finite obstruction set, then MAXCLQ[wsn $\left.{ }^{\mathcal{H}}\right]$ is FPT.

Proof. We begin in the same way as for MinVC: let $G=(V, E)$ be a graph and let $k=w s n^{\mathcal{H}}(G)$. If $r w(G) \leq k+2$, then we simply use known algorithms to solve the problem in FPT time [12]. Otherwise, we proceed by using Theorem 7 to compute a k-well-structured modulator $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{k}\right\}$ in FPT time. For each $i \in[k]$, we let A_{i} be the frontier of X_{i} and we let $B_{i}=N\left(A_{i}\right)$.

Let $X_{0}=G-\boldsymbol{X}$ and let $s \subseteq\{0\} \cup[k]$. Then any clique C in G can be uniquely associated with a signature s by letting $i \in s$ if and only if $X_{i} \cap C \neq \emptyset$. The algorithm proceeds by branching over all of the at most 2^{k+1} possible non-empty signatures s. If $|s|=1$, then the algorithm simply computes a maximum-cardinality clique in X_{s} (by calling the respective FPT or polynomial algorithm at most a linear number of times) and stores it as Y_{s}.

If $|s| \geq 2$, then the algorithm makes two checks before proceeding. First, if $0 \in s$ then it constructs the set X_{0}^{\prime} of all vertices $x \in X_{0}$ such that x is adjacent to every A_{i} for $i \in s \backslash\{0\}$. If $X_{0}^{\prime}=\emptyset$ then the current choice of s is discarded and the algorithm proceeds to the next choice of s. Second, for every $a \neq b$ such that $a, b \in s \backslash\{0\}$ it checks that $X_{a}^{\prime}=A_{a}$ and $X_{b}^{\prime}=A_{b}$ are adjacent; again, if this is not the case, then we discard this choice of s and proceed to the next choice of s. Finally, if the current choice of s passed both tests then for each $i \in s$ we compute a maximum clique in each $G\left[X_{i}^{\prime}\right]$ and save their union as Y_{s}. In the end, we choose a maximum-cardinality set Y_{s} and compare its cardinality to the value of m provided in the input.

We again argue correctness in two steps. First, assume for a contradiction that Y_{s} is not a clique, i.e., there exist distinct non-adjacent $a, b \in Y_{s}$. Since Y_{s} consists of a union of cliques within subsets of $X_{i \in s}^{\prime}$, it follows that there would have to exist distinct $c, d \in s$ such that $a \in X_{c}^{\prime}$ and $b \in X_{d}^{\prime}$. This can however be ruled out for c or d equal to 0 by the construction of X_{0}^{\prime}. Similarly, if c and d are both non-zero, then this is impossible by the second check which tests adjacency of every pair of X_{c}^{\prime} and X_{d}^{\prime} for every $c, d \in s$.

Second, assume for a contradiction that there exists a clique Y^{\prime} in G which has a higher cardinality than the largest clique obtained by the above algorithm. Let s be the signature of Y^{\prime}. If $|s|=1$ then $\left|Y_{s}\right| \geq\left|Y^{\prime}\right|$ by the correctness of the respective FPT or polynomial algorithm used for each X_{s}. If $|s| \geq 2$ then Y^{\prime} may only intersect the sets X^{\prime} constructed above for s. Moreover, if there exists $i \in[k] \cup\{0\}$ such that $\left|Y^{\prime} \cap X_{i}^{\prime}\right|>\left|Y_{s} \cap X_{i}^{\prime}\right|$ then we again arrive at a contradiction with the correctness of the respective FPT or polynomial algorithms used for X_{i}^{\prime}. Hence we conclude that no such Y^{\prime} can exist, and the algorithm is correct.

Finally, let us review some concrete graph classes for use in Theorem 9 We use K_{i}, C_{i} and P_{i} to denote the i-vertex complete graph, cycle, and path, respectively. $2 K_{2}$ denotes the disjoint union of two K_{2} graphs, and the fork graph is depicted for instance in [1]. The $K_{3,3}-e$, banner, twin-house and $T_{2,2,2}$ graphs are defined in [4[15].

Fact 2. MinVC is polynomial-time tractable on the following graph classes:

1. $\left(2 K_{2}, C_{4}, C_{5}\right)$-free graphs (split graphs);
2. P_{5}-free graphs;
3. fork-free graphs;
4. (banner, $T_{2,2,2}$)-free graphs and (banner, $K_{3,3-e, t w i n-h o u s e)-f r e e ~ g r a p h s . ~}^{\text {, }}$

Proof. 1. Split graphs are graphs whose vertex set can be partitioned into one clique and one independent set, and this partitioning can be found in linear time. If each vertex in the clique is adjacent to at least one independent vertex, then the clique is a minimum vertex cover, otherwise the clique without a pendant-free vertex is a minimum vertex cover.
2. See [23].
3. See [1].
4. See [15] and [4].

Fact 3. MAXCLQ is polynomial-time tractable on the following graph classes:

1. Any complementary graph class to the classes listed in Fact 2 (such as cofork-free graphs and split graphs);
2. Graphs of bounded degree.

Proof. 1. It is well-known that each maximum clique corresponds to a maximum independent set (and vice-versa) in the complement graph.
2. The degree bounds the size of a maximum clique, again resulting in a simple folklore branching algorithm. The class of graphs of degree at most d is exactly the class of \mathcal{F}-free graphs for \mathcal{F} containing all $(d+1)$-vertex supergraphs of the star with d leaves.

6 MSO Model Checking with Well-Structured Modulators

Here we show how well-structured modulators can be used to solve the MSO Model Checking problem, as formalized in Theorem 10 below. Note that our meta-theorem captures not only the generality of MSO model checking problems, but also applies to a potentially unbounded number of choices of the graph class \mathcal{H}. Thus, the meta-theorem supports two dimensions of generality.

Theorem 10. For every MSO sentence ϕ and every graph class \mathcal{H} characterized by a finite obstruction set such that MSO-MC ${ }_{\phi}$ is FPT parameterized by $\bmod ^{\mathcal{H}}(G)$, the problem MSO-MC ϕ_{ϕ} is FPT^{2} parameterized by $\mathrm{wsn}^{\mathcal{H}}(G)$.

The condition that MSO- MC_{ϕ} is FPT parameterized by $\bmod ^{\mathcal{H}}(G)$ is a necessary condition for the theorem to hold by Proposition 1 However, it is natural to ask whether it is possible to use a weaker necessary condition instead, specifically that MSO-MC ${ }_{\phi}$ is polynomial-time tractable in the class of \mathcal{F}-free graphs (as was done for specific problems in Section 5). Before proceeding towards a proof of Theorem 10, we make a digression and show that the weaker condition used in Theorem 9 is in fact not sufficient for the general case of MSO model checking.

Lemma 11. There exists an MSO sentence ϕ and a graph class \mathcal{H} characterized by a finite obstruction set such that $\mathrm{MSO}-\mathrm{MC}_{\phi}$ is polynomial-time tractable on \mathcal{H} but $N P$-hard on the class of graphs with $w s n^{\mathcal{H}}(G) \leq 2$ or even $\bmod ^{\mathcal{H}}(G) \leq 2$.

Proof. Consider the sentence ϕ which describes the existence of a proper 5-coloring of the vertices of G, and let \mathcal{H} be the class of graphs of degree at most 4 (in other words, let \mathcal{F} contain all 6 -vertex supergraphs of the star with 5 leaves). There exists a trivial greedy algorithm to obtain a proper 5-coloring of any graph of degree at most 4 , hence $\mathrm{MSO}-\mathrm{MC}_{\phi}$ is polynomial-time tractable on \mathcal{H}. Now consider the class of graphs obtained from \mathcal{H} by adding, to any graph in \mathcal{H}, two adjacent vertices y, z which are both adjacent to every other vertex in the graph. By construction, any graph G^{\prime} from this new class satisfies $\bmod ^{\mathcal{H}}\left(G^{\prime}\right) \leq 2$ and hence also $\operatorname{wsn}^{\mathcal{H}}\left(G^{\prime}\right) \leq 2$. However, G^{\prime} admits a proper 5 -coloring if and only if $G^{\prime}-\{y, z\}$ admits a proper 3 -coloring. Testing 3 -colorability on graphs of degree at most 4 is known to be NP-hard [21], and hence the proof is complete.

Our strategy for proving Theorem 10 relies on a replacement technique, where each split-module in the well-structured modulator is replaced by a small representative. We use the notion of similarity defined below to prove that this procedure does not change the outcome of MSO-MC φ.

Definition 8 (Similarity). Let q and k be non-negative integers, \mathcal{H} be a graph class, and let G and G^{\prime} be graphs with k-well-structured modulators $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{k}\right\}$ and $\boldsymbol{X}^{\prime}=\left\{X_{1}^{\prime}, \ldots, X_{k}^{\prime}\right\}$ to \mathcal{H}, respectively. For $1 \leq i \leq k$, let S_{i} contain the frontier of split module X_{i} and similarly let S_{i}^{\prime} contain the frontier of split module X_{i}^{\prime}. We say that (G, \boldsymbol{X}) and $\left(G^{\prime}, \boldsymbol{X}^{\prime}\right)$ are q-similar if all of the following conditions are met:

1. There exists an isomorphism τ between $G-\boldsymbol{X}$ and $G^{\prime}-\boldsymbol{X}^{\prime}$.
2. For every $v \in V(G) \backslash \boldsymbol{X}$ and $i \in[k]$, it holds that v is adjacent to S_{i} if and only if $\tau(v)$ is adjacent to S_{i}^{\prime}.
3. if $k \geq 2$, then for every $1 \leq i<j \leq k$ it holds that S_{i} and S_{j} are adjacent if and only if S_{i}^{\prime} and S_{j}^{\prime} are adjacent.
4. For each $i \in[k]$, it holds that type ${ }_{q}\left(G\left[X_{i}\right], S_{i}\right)=$ type $_{q}\left(G^{\prime}\left[X_{i}^{\prime}\right], S_{i}^{\prime}\right)$.

Lemma 12. Let q and k be non-negative integers, \mathcal{H} be a graph class, and let G and G^{\prime} be graphs with k-well-structured modulators $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{k}\right\}$ and $\boldsymbol{X}^{\prime}=$ $\left\{X_{1}^{\prime}, \ldots, X_{k}^{\prime}\right\}$ to \mathcal{H}, respectively. If (G, \boldsymbol{X}) and $\left(G^{\prime}, \boldsymbol{X}^{\prime}\right)$ are q-similar, then type ${ }_{q}(G, \emptyset)=$ type $_{q}\left(G^{\prime}, \emptyset\right)$.

Proof. For $i \in[k]$, we write $G_{i}=G\left[X_{i}\right]$ and $G_{i}^{\prime}=G^{\prime}\left[X_{i}^{\prime}\right]$. Let $X_{0}=V(G) \backslash \boldsymbol{X}$ and $X_{0}^{\prime}=V\left(G^{\prime}\right) \backslash \boldsymbol{X}^{\prime}$. By Theorem6. Condition 4 of Definition 8 is equivalent to $\left(G_{i}, S_{i}\right) \equiv{ }_{q}^{\mathrm{MSO}}\left(G_{i}^{\prime}, S_{i}^{\prime}\right)$. That is, for each $i \in[k]$, Duplicator has a winning strategy π_{i} in the q-round MSO game played on G_{i} and G_{i}^{\prime} starting from $\left(S_{i}, S_{i}^{\prime}\right)$. We construct a strategy witnessing $(G, \emptyset) \equiv{ }_{q}^{\mathrm{MSO}}\left(G^{\prime}, \emptyset\right)$ in the following way:

1. Suppose Spoiler makes a set move W and assume without loss of generality that $W \subseteq V(G)$. For $i \in[k]$, let $W_{i}=X_{i} \cap W$, and let W_{i}^{\prime} be Duplicator's response to W_{i} according to π_{i}. Furthermore, let $W_{0}^{\prime}=\left\{\tau(v) \mid v \in W \cap X_{0}\right\}$. Then Duplicator responds with $W^{\prime}=W_{0}^{\prime} \cup \bigcup_{i=1}^{k} W_{i}^{\prime}$.
2. Suppose Spoiler makes a point move s and again assume without loss of generality that $s \in V(G)$. If $s \in X_{i}$ for some $i \in[k]$, then Duplicator responds with $s^{\prime} \in$ X_{i}^{\prime} according to π_{i}; otherwise, Duplicator responds with $\tau(s)$ as per Definition 8 point 1

Assume Duplicator plays according to this strategy and consider a play of the q-round MSO game on G and G^{\prime} starting from (\emptyset, \emptyset). Let $\boldsymbol{v}=\left(v_{1}, \ldots, v_{m}\right)$ and $\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right)$ be the point moves in $V(G)$ and $V\left(G^{\prime}\right)$ respectively, and let $\boldsymbol{V}=\left(V_{1}, \ldots, V_{l}\right)$ and $\boldsymbol{U}=\left(U_{1}, \ldots, U_{l}\right)$ be the set moves in $V(G)$ and $V\left(G^{\prime}\right)$ respectively, so that $l+m=q$ and the moves made in the same round have the same index. We claim that $(\boldsymbol{v}, \boldsymbol{u})$ defines a partial isomorphism between (G, \boldsymbol{V}) and $\left(G^{\prime}, \boldsymbol{U}\right)$.

- Let $j_{1}, j_{2} \in[m]$ and let $v_{j_{1}}, v_{j_{2}} \in X_{0}$. Since τ is an isomorphism as per Definition 8 point 1, it follows that $v_{j_{1}}=v_{j_{2}}$ if and only if $u_{j_{1}}=u_{j_{2}}$ and $v_{j_{1}} v_{j_{2}} \in E(G)$ if and only if $u_{j_{1}} u_{j_{2}} \in E\left(G^{\prime}\right)$.
- Let $j_{1}, j_{2} \in[m]$ and let $i \in[k]$ be such that $v_{j_{1}} \in X_{0}$ and $v_{j_{2}} \in X_{i}$. Then clearly $v_{j_{1}} \neq v_{j_{2}}$ and $u_{j_{1}} \neq u_{j_{2}}$. Consider the case $v_{j_{1}} v_{j_{2}} \in E(G)$. Then $v_{j_{2}}$ must lie in the frontier of X_{i}, and hence $v_{j_{2}} \in S_{i}$. Since Duplicator's strategy π_{i} is winning for $\left(G_{i}, S_{i}\right)$ and $\left(G_{i}^{\prime}, S_{i}^{\prime}\right)$, it must hold that $u_{j_{2}} \in S_{i}^{\prime}$. By Definition 8 point 2 it then follows that $\tau\left(v_{j_{1}}\right) u_{j_{2}} \in E\left(G^{\prime}\right)$. So, consider the case $v_{j_{1}} v_{j_{2}} \notin E(G)$. Then either $v_{j_{2}} \notin S_{i}$, in which case it holds that $u_{j_{2}} \notin S_{i}^{\prime}$ because of the choice of π_{i} and hence there cannot be an edge $u_{j_{2}} u_{j_{1}}$ in G^{\prime}, or $v_{j_{2}} \in S_{i}$, in which case it holds once again that $u_{j_{2}} u_{j_{1}} \notin E\left(G^{\prime}\right)$ by Definition 8 point 2
- Let $j_{1}, j_{2} \in[m]$ and let $i \in[k]$ be such that $v_{j_{1}}, v_{j_{2}} \in X_{i}$. Since Duplicator plays according to a winning strategy π_{i} in the game on G_{i} and G_{i}^{\prime}, the restriction $\left(\left.\boldsymbol{v}\right|_{i},\left.\boldsymbol{u}\right|_{i}\right)$ defines a partial isomorphism between $\left(G_{i},\left.(\boldsymbol{V})\right|_{i}\right)$ and $\left(G_{i}^{\prime},\left.(\boldsymbol{U})\right|_{i}\right)$. It follows that $\left(v_{j_{1}}, v_{j_{2}}\right) \in E(G)$ if and only if $\left(u_{j_{1}}, u_{j_{2}}\right) \in E\left(G^{\prime}\right)$ and $v_{j_{1}}=v_{j_{2}}$ if and only if $u_{j_{1}}=u_{j_{2}}$.
- Let $j_{1}, j_{2} \in[m]$ and let $i_{1}, i_{2} \in[k]$ be pairwise distinct numbers such that $v_{j_{1}} \in$ $X_{i_{1}}$ and $v_{j_{2}} \in X_{i_{2}}$. Then $v_{j_{1}} \neq v_{j_{2}}$ and also $u_{j_{1}} \neq u_{j_{2}}$ since $u_{j_{1}} \in X_{i_{1}}^{\prime}$ and $u_{j_{2}} \in X_{i_{2}}^{\prime}$ by the Duplicator's strategy. Suppose $v_{j_{1}} v_{j_{2}} \in E(G)$. Then $v_{j_{1}} \in S_{i_{1}}$, and $v_{j_{2}} \in S_{i_{2}}$, and $S_{i_{1}}$ and $S_{i_{2}}$ are adjacent in G. From the correctness of $\pi_{i_{1}}$ and $\pi_{i_{2}}$ it follows that $u_{j_{1}} \in S_{i_{1}}^{\prime}$ and $u_{j_{2}} \in S_{i_{2}}^{\prime}$, and from Definition 8 point 3 it follows that $S_{i_{1}}^{\prime}$ and $S_{i_{2}}^{\prime}$ are adjacent in G^{\prime}, which together implies $u_{j_{1}} u_{j_{2}} \in E\left(G^{\prime}\right)$. On the other hand, suppose $v_{j_{1}} v_{j_{2}} \notin E(G)$. Then either $v_{j_{1}} \notin S_{i_{1}}$, or $v_{j_{2}} \notin S_{i_{2}}$, or $S_{i_{1}}$ and $S_{i_{2}}$ are not adjacent in G. In the first case we have $u_{j_{1}} \notin S_{i_{1}}^{\prime}$, in the second case we have $u_{j_{2}} \notin S_{i_{2}}^{\prime}$, and in the third case it holds that S_{1}^{\prime} and S_{2}^{\prime} are not adjacent in G^{\prime}; any of these three cases imply $u_{j_{1}} u_{j_{2}} \notin E\left(G^{\prime}\right)$.
- Let $j \in[m]$ such that $v_{j} \in X_{0}$. Then by the Duplicator's strategy on X_{0} it follows that for any V_{q} such that $v_{j} \in V_{q}$ it holds that $u_{j} \in U_{q}$ and for any V_{q} such that $v_{j} \notin V_{q}$ it holds that $u_{j} \notin U_{q}$.
- Let $j \in[m]$ and $i \in[k]$ such that $v_{j} \in X_{k}$. Let V_{q} be such that $v_{j} \in V_{q}$. Since π_{i} is a winning strategy for Duplicator, it must be the case that $u_{j} \in U_{q}$. Similarly, if $v_{j} \notin V_{q}$ then the correctness of π_{i} guarantetes that $u_{j} \notin U_{q}$.

Next, we show that small representatives can be computed efficiently.

Lemma 13. Let q be a non-negative integer constant. Let G be a graph of rank-width at most k and $S \subseteq V(G)$. Then there exists a function f such that one can in time $f(k) \cdot|V(G)|^{\mathcal{O}(1)}$ compute a graph G^{\prime} and a set $S^{\prime} \subseteq V\left(G^{\prime}\right)$ such that $\left|V\left(G^{\prime}\right)\right|$ is bounded by a constant and type ${ }_{q}(G, S)=$ type $_{q}\left(G^{\prime}, S^{\prime}\right)$.
Proof. By Lemma 1 we can compute a formula $\Phi(Q)$ capturing the type T of (G, S) in time $f(k) \cdot|V(G)|^{\mathcal{O}(1)}$. Given $\Phi(Q)$, a constant-size model $\left(G^{\prime}, S^{\prime}\right)$ satisfying $\Phi(Q)$ can be computed as follows. We start enumerating all graphs (by brute force and in any order with a non-decreasing number of vertices), and check for each graph G^{*} and every vertex-subset $S^{*} \subseteq V\left(G^{*}\right)$ whether $G^{*} \models \Phi\left(S^{*}\right)$. If this is the case, we stop and output $\left(G^{*}, S^{*}\right)$. Since $G \models \Phi(S)$ this procedure must terminate eventually. Fixing the order in which graphs are enumerated, the number of graphs we have to check depends only on T. By Fact 1 the number of q-types is finite for each q, so we can think of the total number of checks and the size of each checked graph G^{*} as bounded by a constant. Moreover the time spent on each check depends only on T and the size of the graph G^{*}. Consequently, after we compute $\Phi(Q)$ it is possible to find a model for $\Phi(Q)$ in constant time.

Finally, in Lemma 14 below we use Lemma 13 to replace any well-structured modulator by a small but "equivalent" modulator.

Lemma 14. Let q be a non-negative integer constant and \mathcal{H} be a graph class. Then given a graph G and a k-well-structured modulator $\boldsymbol{X}=\left\{X_{1}, \ldots X_{k}\right\}$ of G into \mathcal{H}, there exists a function f such that one can in time $f(k) \cdot|V(G)|^{\mathcal{O}(1)}$ compute a graph G^{\prime} with a k-well-structured modulator $\boldsymbol{X}^{\prime}=\left\{X_{1}^{\prime}, \ldots X_{k}^{\prime}\right\}$ into \mathcal{H} such that (G, \boldsymbol{X}) and $\left(G^{\prime}, \boldsymbol{X}^{\prime}\right)$ are q-similar and for each $i \in[k]$ it holds that $\left|X_{i}^{\prime}\right|$ is bounded by a constant.

Proof. For $i \in[k]$, let $S_{i} \subseteq X_{i}$ be the frontier of split-module X_{i}, let $G_{i}=G\left[X_{i}\right]$ and let $G_{0}=G \backslash G[\boldsymbol{X}]$. We compute a graph G_{i}^{\prime} of constant size and a set $S_{i}^{\prime} \subseteq$ $V\left(G_{i}^{\prime}\right)$ with the same MSO q-type as $\left(G_{i}, S_{i}\right)$. By Lemma 13, this can be done in time $f(k) \cdot|V(G)|^{\mathcal{O}(1)}$ for some function f. Now let G^{\prime} be the graph obtained by the following procedure:

1. Perform a disjoint union of G_{0} and G_{i}^{\prime} for each $i \in[k]$;
2. If $k \geq 2$ then for each $1 \leq i<j \leq k$ such that S_{i} and S_{k} are adjacent in G, we add edges between every $v \in S_{i}^{\prime}$ and $w \in S_{j}^{\prime}$.
3. for every $v \in V\left(G_{0}\right)$ and $i \in[k]$ such that S_{i} and $\{v\}$ are adjacent, we add edges between v and every $w \in S_{i}^{\prime}$.

It is easy to verify that (G, \boldsymbol{X}) and $\left(G^{\prime}, \boldsymbol{X}^{\prime}\right)$, where $\boldsymbol{X}^{\prime}=\left\{V\left(G_{1}^{\prime}\right), \ldots, V\left(G_{k}^{\prime}\right)\right\}$, are q-similar.

Proof (of Theorem (10). Let G be a graph, $k=w s n^{\mathcal{H}}(G)$ and q be the nesting depth of quantifiers in ϕ. By Theorem 7 it is possible to find a k-well-structured modulator to \mathcal{H} in time $f(k) \cdot|V|^{\mathcal{O}(1)}$. We proceed by constructing $\left(G^{\prime}, \boldsymbol{X}^{\prime}\right)$ by Lemma 14 Since each $X_{i}^{\prime} \in \boldsymbol{X}^{\prime}$ has size bounded by a constant and $\left|\boldsymbol{X}^{\prime}\right| \leq k$, it follows that $\bigcup \boldsymbol{X}^{\prime}$ is a modulator to the class of \mathcal{F}-free graphs of cardinality $\mathcal{O}(k)$. Hence MSO-MC ${ }_{\phi}$ can be decided in FPT time on G^{\prime}. Finally, since G and G^{\prime} are q-similar, it follows from Lemma 12 that $G \models \phi$ if and only if $G^{\prime} \models \phi$.

We conclude the section by showcasing an example application of Theorem 10 c COLORING asks whether the vertices of an input graph G can be colored by c colors so that each pair of neighbors have distinct colors. From the connection between c Coloring, its generalization List c-Coloring and modulators [5, Theorem 3.3] and tractability results for List- c-ColORING [19, Page 5], we obtain the following.

Corollary 4. c-Coloring parameterized by wsn ${ }^{P_{5}-\text { free }}$ is FPT for each $c \in \mathbb{N}$.

7 Conclusion

We have introduced a family of structural parameters which push the frontiers of fixed parameter tractability beyond rank-width and modulator size for a wide range of problems. In particular, the well-structure number can be computed efficiently (Theorem7) and used to design FPT algorithms for Minimum Vertex Cover, Maximum Clique (Theorem9) as well as any problem which can be described by a sentence in MSO logic (Theorem 10).

In the wake of Theorem 10 and the positive results for the two problems in Section [5 one would expect that it should be possible to strengthen Theorem 10 to also cover LinEMSO problems [7|12] (which extend MSO Model Checking by allowing the minimization/maximization of linear expressions over free set variables). Surprisingly, as our last result we will show that this is in fact not possible if we wish to retain the same conditions. For our hardness proof, it suffices to consider a simplified variant of LinEMSO, defined below. Let φ be an MSO formula with one free set variable.

MSO-OPT $\frac{\leq}{\varphi}$
Instance: A graph G and an integer $r \in \mathbb{N}$.
Question: Is there a set $S \subseteq V(G)$ such that $G \models \varphi(S)$ and $|S| \leq r$?
The following lemma will be useful later on. We say that $S \subseteq V(G)$ is a dominating set if every vertex in G either is in S or has a neighbor in S.

Lemma 15. The problem of finding a p-cardinality dominating set in a graph G with a k-cardinality modulator $X \subseteq V(G)$ to the class of graphs of degree at most 3 is FPT when parameterized by $p+k$.

Proof. Let $L=V(G) \backslash X$ and consider the following algorithm. We begin with $D=\emptyset$, and choose an arbitrary vertex $v \in L$ which is not yet dominated by D. We branch over the at most $k+4$ vertices q in $\{v\} \cup N(v)$, and add q to D. If $|D|=p$ and there still exists an undominated vertex in G, we discard the current branch; hence this procedure produces a total of at most $(k+4)^{p}$ branches.

Now consider a branch where $|D|<p$ but the only vertices left to dominate lie in X. For $a, b \in L$, we let $a \equiv b$ if and only if $N(a) \cap X=N(b) \cap X$. Notice that \equiv has at most 2^{k} equivalence classes and that these may be computed in polynomial time. For each non-empty equivalence class of \equiv, we choose an arbitrary representative and construct the set P of all such chosen representatives. We then branch over all subsets Q of $P \cup X$ of cardinality at most $p-|D|$, and add Q into D. Since $|P \cup X| \leq 2^{k}+k$, this
can be done in time bounded by $\mathcal{O}\left(2^{p \cdot k}\right)$. Finally, we test whether this D is a dominating set, and output the minimum dominating set obtained in this manner.

It is easily observed from the description that the running time is FPT. For correctness, from the final check it follows that any set outputed by the algorithm will be a dominating set. It remains to show that if there exists a dominating set of cardinality p, then the algorithm will find such a set. So, assume there exists a p-cardinality dominating set D^{\prime} in G. Consider the branch arising from the first branching rule obtained as follows. Let v_{1} be the first undominated vertex in L chosen by the algorithm, and consider the branch where an arbitrary $q \in D^{\prime} \cap N\left(v_{1}\right)$ is placed into D. Hence, after the first branching, there is a branch where $D \subseteq D^{\prime}$. Similarly, there exists a branch where $D \subseteq D^{\prime}$ for each v_{i} chosen in the i-th step of the first branching. If $D^{\prime}=D$ after the first branching, then we are done; so, let $D_{1}^{\prime}=D^{\prime} \backslash D$ be non-empty. Let D_{1} be obtained from D_{1}^{\prime} by replacing each $w \in D_{1}^{\prime}$ by the representative of $[w]_{\equiv}$ chosen to lie in P. Since D^{\prime} dominates all vertices in L and D_{1} dominates the same vertices in X as D_{1}^{\prime}, it follows that $D^{*}=\left(D^{\prime} \backslash D_{1}^{\prime}\right) \cup D_{1}$ is also a dominating set of G. Furthermore, $\left|D^{*}\right|=\left|D^{\prime}\right|$. However, since $D_{1} \subseteq P$ and $\left|D_{1}\right| \leq p-|D|$, there must exist a branch in the second branching which sets $Q=D_{1}$. Hence there exists a branch in the algorithm which obtains and outputs the set $D^{*}=D \cup D_{1}$.

Theorem 11. There exists an MSO formula φ and a graph class \mathcal{H} characterized by a finite obstruction set such that $\mathrm{MSO}_{-\mathrm{OPT}_{\varphi}}^{\leq}$is FPT parameterized by $\bmod ^{\mathcal{H}}$ but paraNPhard parameterized by wsn ${ }^{\mathcal{H}}$.

Proof. To prove Theorem 11 we let $\operatorname{dom}(S)$ express that S is a dominating set in G, and let $\operatorname{cyc}(S)$ express that S intersects every C_{4} (cycle of length 4). Then we set $\varphi(S)=\operatorname{dom}(S) \vee \operatorname{cyc}(S)$ and let \mathcal{H} be the class of C_{4}-free graphs of degree at most 3 (obtained by letting the obstrucion set \mathcal{F} contain C_{4} and all 5 -vertex supergraphs of $\left.K_{1,4}\right)$.

Claim. $\mathrm{MSO}-\mathrm{OPT}_{\varphi}^{\leq}$is FPT parameterized by the cardinality of a modulator to \mathcal{H}.
Proof (of Claim). Let $(G=(V, E), r)$ be the input of MSO-OPT $\frac{\leq}{\varphi}$ and k be the cardinality of a modulator in G to \mathcal{H}. We begin by computing some modulator $X \subseteq V$ of cardinality k in G to \mathcal{H}; this can be done in FPT time by a simple branching algorithm on any of the obstruction from \mathcal{F} located in G. Let $L=V \backslash X$. Next, we compare r and k, and if $r \geq k$ then we output YES. This is correct, since each C_{4} in G must intersect X and hence setting $S=X$ satisfies $\varphi(S)$.

So, assume $r<k$. Then we check whether there exists a set A of cardinality at most r which intersects every C_{4}; this can be done in time $O^{*}\left(4^{r}\right)$ by a simple FPT branching algorithm. Next, we check whether there exists a dominating set B in G of cardinality at most r; this can also be done in FPT time by Lemma 15 ,

Finally, if A or B exists, then we output YES and otherwise we output NO.
Claim. $\operatorname{MSO}-\mathrm{OPT}_{\varphi} \frac{\leq}{\varphi}$ is paraNP-hard parameterized by $\operatorname{wsn}^{\mathcal{H}}(G)$.
Proof (of Claim). It is known that the Dominating Set problem, which takes as input a graph G and an integer j and asks to find a dominating set of size at most j, is NP-hard
on C_{4}-free graphs of degree at most 3 [2]. We use this fact as the basis of our reduction. Let (G, j) be a C_{4}-free instance of Dominating Set with degree at most 3 . Then we construct G^{\prime} from G by adding $(|G|+2)$-many copies of C_{4}, a single vertex q adjacent to every vertex of every such C_{4}, and a single vertex q^{\prime} adjacent to q and an arbitrary vertex of G. It is easy to check that $w \operatorname{si}^{\mathcal{H}}\left(G^{\prime}\right) \leq 2$.

We claim that (G, j) is a YES-instance of DOMINATING SET if and only if $\left(G^{\prime}, j+\right.$ 1) is a yes-instance of MSO-OPT $\frac{\leq}{\leq}$. Indeed, assume there exists a dominating set D in G of cardinality j. Then the set $D \cup\{q\}$ is a dominating set in G^{\prime}, and hence satisfies φ.

On the other hand, assume there exists a set D^{\prime} of cardinality at most $j+1$ which satisfies φ. If $j+1 \geq|G|+2$ then clearly (G, j) is a YES-instance of Dominating SET, so assume this is not the case. But then D^{\prime} cannot intersect every C_{4}, and hence D^{\prime} must be a dominating set of G^{\prime} of cardinality at most $j+1$. But this is only possible if $q \in D^{\prime}$. Furthermore, if $q^{\prime} \in D^{\prime}$, then replacing q^{\prime} with the neighbor of q^{\prime} in G is also a dominating set of G^{\prime}. Hence we may assume, w.l.o.g., that $D^{\prime} \cap V(G)$ is a dominating set of cardinality at most j in $V(G)$. Consequently, (G, j) is a YES-instance of Dominating Set and the proof is complete.

We conclude with two remarks on Theorem 11. On one hand, the fixed parameter tractability of LinEMSO traditionally follows from the methods used for FPT MSO model checking, and in this respect the theorem is surprising. But on the other hand, our parameters are strictly more general than rank-width and hence one should expect that some results simply cannot be lifted to this more general setting.

References

1. V. E. Alekseev. Polynomial algorithm for finding the largest independent sets in graphs without forks. Discr. Appl. Math., 135(1-3):3-16, 2004.
2. V. E. Alekseev, D. V. Korobitsyn, and V. V. Lozin. Boundary classes of graphs for the dominating set problem. Discrete Mathematics, 285(1-3):1-6, 2004.
3. H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernel bounds for path and cycle problems. Theor. Comput. Sci., 511:117-136, 2013.
4. A. Brandstädt and V. V. Lozin. A note on alpha-redundant vertices in graphs. Discr. Appl. Math., 108(3):301-308, 2001.
5. L. Cai. Parameterized complexity of vertex colouring. Discr. Appl. Math., 127(3):415-429, 2003.
6. D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. Discr. Appl. Math., 3:163-174, 1981.
7. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125-150, 2000.
8. W. H. Cunningham. Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods, 3(2):214-228, 1982.
9. R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag, New York, 2nd edition, 2000.
10. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer Verlag, 2013.
11. J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith, F. S. Villaamil, and S. Sikdar. Kernelization using structural parameters on sparse graph classes. In Algorithms - ESA 2013-21st Annual European Symposium, volume 8125 of Lecture Notes in Computer Science, pages 529-540. Springer, 2013.
12. R. Ganian and P. Hliněný. On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discr. Appl. Math., 158(7):851-867, 2010.
13. R. Ganian, F. Slivovsky, and S. Szeider. Meta-kernelization with structural parameters. In MFCS, pages 457-468, 2013.
14. S. Gaspers, N. Misra, S. Ordyniak, S. Szeider, and S. Živný. Backdoors into heterogeneous classes of SAT and CSP. In C. E. Brodley and P. Stone, editors, Proceedings of the TwentyEighth AAAI Conference on Artificial Intelligence, pages 2652-2658. AAAI Press, 2014.
15. M. U. Gerber and V. V. Lozin. Robust algorithms for the stable set problem. Graphs and Combinatorics, 19(3):347-356, 2003.
16. E. Gioan and C. Paul. Dynamic distance hereditary graphs using split decomposition. In Algorithms and computation, volume 4835 of LNCS, pages 41-51. Springer Verlag, 2007.
17. E. Gioan and C. Paul. Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discr. Appl. Math., 160(6):708733, 2012.
18. E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient split decomposition via graph-labelled trees. Algorithmica, 69(4):789-843, 2014.
19. P. A. Golovach, D. Paulusma, and J. Song. Closing complexity gaps for coloring problems on h-free graphs. Inf. Comput., 237:204-214, 2014.
20. P. Hliněný and S. il Oum. Finding branch-decompositions and rank-decompositions. SIAM J. Comput., 38(3):1012-1032, 2008.
21. M. Kochol, V. V. Lozin, and B. Randerath. The 3-colorability problem on graphs with maximum degree four. SIAM J. Comput., 32(5):1128-1139, 2003.
22. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
23. D. Lokshantov, M. Vatshelle, and Y. Villanger. Independent set in p_{5}-free graphs in polynomial time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 570-581. SIAM, 2014.
24. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.
25. S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006.

[^0]: * Supported by the Austrian Science Fund (FWF), project P26696.

