Skip to main content

Universal Reconstruction of a String

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

  • 1797 Accesses

Abstract

Many properties of a string can be viewed as sets of dependencies between substrings of the string expressed in terms of substring equality. We design a linear-time algorithm which finds a solution to an arbitrary system of such constraints: a generic string satisfying a system of substring equations. This provides a general tool for reconstructing a string from different kinds of repetitions or symmetries present in the string, in particular, from runs or from maximal palindromes. The recursive structure of our algorithm in some aspects resembles the suffix array construction by Kärkkäinen and Sanders (J. ACM, 2006).

P. Gawrychowski—Work done while the author held a post-doctoral position at Warsaw Center of Mathematics and Computer Science.

T. Kociumaka—Supported by Polish budget funds for science in 2013–2017 as a research project under the ‘Diamond Grant’ program.

T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń—Supported by the grant NCN2014/13/B/ST6/00770 of the Polish Science Center.

J. Radoszewski—Supported by the Polish Ministry of Science and Higher Education under the ‘Iuventus Plus’ program in 2015–2016 grant no 0392/IP3/2015/73. The author also receives financial support of Foundation for Polish Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alatabbi, A., Rahman, M.S., Smyth, W.: Inferring an indeterminate string from a prefix graph. J. of Discrete Algorithms (2014)

    Google Scholar 

  2. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem. ArXiv e-prints 1406.0263v6 (2015)

    Google Scholar 

  3. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 208–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Blanchet-Sadri, F., Bodnar, M., Winkle, B.D.: New bounds and extended relations between prefix arrays, border arrays, undirected graphs, and indeterminate strings. In: Mayr, E.W., Portier, N. (eds.) Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 25, pp. 162–173. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2014)

    Google Scholar 

  5. Cazaux, B., Rivals, E.: Reverse engineering of compact suffix trees and links: A novel algorithm. J. Discrete Algorithms 28, 9–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christodoulakis, M., Ryan, P.J., Smyth, W.F., Wang, S.: Indeterminate strings, prefix arrays & undirected graphs. ArXiv e-prints 1406.3289 (2014)

    Google Scholar 

  7. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In: Albers, S., Marion, J.Y. (eds.) Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 3, pp. 289–300. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

    Google Scholar 

  8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  9. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 251–259. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2003)

    Google Scholar 

  11. Duval, J., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. Journal of Automata, Languages and Combinatorics 10(1), 51–60 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Duval, J., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border arrays and validation of string matching automata. RAIRO-Theor. Inf. Appl. 43(02), 281–297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franek, F., Gao, S., Lu, W., Ryan, P., Smyth, W., Sun, Y., Yang, L.: Verifying a border array in linear time. J. on Combinatorial Mathematics and Combinatorial Computing 42, 223–236 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gawrychowski, P., Jeż, A., Jeż, P.: Validating the Knuth-Morris-Pratt failure function, fast and online. Theor. Comput. Syst. 54(2), 337–372 (2014)

    Article  Google Scholar 

  16. He, J., Liang, H., Yang, G.: Reversing longest previous factor tables is hard. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 488–499. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palindromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 135–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Verifying and enumerating parameterized border arrays. Theor. Comput. Sci. 412(50), 6959–6981 (2011)

    Article  MATH  Google Scholar 

  19. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix trees and links on a binary alphabet. Discrete Appl. Math. 163, 316–325 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)

    Article  MathSciNet  Google Scholar 

  21. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees and arrays. In: Fischer, P.C., Zeiger, H.P., Ullman, J.D., Rosenberg, A.L. (eds.) 4th Annual ACM Symposium on Theory of Computing, pp. 125–136. ACM (1972)

    Google Scholar 

  22. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching queries in a text and applications. In: Indyk, P. (ed.) Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 532–551. SIAM (2015)

    Google Scholar 

  23. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Heidelberg (2014)

    Google Scholar 

  24. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 596–604. IEEE Computer Society (1999)

    Google Scholar 

  25. Matsubara, W., Ishino, A., Shinohara, A.: Inferring strings from runs. In: Holub, J., Zdárek, J. (eds.) Prague Stringology Conference, pp. 150–160. Czech Technical University (2010)

    Google Scholar 

  26. Moosa, T.M., Nazeen, S., Rahman, M.S., Reaz, R.: Linear time inference of strings from cover arrays using a binary alphabet. In: Rahman, M.S., Nakano, S. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 160–172. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Nakashima, Y., Okabe, T., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from lyndon factorization. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 565–576. Springer, Heidelberg (2014)

    Google Scholar 

  28. Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree? J. Discrete Algorithms 32, 14–14 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kociumaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gawrychowski, P., Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T. (2015). Universal Reconstruction of a String. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics