Abstract
We consider the parameterized version of the maximum internal spanning tree problem: given an n-vertex graph and a parameter k, does the graph have a spanning tree with at least k internal vertices? Fomin et al. [J. Comput. System Sci., 79:1–6] crafted a very ingenious reduction rule, and showed that a simple application of this rule is sufficient to yield a 3k-vertex kernel for this problem. Here we propose a novel way to use the same reduction rule, resulting in an improved 2k-vertex kernel. Our algorithm applies first a greedy procedure consisting of a sequence of local exchange operations, which ends with a local-optimal spanning tree, and then uses this special tree to find a reducible structure. As a corollary of our kernel, we obtain a \(4^k \cdot n^{O(1)}\)-time deterministic algorithm, improving all previous algorithms for the problem.
Supported by the National Natural Science Foundation of China under grants 61232001, 61472449, and 61420106009.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)
Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding \(k\)-vertex out-trees and its application to \(k\)-internal out-branching problem. Journal of Computer and System Sciences 76(7), 650–662 (2010)
Daligault, J.: Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applicationsto Multicut. Ph.D. thesis, Université Montpellier II, Montpellier, Hérault, France (2011)
Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal spanning tree. Journal of Computer and System Sciences 79(1), 1–6 (2013)
Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)
Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related problems. Theoretical Computer Science 410(45), 4571–4579 (2009)
Hassin, R., Tamir, A.: On the minimum diameter spanning tree problem. Information Processing Letters 53(2), 109–111 (1995)
Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42(2), 321–328 (1995). a preliminary version appeared in STOC 1994
Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)
Könemann, J., Ravi, R.: A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees. SIAM Journal on Computing 31(6), 1783–1793 (2002). a preliminary version appeared in STOC 2000
Könemann, J., Ravi, R.: Primal-dual meets local search: Approximating MSTs with nonuniform degree bounds. SIAM Journal on Computing 34(3), 763–773 (2005). a preliminary version appeared in STOC 2003
Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)
Li, W., Chen, J., Wang, J.: Deeper local search for better approximation on maximum internal spanning trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 642–653. Springer, Heidelberg (2014)
Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. Journal of Algorithms 29(1), 132–141 (1998)
Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica 65(4), 868–884 (2013)
Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combinatorics 27(1), 1–26 (2011)
Prieto, E., Sloper, C.: Either/or: using vertex Cover structure in designing FPT-algorithms — the case of k-internal spanning tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)
Prieto, E., Sloper, C.: Reducing to independent set structure–the case of \(k\)-internal spanning tree. Nordic Journal of Computing 12(3), 308–318 (2005)
Salamon, G.: Approximating the maximum internal spanning tree problem. Theoretical Computer Science 410(50), 5273–5284 (2009)
Salamon, G.: Degree-Based Spanning Tree Optimization. Ph.D. thesis, Budapest University of Technology and Economics, Budapest, Hungary (2010)
Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Information Processing Letters 105(5), 164–169 (2008)
Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, W., Wang, J., Chen, J., Cao, Y. (2015). A 2k-vertex Kernel for Maximum Internal Spanning Tree. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-21840-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21839-7
Online ISBN: 978-3-319-21840-3
eBook Packages: Computer ScienceComputer Science (R0)