Skip to main content

Predicting Co-verbal Gestures: A Deep and Temporal Modeling Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9238))

Abstract

Gestures during spoken dialog play a central role in human communication. As a consequence, models of gesture generation are a key challenge in research on virtual humans, embodied agents capable of face-to-face interaction with people. Machine learning approaches to gesture generation must take into account the conceptual content in utterances, physical properties of speech signals and the physical properties of the gestures themselves. To address this challenge, we proposed a gestural sign scheme to facilitate supervised learning and presented the DCNF model, a model to jointly learn deep neural networks and second order linear chain temporal contingency. The approach we took realizes both the mapping relation between speech and gestures while taking account temporal relations among gestures. Our experiments on human co-verbal dataset shows significant improvement over previous work on gesture prediction. A generalization experiment performed on handwriting recognition also shows that DCNFs outperform the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We have experimented with both the logistic and the rectified linear (\(\max (a\theta ^{w}, 0)\)) functions with similar results. Because of space constraints, we are focusing on the logistic function.

  2. 2.

    The full derivation of the gradient was omitted because of space constraint.

References

  1. Bergmann, K., Kahl, S., Kopp, S.: Modeling the semantic coordination of speech and gesture under cognitive and linguistic constraints. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.) IVA 2013. LNCS, vol. 8108, pp. 203–216. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. OReilly Media Inc, Santa Clara (2009)

    MATH  Google Scholar 

  3. Brugman, H., Russel, A., Nijmegen, X.: Annotating multi-media/multimodal resources with ELAN. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation, LREC 2004, pp. 2065–2068 (2004)

    Google Scholar 

  4. Calbris, G.: Elements of Meaning in Gesture: Gesture Studies 5. John Benjamins, Philadelphia (2011)

    Book  Google Scholar 

  5. Cassell, J., Prevost, S.: Distribution of semantic features across speech and gesture by humans and computers. In: Workshop on the Integration of Gesture in Language and Speech (1996)

    Google Scholar 

  6. Cassell, J.: Embodied conversational interface agents. Commun. ACM 43(4), 70–78 (2000)

    Article  Google Scholar 

  7. Cassell, J., Vilhjálmsson, H.H., Bickmore, T.: Beat: the behavior expression animation toolkit. In: SIGGRAPH 2001 Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 477–486. ACM, New York (2001)

    Google Scholar 

  8. Chiu, C.-C., Marsella, S.: How to train your avatar: a data driven approach to gesture generation. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 127–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Chiu, C.C., Marsella, S.: Gesture generation with low-dimensional embeddings. In: Proceedings of the 13th International Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS 2013 (2014)

    Google Scholar 

  10. Do, T., Artieres, T.: Neural conditional random fields. In: International Conference on Artificial Intelligence and Statistics (AI-STATS), pp. 177–184 (2010)

    Google Scholar 

  11. Ennis, C., McDonnell, R., O’Sullivan, C.: Seeing is believing: body motion dominates in multisensory conversations. In: ACM SIGGRAPH 2010 papers, SIGGRAPH 2010, pp. 91:1–91:9. ACM, New York(2010)

    Google Scholar 

  12. Ennis, C., O’Sullivan, C.: Perceptually plausible formations for virtual conversers. Comput. Animation Virtual Worlds 23(3–4), 321–329 (2012)

    Article  Google Scholar 

  13. Fujii, Y., Yamamoto, K., Nakagawa, S.: Deep-hidden conditional neural fields for continuous phoneme speech recognition. In: International Workshop of Statistical Machine Learning for Speech (IWSML) (2012)

    Google Scholar 

  14. Goldin-Meadow, S., Alibali, M.W., Church, R.B.: Transitions in concept acquisition: using the hand to read the mind. Psychol. Rev. 100(2), 279–297 (1993)

    Article  Google Scholar 

  15. Gratch, J., Artstein, R., Lucas, G., Stratou, G., Scherer, S., Nazarian, A., Wood, R., Boberg, J., Devault, D., Marsella, S., Traum, D., Rizzo, A.S., Morency, L.P.: The distress analysis interview corpus of human and computer interviews. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), European Language Resources Association (ELRA), Reykjavik, Iceland, May 2014

    Google Scholar 

  16. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2013)

    Google Scholar 

  17. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). pre-print arXiv:1207.0580v1

  18. Kipp, M.: Gesture generation by imitation - from human behavior to computer character animation. Ph.D. thesis, Saarland University (2004)

    Google Scholar 

  19. Kopp, S., Bergmann, K.: Individualized gesture production in embodied conversational agents. In: Zacarias, M., de Oliveira, J.V. (eds.) Human-Computer Interaction. SCI, vol. 396, pp. 287–302. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

    Google Scholar 

  21. Lee, J., Marsella, S.C.: Nonverbal behavior generator for embodied conversational agents. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 243–255. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Levine, S., Krähenbühl, P., Thrun, S., Koltun, V.: Gesture controllers. In: ACM SIGGRAPH 2010 papers, pp. 124:1–124:11. ACM, New York (2010)

    Google Scholar 

  23. Levine, S., Theobalt, C., Koltun, V.: Real-time prosody-driven synthesis of body language. ACM Trans. Graph. 28, 172:1–172:10 (2009). http://doi.acm.org/10.1145/1618452.1618518

    Article  Google Scholar 

  24. Marsella, S.C., Xu, Y., Lhommet, M., Feng, A.W., Scherer, S., Shapiro, A.: Virtual character performance from speech. In: Symposium on Computer Animation. Anaheim, CA, July 2013

    Google Scholar 

  25. McNeill, D.: So you think gestures are nonverbal? Psychol. Rev. 92(3), 350–371 (1985)

    Article  Google Scholar 

  26. Mohamed, A.R., Dahl, G.E., Hinton, G.: Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012)

    Article  Google Scholar 

  27. Neff, M., Kipp, M., Albrecht, I., Seidel, H.P.: Gesture modeling and animation based on a probabilistic re-creation of speaker style. ACM Trans. Graph. 27(1), 1–24 (2008)

    Article  Google Scholar 

  28. Peng, J., Bo, L., Xu, J.: Conditional neural fields. In: NIPS, pp. 1419–1427 (2009)

    Google Scholar 

  29. Rickel, J., Johnson, W.L.: Task-oriented collaboration with embodied agents in virtual worlds. In: Cassell, J., Sullivan, J., Prevost, S. (eds.) Embodied Conversational Agents, pp. 95–122. MIT Press, Cambridge (2000)

    Google Scholar 

  30. Salem, M., Rohlfing, K.J., Kopp, S., Joublin, F.: A friendly gesture: investigating the effect of multimodal robot behavior in human-robot interaction. In: 2011 IEEE RO-MAN, pp. 247–252, July 2011

    Google Scholar 

  31. Scherer, S., Kane, J., Gobl, C., Schwenker, F.: Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification. Comput. Speech Lang. 27(1), 263–287 (2013)

    Article  Google Scholar 

  32. Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., Bregler, C.: Speaking with hands: creating animated conversational characters from recordings of human performance. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pp. 506–513. ACM, New York (2004)

    Google Scholar 

  33. Sutskever, I., Martens, J., Hinton, G.: Generating text with recurrent neural networks. In: ICML (2011)

    Google Scholar 

  34. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)

    Google Scholar 

  35. Taylor, G., Hinton, G.: Factored conditional restricted Boltzmann machines for modeling motion style. In: Bottou, L., Littman, M. (eds.) Proceedings of the 26th International Conference on Machine Learning, pp. 1025–1032. Omnipress, Montreal, June 2009

    Google Scholar 

  36. Wagner, P., Malisz, Z., Kopp, S.: Gesture and speech in interaction: an overview. Speech Commun. 57, 209–232 (2014)

    Article  Google Scholar 

  37. Weiss, D., Sapp, B., Taskar, B.: Structured prediction cascades (2012). preprint arXiv:1208.3279v1

  38. Yu, D., Deng, L., Wang, S.: Learning in the deep-structured conditional random fields. In: NIPS Workshop on Deep Learning for Speech Recognition and Related Applications (2009)

    Google Scholar 

Download references

Acknowledgements

The projects or effort described here has been sponsored by the U.S. Army. Any opinions, content or information presented does not necessarily reflect the position or the policy of the United States Government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Cheng Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chiu, CC., Morency, LP., Marsella, S. (2015). Predicting Co-verbal Gestures: A Deep and Temporal Modeling Approach. In: Brinkman, WP., Broekens, J., Heylen, D. (eds) Intelligent Virtual Agents. IVA 2015. Lecture Notes in Computer Science(), vol 9238. Springer, Cham. https://doi.org/10.1007/978-3-319-21996-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21996-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21995-0

  • Online ISBN: 978-3-319-21996-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics