Abstract
In this paper we consider programmable matter consisting of simple computational elements, called particles, that can establish and release bonds and can actively move in a self-organized way, and we investigate the feasibility of solving fundamental problems relevant for programmable matter. As a model for such self-organizing particle systems, we will use a generalization of the geometric amoebot model first proposed in [21]. Based on the geometric model, we present efficient local-control algorithms for leader election and line formation requiring only particles with constant size memory, and we also discuss the limitations of solving these problems within the general amoebot model.
Z. Derakhshandeh and A.W. Richa—Supported in part by the NSF under Awards CCF-1353089 and CCF-1422603.
R. Gmyr, T. Strothmann and C. Scheideler—Supported in part by DFG grant SCHE 1592/3-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For a simulation video of the Line Formation Algorithm please see http://sops.cs.upb.de.
References
Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)
Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 250–259 (2013)
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)
Arbuckle, D., Requicha, A.: Self-assembly and self-repair of arbitrary shapes by a swarm of reactive robots: algorithms and simulations. Auton. Robots 28(2), 197–211 (2010)
Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network RESET (extended abstract). In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 254–263 (1994)
Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011)
Bhattacharyya, A., Braverman, M., Chazelle, B., Nguyen, H.L.: On the convergence of the hegselmann-krause system. In: Proceedings of the 4th Innovations in Theoretical Computer Science (ITCS), pp. 61–66 (2013)
Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Appl. Math. 71, 79–94 (1996)
Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–240 (2012)
Butler, Z.J., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919–937 (2004)
B. Chazelle. Natural algorithms. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 422–431 (2009)
Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Heidelberg (2014)
Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer, Heidelberg (2013)
Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assembly with universally foldable strings (moteins). IEEE Trans. Robot. 27(4), 718–729 (2011)
Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the 1994 International Conference on Robotics and Automation (ICRA), pp. 449–455 (1994)
Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)
Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399(1–2), 71–82 (2008)
Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proceedings of 29th ACM Symposium on Principles of Distributed Computing (PODC) (2010)
Defago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)
Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of arbitrary shapes using rnase enzymes: meeting the kolmogorov bound with small scale factor (extended abstract). In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science, pp. 201–212 (2011)
Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: Brief announcement: amoebot – a new model for programmable matter. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 220–222 (2014)
Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)
Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)
Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1), 412–447 (2008)
Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures - cebot. In: Proceedings of the International Conference on Intelligent Robots and Systems, (IROS), pp. 145–150 (1988)
Hendricks, J., Patitz, M.J., Rogers, T.A.: Replication of arbitrary hole-free shapes via self-assembly with signal-passing tiles (2015). arXiv preprint arXiv:1503.01244
Hsiang, T.-R., Arkin, E., Bender, M., Fekete, S., Mitchell, J.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Proceedings of the 5th Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 77–94 (2002)
Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: 22nd Annual Symposium on Foundations of Computer Science, (FOCS), pp. 150–158 (1981)
Itkis, G., Levin, L.: Fast and lean self-stabilizing asynchronous protocols. In: 35th Annual Symposium on Foundations of Computer Science, (FOCS), pp. 226–239 (1994)
Kernbach, S. (ed.): Handbook of Collective Robotics - Fundamentals and Challanges. Pan Stanford Publishing, Singapore (2012)
Kling, P., Meyer auf der Heide, F.: Convergence of local communication chain strategies via linear transformations. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 159–166 (2011)
Li, K., Thomas, K., Torres, C., Rossi, L., Shen, C.-C.: Slime mold inspired path formation protocol for wireless sensor networks. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 299–311. Springer, Heidelberg (2010)
McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)
Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)
Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)
Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of metamorphic robot chains. Distrib. Comput. 17(2), 171–189 (2004)
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional dna crystals. Nature 394(6693), 539–544 (1998)
Woods, D.: Intrinsic universality and the computational power of self-assembly. In: Neary, T., Cook, M. (eds) Proceedings of the 6th Conference on Machines, Computations and Universality 2013, (MCU), EPTCS, vol. 128, pp. 16–22 (2013)
Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS, pp. 353–354 (2013)
Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C. (2015). Leader Election and Shape Formation with Self-organizing Programmable Matter. In: Phillips, A., Yin, P. (eds) DNA Computing and Molecular Programming. DNA 2015. Lecture Notes in Computer Science(), vol 9211. Springer, Cham. https://doi.org/10.1007/978-3-319-21999-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-21999-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21998-1
Online ISBN: 978-3-319-21999-8
eBook Packages: Computer ScienceComputer Science (R0)