Abstract
Large-scale key-value stores are widely used in many Web-based systems to store huge amount of data as (key, value) pairs. In order to reduce the latency of accessing such (key, value) pairs, an in-memory cache system is usually deployed between the front-end Web system and the back-end database system. In practice, a cache system may consist of a number of server nodes, and fault-tolerance is a critical feature to maintain the latency Service-Level Agreements (SLAs). In this paper, we present the design, implementation, and evaluation of R-Memcached, a reliable in-memory key-value cache system that is built on top of the popular Memcached. R-Memcached exploits coding techniques to achieve reliability, and can tolerate up to two node failures. Our experimental results show that R-Memcached can maintain very good latency and throughput performance even during the period of node failures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fitzpatrick, B.: Distributed caching with memcached. Linux Journal 2004(124) (2004)
Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy, R., et al.: Scaling memcache at facebook. In: NSDI, pp. 385–398 (2013)
Morgan, T.P.: Facebook opens up tools to scale memcached. http://www.enterprisetech.com/2014/09/15/facebook-opens-tools-scale-memcached/
Andrew, T., Maarten, V.S.: Distributed systems. Pearson Prentice Hall (2007)
Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: Raid: High-performance, reliable secondary storage. CSUR 26, 145–185 (1994)
Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., et al.: Web caching with consistent hashing. Computer Networks 31(11), 1203–1213 (1999)
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., et al.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)
Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., et al.: Hive-a petabyte scale data warehouse using hadoop. In: ICDE (2010)
Abadi, D.J.: Tradeoffs between parallel database systems, hadoop, and hadoopdb as platforms for petabyte-scale analysis. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 1–3. Springer, Heidelberg (2010)
Cheng, H., Huseyin, S., Yikang, X., Aaron, O., Brad, C., Parikshit, G., Jin, L., Sergey, Y.: Erasure coding in windows azure storage. In: USENIX ATC (2012)
Berezecki, M., Frachtenberg, E., Paleczny, M., Steele, K.: Power and performance evaluation of memcached on the tilepro64 architecture. Sustainable Computing: Informatics and Systems (2012)
Meaney, P.J., Lastras-Montao, L.A., Papazova, V.K., Stephens, E., Johnson, J.S., Alves, L.C., et al.: Ibm zenterprise redundant array of independent memory subsystem. IBM Journal of Research and Development (2012)
Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis of a large-scale key-value store. In: ACM SIGMETRICS, pp. 53–64 (2012)
Plank, J.S., Greenan, K.M.: Jerasure: A library in c facilitating erasure coding for storage applications-version 2.0. Technical Report UT-EECS-14-721 (2014)
Chu, X., Liu, C., Ouyang, K., Yung, L.S., Liu, H., Leung, Y.-W.: Perasure: a parallel cauchy reed-solomon coding library for gpus. In: IEEE ICC (2015)
Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C., Leverich, J., Mazires, D., et al.: The case for ramclouds: scalable high-performance storage entirely in dram. In: ACM SIGOPS, pp. 92–105 (2010)
Lim, H., Fan, B., Andersen, D. G., Kaminsky, M.: Silt: A memory-efficient, high-performance key-value store. In: SOSP, pp. 1–13 (2011)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, C., Ouyang, K., Chu, X., Liu, H., Leung, YW. (2015). R-Memcached: A Reliable In-Memory Cache System for Big Key-Value Stores. In: Wang, Y., Xiong, H., Argamon, S., Li, X., Li, J. (eds) Big Data Computing and Communications. BigCom 2015. Lecture Notes in Computer Science(), vol 9196. Springer, Cham. https://doi.org/10.1007/978-3-319-22047-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-22047-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22046-8
Online ISBN: 978-3-319-22047-5
eBook Packages: Computer ScienceComputer Science (R0)