Abstract
Network integration methods are critical in understanding the underlying mechanisms of genetic perturbations and susceptibility to disease. Often, expression quantitative trait loci (eQTL) mapping is used to integrate two layers of genomic data. However, eQTL associations only represent the direct associations among eQTLs and affected genes. To understand the downstream effects of eQTLs on gene expression, we propose a network community approach to construct eQTL networks that integrates multiple data sources. By using this approach, we can view the genetic networks consisting of genes affected directly or indirectly by genetic variants. To extend the eQTL network, we use a protein-protein interaction network as a base network and a spin glass community detection algorithm to find hubs of genes that are indirectly affected by eQTLs. This method contributes a novel approach to identifying indirect targets that may be affected by variant perturbations. To demonstrate its application, we apply this approach to study how microRNAs affect the expression of target genes and their indirect downstream targets in ovarian cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gamazon, E.R., et al.: Genetic architecture of microRNA expression: implications for the transcriptome and complex traits. Am J. Hum Genet 90(6), 1046–1063 (2012)
Lappalainen, T., et al.: Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468), 506–511 (2013)
Huan, T., et al.: Genome-wide identification of microRNA expression quantitative trait loci. Nat Commun. 6, 6601 (2015)
Tian, L., Quitadamo, A., Lin, F., Shi, X.: Methods for Population Based eQTL Analysis in Human Genetics. Tsinghua Science and Technology 19(6), 624–634 (2014)
Chen, X., Shi, X., Xu, X., Wang, Z., Mills, R.E., Lee, C., Xu, J.: A two-graph guided multi-task lasso approach for eQTL mapping. Proceedings of the 15th International Conference of Artificial Intelligence and Statistics (AISTATS), Journal of Machine Learning Research (JMLR) W&CP 22, 208–217 (2012)
Online Mendelian Inheritance in Man (OMIM). URL: http://omim.org/
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11), 2498–2504 (2003)
Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011)
Ryan, B.M., Robles, A.I., Harris, C.C.: Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10(6), 389–402 (2010)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems 1695 (2006)
Shabalin, A.A.: Matrix eqtl: Ultra fast eqtl analysis via large matrix operations. Bioinformatics 28(10), 1353–1358 (2012)
Xie, B., et al.: miRCancer: a microRNA cancer association database constructed by text mining on literature. Bioinformatics, btt014 (2013)
Ho, Y.-Y., Cope, L.M., Parmigiani, G.: Modular network construction using eqtl data: an analysis of computational costs and benefits. Frontiers in genetics 5, 40–40 (2014)
Huang, Y., Wuchty, S., Przytycka, T.M.: Eqtl epistasis - challenges and computational approaches. Frontiers in Genetics 4, 51–51 (2013)
Liu, C., Guo, J., Dung-Chul, K., Wang, J.: Inference of snp-gene regulatory networks by integrating gene expressions and genetic perturbations. BioMedical Research International
Lage, K., Karlberg, E.O., Størling, Z.M., Olason, P.I., Pedersen, A.G., Rigina, O., Hinsby, A.M., Tümer, Z.: A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature biotechnology 25(3), 309–316 (2007)
Li, Y., Sheu, C.-C., Ye, Y., de Andrade, M., Wang, L., Chang, S.-C., Aubry, M.C., Aakre, J.A., Allen, M.S., Chen, F., et al.: Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. The lancet oncology 11(4), 321–330 (2010)
Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. Journal of statistical physics 34(5–6), 975–986 (1984)
Liu, Y., Maxwell, S., Feng, T., Zhu, X., Elston, R.C., Koyutürk, M., Chance, M.R.: Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from gwas data. BMC systems biology 6(Suppl 3), S15 (2012)
Eaton, E., Mansbach, R.: A Spin-Glass Model for Semi-Supervised Community Detection. In: AAAI (2012)
Quitadamo, A., Tian, L., Hall, B., Shi, X.: An Integrated Network of microRNA and Gene Expression in Ovarian Cancer. BMC Bioinformatics 16(Suppl 5), S5 (2015)
Rachel Wang, Y.X., Huang, H.: Review on statistical methods for gene network reconstruction using expression data. Journal of theoretical biology 04, 1–9 (2014)
Pan, L., Wang, C., Xie, J.: A spin-glass model based local community detection method in social networks. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE (2013)
Corney, D.C., Hwang, C.-I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A.K., Kamat, A.A., Sood, A.K., Ellenson, L.H., Hermeking, H., et al.: Frequent downregulation of mir-34 family in human ovarian cancers. Clinical Cancer Research 16(4), 1119–1128 (2010)
Brüning-Richardson, A., Bond, J., Alsiary, R., Richardson, J., Cairns, D.A., McCormac, L., Hutson, R., Burns, P.A., Wilkinson, N., Hall, G.D., et al.: Numa overexpression in epithelial ovarian cancer. PloS one 7(6), e38945 (2012)
Flutre, T., Wen, X., Pritchard, J., Stephens, M.: A Statistical Framework for Joint eQTL Analysis in Multiple Tissues. PLoS Genet 9(5), e1003486 (2013)
He, J., Jing, Y., Wei Li, X., Qian, Q.X., Li, F.-S., Liu, L.-Z., Jiang, B.-H., Jiang, Y.: Roles and mechanism of mir-199a and mir-125b in tumor angiogenesis. PLoS One 8(2), e56647 (2013)
Liu, T., Hou, L., Huang, Y.: Ezh2-specific microrna-98 inhibits human ovarian cancer stem cell proliferation via regulating the prb-e2f pathway. Tumor Biology 35(7), 7239–7247 (2014)
Prokopi, M., Kousparou, C.A., Epenetos, A.A.: The Secret Role of microRNAs in Cancer Stem Cell Development and Potential Therapy: A Notch-Pathway Approach. Frontiers in Oncology 4, 389 (2014)
Yan-ming, L., Shang, C., Yang-ling, O., Yin, D., Li, Y.-N., Li, X., Wang, N., Zhang, S.: mir-200c modulates ovarian cancer cell metastasis potential by targeting zinc finger e-box-binding homeobox 2 (zeb2) expression. Medical Oncology 31(8), 1–11 (2014)
Park, Y.T., Jeong, J.Y., Lee, M.J., Kim, K.I., Kim, T.-H., Kwon, Y.D., Lee, C., Kim, O.J., An, H.-J.: Micrornas overexpressed in ovarian aldh1-positive cells are associated with chemoresistance. J. Ovarian. Res. 6(1), 18 (2013)
Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74(1), 016110 (2006)
Shen, W., Song, M., Liu, J., Qiu, G., Li, T., Yanjie, H., Liu, H.: Mir-26a promotes ovarian cancer proliferation and tumorigenesis. PloS one 9(1), e86871 (2014)
Dernyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical review letters 94(16), 160202 (2005)
Prislei, S., Martinelli, E., Mariani, M., Raspaglio, G., Sieber, S., Ferrandina, G., Shahabi, S., Scambia, G., Ferlini, C.: MiR-200c and HuR in ovarian cancer. BMC Cancer 13, 72 (2013)
Marchini, S., Cavalieri, D., Fruscio, R., Calura, E., Garavaglia, D., Nerini, I.F., Mangioni, C., Cattoretti, G., livio, L., Beltrame, L., Katsaros, D., Scarampi, L., Menato, G., Perego, P., Chiorino, G., Buda, A., Romualdi, C., D’Incalci, M.: Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. The Lancet Oncology 12(3), 273–285 (2011)
Lu, L.J., Xia, Y., Paccanaro, A., Yu, H., Gerstein, M.: Assessing the limits of genomic data integration for predicting protein networks. Genome Research 15(7), 945953 (2005)
Nitzan, M., Steiman-Shimony, A., Altuvia, Y., Biham, O., Margalit, H.: Interactions between Distant ceRNAs in Regulatory Networks. Biophysical Journal 106(10), 2254–2266
Huang, D., Zhou, X., Lyon, C.J., Hsueh, W.A., Wong, S.T.C.: MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance. PLoS ONE 5(10), e13748 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hall, B., Quitadamo, A., Shi, X. (2015). A Graph Community Approach for Constructing microRNA Networks. In: Wang, Y., Xiong, H., Argamon, S., Li, X., Li, J. (eds) Big Data Computing and Communications. BigCom 2015. Lecture Notes in Computer Science(), vol 9196. Springer, Cham. https://doi.org/10.1007/978-3-319-22047-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-22047-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22046-8
Online ISBN: 978-3-319-22047-5
eBook Packages: Computer ScienceComputer Science (R0)