Skip to main content

FHEW with Efficient Multibit Bootstrapping

  • Conference paper
  • First Online:
Progress in Cryptology -- LATINCRYPT 2015 (LATINCRYPT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9230))

Abstract

In this paper, we describe a generalization of the fully homomorphic encryption scheme FHEW described by Ducas and Micciancio [8]. It is characterized by an efficient bootstrapping procedure performed after each gate, as opposed to the HElib of Halevi and Shoup that handles batches of encryptions periodically. While the Ducas-Micciancio scheme was limited to NAND gates, we propose a generalization that can handle arbitrary gates for only one call to the bootstrapping procedure. We also show how bootstrapping can be parallelized and address its performances in a multicore environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 1–20. Springer, Heidelberg (2013)

    Google Scholar 

  2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014)

    Google Scholar 

  3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Google Scholar 

  4. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)

    Google Scholar 

  5. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013)

    Google Scholar 

  6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, June 1–4, pp. 575–584. ACM (2013)

    Google Scholar 

  7. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51. Springer, Heidelberg (2012)

    Google Scholar 

  8. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. Cryptology ePrint Archive, Report 2014/816 (2014). http://eprint.iacr.org/

  9. Ducas, L., Micciancio, D.: Implementation of FHEW (2014). https://github.com/lducas/FHEW

  10. Frigo, M., Johnson, S.: The design and implementation of FFTW3. In: Proceedings of the IEEE, 93(2):216–231. Special issue on “Program Generation, Optimization, and Platform Adaptation” (2005)

    Google Scholar 

  11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  12. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Google Scholar 

  13. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 19–37. Springer, Heidelberg (2012)

    Google Scholar 

  14. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

    Google Scholar 

  15. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

    Google Scholar 

  16. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Google Scholar 

  17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)

    Google Scholar 

  18. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014)

    Google Scholar 

  19. Halevi, S., Shoup, V.: Algorithms in HElib. IACR Cryptology ePrint Archive 2014:106 (2014)

    Google Scholar 

  20. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Google Scholar 

  21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22–24, pp. 84–93. ACM (2005)

    Google Scholar 

Download references

Acknowledgments

We thank Leo Ducas for taking the time to explain us the technical details of [8] and of the corresponding open source implementation [9]. We also thank the reviewers for their many helpful comments, especially about the error distribution in arbitrary cyclotomic fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Biasse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Biasse, JF., Ruiz, L. (2015). FHEW with Efficient Multibit Bootstrapping. In: Lauter, K., Rodríguez-Henríquez, F. (eds) Progress in Cryptology -- LATINCRYPT 2015. LATINCRYPT 2015. Lecture Notes in Computer Science(), vol 9230. Springer, Cham. https://doi.org/10.1007/978-3-319-22174-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22174-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22173-1

  • Online ISBN: 978-3-319-22174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics