Skip to main content

An Improved Artificial Bee Colony Algorithm Based on Particle Swarm Optimization and Differential Evolution

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9226))

Included in the following conference series:

  • 1581 Accesses

Abstract

In order to improve the problem that Artificial Bee Colony (ABC) is good at exploring but lack of exploitation, two new solution search strategies named PSO-DE-PABC and PSO-DE-GABC are proposed based on Particle Swarm Optimization (PSO) and Differential Evolution (DE). PSO-DE-PABC generates new candidate position around the random particle to improve divergence. PSO-DE-GABC generates new candidate position around the global best solution to accelerate the convergence, and differential vectors are also used to increase the divergence. Besides, Dimension Factor (DF) is introduced to control the search rate of the algorithms. A new scout strategy considering current swarm state is used to replace the original random scout strategy to enhance the local search ability. Comparison with basic ABC, GABC (Gbest-guided ABC) and ABC/best algorithm is given on 10 groups of standard benchmark function. The results show that PSO-DE-GABC and PSO-DE-PABC have better convergence rate and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karaboga, D., Basturk, B.: Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 789–798. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  4. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MathSciNet  Google Scholar 

  5. Karaboga, D., Akay, B.: Artificial bee colony (ABC) algorithm on training artificial neural networks[C]. In: Proceedings of the 2007 IEEE 15th Signal Processing and Communications Applications, pp. 1–4. IEEE, Piscataway (2007)

    Google Scholar 

  6. Rao, R.S., Narasimham, S., Ramalingaraju, M.: Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. Eng. 1(2), 116–122 (2008)

    MATH  Google Scholar 

  7. Szeto, W.Y., Wu, Y.Z., Ho, S.C.: An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 215(1), 126–135 (2011)

    Article  Google Scholar 

  8. Alatas, B.: Chaotic bee colony algorithms for global numerical optimazation. Expert Syst. Appl. 37(8), 5682–5687 (2010)

    Article  Google Scholar 

  9. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010)

    Article  MathSciNet  Google Scholar 

  10. Gao, W.F., Liu, S.Y., Huang, L.L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, W.F., Liu, S.Y., Huang, L.L.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Syst. Man Cybern. Part B Cybern. 43(3), 1011–1024 (2013)

    Google Scholar 

  12. Gao, W.F., Liu, S.Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)

    Article  MATH  Google Scholar 

  13. Yao, X., Liu, Y., Lin, G.M.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  14. Shang, Y.W., Qiu, Y.H.: A note on the extended rosenbrock function. Evol. Comput. 14(1), 119–126 (2006)

    Article  Google Scholar 

  15. Barnharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2888–2901 (2011)

    Article  Google Scholar 

  16. Zhang, Y.X., Tian, X.M., Cao, Y.P.: Artificial bee colony algorithm with modified search strategy. J. Comput. Appl. 32(12), 3326–3330 (2012)

    MATH  Google Scholar 

Download references

Acknowledgement

The work in this paper is in part supported by Wuhan University of Science and Technology city college scientific research project under Grant No. 2014cyybky011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengli Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, F., Yang, Y. (2015). An Improved Artificial Bee Colony Algorithm Based on Particle Swarm Optimization and Differential Evolution. In: Huang, DS., Jo, KH., Hussain, A. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9226. Springer, Cham. https://doi.org/10.1007/978-3-319-22186-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22186-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22185-4

  • Online ISBN: 978-3-319-22186-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics