Skip to main content

Extraction of Features from Patch Based Graphs for the Prediction of Disease Progression in AD

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9226))

Included in the following conference series:

  • 1631 Accesses

Abstract

There has been significant interest in approaches that utilize local intensity patterns within patches to derive features for disease classification. Several existing methods explore the patch relationship between different subjects for classification. Other methods utilize the patch relationship within the same subject to aid classification. In this paper, we proposed a new approach to extract different types of features by utilizing the patch relationships within and between subjects. Specifically, features are first extracted by exploiting the patch relationship between subjects. Then, the relationship among patches within the same subject is modeled as a network and features are derived from the constructed network. Finally, these two different types of features are integrated into one framework for identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer’s disease. Using the standardized ADNI database, the proposed method can achieve an area under the receiver operating characteristic curve (AUC) of 81.3 % in discriminating patients with stable MCI and progressive MCI in a 10-fold cross validation, demonstrating that the integration of patch relationship between and within subjects can aid the prediction of MCI to AD conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, D.E., Yaffe, K.: The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10(9), 819–828 (2011)

    Article  Google Scholar 

  2. Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V., Collins, D.L.: Simultaneous segmentation and grading of hippocampus for patient classification with Alzheimer’s disease. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 149–157. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Coupé, P., Eskildsen, S.F., Manjon, J.V., Fonov, V.S., Pruessner, J.C., Allard, M., Collins, D.L.: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. NeuroImage: Clin. 1(1), 141–152 (2012)

    Article  Google Scholar 

  4. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)

    Article  Google Scholar 

  5. Gray, K.R., Wolz, R., Heckemann, R.A., Aljabar, P., Hammers, A., Rueckert, D.: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage 60(1), 221–229 (2012)

    Article  Google Scholar 

  6. Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A., Foster, N.L., Jack, Jr., C.R., Galasko, D.R., Doody, R., et al.: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61(1), 59 (2004)

    Article  Google Scholar 

  7. Haury, A.C., Gestraud, P., Vert, J.P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS ONE 6(12), e28210 (2011)

    Article  Google Scholar 

  8. Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., Whitwell, J.L., Ward, C., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  9. Keihaninejad, S., Zhang, H., Ryan, N.S., Malone, I.B., Modat, M., Cardoso, M.J., Cash, D., Fox, N.C., Ourselin, S.: An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease. NeuroImage 72, 153–163 (2013)

    Article  Google Scholar 

  10. Liu, M., Zhang, D., Shen, D.: Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 35, 1305–1319 (2013)

    Article  Google Scholar 

  11. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: ADNI: machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)

    Article  Google Scholar 

  12. Nyu, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magn. Reson. Med. 42(6), 1072 (1999)

    Article  Google Scholar 

  13. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  14. Tong, T., Wolz, R., Coupé, P., Hajnal, J.V., Rueckert, D.: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. NeuroImage 76, 11–23 (2013)

    Article  Google Scholar 

  15. Tong, T., Wolz, R., Gao, Q., Hajnal, J.V., Rueckert, D.: Multiple instance learning for classification of dementia in brain MRI. Med. Image Anal. 18(5), 808–818 (2014)

    Article  Google Scholar 

  16. Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage 54(3), 1812–1822 (2011)

    Article  Google Scholar 

  17. Wee, C.Y., Yap, P.T., Shen, D.: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 34(12), 3411–3425 (2013)

    Article  Google Scholar 

  18. Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., Rueckert, D., Soininen, H., Lotjonen, J.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE 6(10), e25446 (2011)

    Article  Google Scholar 

  19. Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med. Image Anal. 18(6), 881–890 (2014)

    Article  Google Scholar 

  20. Wyman, B.T., Harvey, D.J., et al.: Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s Dement. 9(3), 332–337 (2013)

    Article  Google Scholar 

  21. Young, J., Modat, M., Cardoso, M.J., Mendelson, A., Cash, D., Ourselin, S.: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. NeuroImage Clin. 2, 735–745 (2013)

    Article  Google Scholar 

  22. Zhou, L., Wang, Y., Li, Y., Yap, P.T., Shen, D.: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE 6(7), e21935 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinquan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tong, T., Gao, Q. (2015). Extraction of Features from Patch Based Graphs for the Prediction of Disease Progression in AD. In: Huang, DS., Jo, KH., Hussain, A. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9226. Springer, Cham. https://doi.org/10.1007/978-3-319-22186-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22186-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22185-4

  • Online ISBN: 978-3-319-22186-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics