Skip to main content

A Solving Procedure for Stochastic Satisfiability Modulo Theories with Continuous Domain

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9259))

Included in the following conference series:

Abstract

Stochastic Satisfiability Modulo Theories (SSMT) [1] is a quantitative extension of classical Satisfiability Modulo Theories (SMT) inspired by stochastic logics. It extends SMT by the usual as well as randomized quantifiers, facilitating capture of stochastic game properties in the logic, like reachability analysis of hybrid-state Markov decision processes. Solving for SSMT formulae with quantification over finite and thus discrete domain has been addressed by Tino Teige et al. [2]. In this paper, we extend their work to SSMT over continuous quantifier domains (CSSMT) in order to enable capture of continuous disturbances and uncertainty in hybrid systems. We extend the semantics of SSMT and introduce a corresponding solving procedure. A simple case study is pursued to demonstrate applicability of our framework to reachability problems in hybrid systems.

This research is funded by the German Research Foundation through the Research Training Group DFG-GRK 1765: “System Correctness under Adverse Conditions” (SCARE, scare.uni-oldenburg.de) and the Transregional Collaborative Research Center SFB-TR 14 “Automatic Verification and Analysis of Complex Systems” (AVACS, www.avacs.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In SSAT parlance, this is the body of the formula after rewriting it to prenex form and stripping all the quantifiers.

References

  1. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Teige, T., Fränzle, M.: Stochastic satisfiability modulo theories for non-linear arithmetic. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 248–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Majercik, S.M., Littman, M.L.: Maxplan: A new approach to probabilistic planning. AIPS 98, 86–93 (1998)

    Google Scholar 

  5. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. J. Autom. Reasoning 27(3), 251–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochastic satisfiability. In: AAAI/IAAI, pp. 549–556 (1999)

    Google Scholar 

  7. Teige, T.: Stochastic satisfiability modulo theories: a symbolic technique for the analysis of probabilistic hybrid systems. Ph.D thesis, Universität Oldenburg (2012)

    Google Scholar 

  8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories: from an abstract davis-putnam-logemann-loveland procedure to DPLL(\(\cal T\)). J. ACM (JACM) 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  9. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  10. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3–4), 209–236 (2007)

    Google Scholar 

  12. iSAT Homepage. https://projects.avacs.org/projects/isat/. Accessed February 2015

  13. Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains. Int. J. Softw. Tools Technol. Transfer 17(4), 485–504 (2015)

    Article  Google Scholar 

  14. Young, R.C.: The algebra of many-valued quantities. Mathematische Annalen 104(1), 260–290 (1931)

    Article  MathSciNet  Google Scholar 

  15. Sunaga, T., et al.: Theory of an interval algebra and its application to numerical analysis. Jpn. J. Ind. Appl. Math. 26(2–3), 125–143 (2009). [reprint of res. assoc. appl. geom. mem. 2 (1958), 29–46]

    Article  MathSciNet  Google Scholar 

  16. Moore, R.E., Moore, R.: Methods and Applications of Interval Analysis, vol. 2. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  17. Alefeld, G., Herzberger, J.: Introduction to Interval Computation. Academic press, New York (1984)

    Google Scholar 

  18. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. Handb. Constraint Prog. 2, 571–603 (2006)

    Article  Google Scholar 

  19. Granvilliers, L., Benhamou, F.: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  20. Benhamou, F., Languénou, F.G.É., Christie, M.: An algorithm to compute inner approximations of relations for interval constraints. In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp. 416–423. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Vu, X.-H., Sam-Haroud, D., Silaghi, M.-C.: Approximation techniques for non-linear problems with continuum of solutions. In: Koenig, S., Holte, R. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 224–241. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Goubault, E., Mullier, O., Putot, S., Kieffer, M.: Inner approximated reachability analysis. In: Proceedings of the 17th international conference on Hybrid systems: computation and control, pp. 163–172. ACM (2014)

    Google Scholar 

  23. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. SiSAT Homepage. https://projects.avacs.org/projects/sisat/. Accessed March 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Gao or Martin Fränzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, Y., Fränzle, M. (2015). A Solving Procedure for Stochastic Satisfiability Modulo Theories with Continuous Domain. In: Campos, J., Haverkort, B. (eds) Quantitative Evaluation of Systems. QEST 2015. Lecture Notes in Computer Science(), vol 9259. Springer, Cham. https://doi.org/10.1007/978-3-319-22264-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22264-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22263-9

  • Online ISBN: 978-3-319-22264-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics