Abstract
In Ambient Assisted Living (AAL), Activity Recognition (AR) plays a crucial role in filling the semantic gap between sensor data and interpretation needed at the application level. We propose a quantitative model-based approach to on-line prediction of activities that takes into account not only the sequencing of events but also the continuous duration of their inter-occurrence times: given a stream of time-stamped and typed events, online transient analysis of a continuous-time stochastic model is used to derive a measure of likelihood for the currently performed activity and to predict its evolution until the next event; while the structure of the model is predefined, its actual topology and stochastic parameters are automatically derived from the statistics of observed events. The approach is validated with reference to a public data set widely used in applications of AAL, providing results that show comparable performance with state-of-the-art offline approaches, namely Hidden Markov Models (HMM) and Conditional Random Fields (CRF).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for markov regenerative processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 9–24. Springer, Heidelberg (2014)
Avci, U., Passerini, A.: Improving activity recognition by segmental pattern mining. IEEE Trans. Knowl. Data Eng. 26(4), 889–902 (2014)
Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Heidelberg (2014)
Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time petri nets. IEEE Trans. Soft. Eng. 17(3), 259–273 (1991)
Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity cycles. In: International Computer Performance and Dependability Symposium, pp. 124–133 (1995)
Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase type distributions. Stoch. Models 21(2–3), 303–326 (2005)
Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transfer 12(5), 391–403 (2010)
Buchholz, R., Krull, C., Strigl, T., Horton, G.: Using hidden non-markovian models to reconstruct system behavior in partially-observable systems. In: International ICST Conference on Simulation Tools and Techniques, p. 86 (2010)
Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perf. Eval. 20(1–3), 337–357 (1994)
Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans. Softw. Eng. 20(7), 506–515 (1994)
Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)
Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)
Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)
Katz, S., Downs, T.D., Cash, H.R., Grotz, R.C.: Progress in development of the index of ADL. The Gerontologist 10(1 Part 1), 20–30 (1970)
Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare - a case study in a dutch hospital. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2011. CCIS, vol. 273, pp. 425–438. Springer, Heidelberg (2009)
Mitchell, C.D., Jamieson, L.H.: Modeling duration in a hidden Markov model with the exponential family. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 331–334 (1993)
Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press, London (1981)
Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)
Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39(5), 949–959 (2009)
Rashidi, P., Cook, D.J., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011)
Reinecke, P., Krauß, T., Wolter, K.: Phase-type fitting using hyperstar. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 164–175. Springer, Heidelberg (2013)
Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)
Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Science Applications. John Wiley and Sons, New York (2001)
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)
van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves De Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007)
van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)
van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Proceedings of the International Conference on Ubiquitous Computing, UbiComp 2008, pp. 1–9. ACM, New York, NY, USA (2008)
Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719 (2009)
Whitt, W.: Approximating a point process by a renewal process, I: two basic methods. Oper. Res. 30(1), 125–147 (1982)
Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)
Zimmermann, A.: Dependability evaluation of complex systems with TimeNET. In: Proceedings of the International Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems, pp. 33–34 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Carnevali, L., Nugent, C., Patara, F., Vicario, E. (2015). A Continuous-Time Model-Based Approach to Activity Recognition for Ambient Assisted Living. In: Campos, J., Haverkort, B. (eds) Quantitative Evaluation of Systems. QEST 2015. Lecture Notes in Computer Science(), vol 9259. Springer, Cham. https://doi.org/10.1007/978-3-319-22264-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-22264-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22263-9
Online ISBN: 978-3-319-22264-6
eBook Packages: Computer ScienceComputer Science (R0)