Skip to main content

A Continuous-Time Model-Based Approach to Activity Recognition for Ambient Assisted Living

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9259))

Included in the following conference series:

  • 803 Accesses

Abstract

In Ambient Assisted Living (AAL), Activity Recognition (AR) plays a crucial role in filling the semantic gap between sensor data and interpretation needed at the application level. We propose a quantitative model-based approach to on-line prediction of activities that takes into account not only the sequencing of events but also the continuous duration of their inter-occurrence times: given a stream of time-stamped and typed events, online transient analysis of a continuous-time stochastic model is used to derive a measure of likelihood for the currently performed activity and to predict its evolution until the next event; while the structure of the model is predefined, its actual topology and stochastic parameters are automatically derived from the statistics of observed events. The approach is validated with reference to a public data set widely used in applications of AAL, providing results that show comparable performance with state-of-the-art offline approaches, namely Hidden Markov Models (HMM) and Conditional Random Fields (CRF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amparore, E.G., Buchholz, P., Donatelli, S.: A structured solution approach for markov regenerative processes. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 9–24. Springer, Heidelberg (2014)

    Google Scholar 

  2. Avci, U., Passerini, A.: Improving activity recognition by segmental pattern mining. IEEE Trans. Knowl. Data Eng. 26(4), 889–902 (2014)

    Article  Google Scholar 

  3. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Heidelberg (2014)

    Google Scholar 

  4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time petri nets. IEEE Trans. Soft. Eng. 17(3), 259–273 (1991)

    Article  MathSciNet  Google Scholar 

  5. Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity cycles. In: International Computer Performance and Dependability Symposium, pp. 124–133 (1995)

    Google Scholar 

  6. Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase type distributions. Stoch. Models 21(2–3), 303–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transfer 12(5), 391–403 (2010)

    Article  Google Scholar 

  8. Buchholz, R., Krull, C., Strigl, T., Horton, G.: Using hidden non-markovian models to reconstruct system behavior in partially-observable systems. In: International ICST Conference on Simulation Tools and Techniques, p. 86 (2010)

    Google Scholar 

  9. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets. Perf. Eval. 20(1–3), 337–357 (1994)

    Article  MathSciNet  Google Scholar 

  10. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE Trans. Softw. Eng. 20(7), 506–515 (1994)

    Article  Google Scholar 

  11. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)

    Article  Google Scholar 

  12. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)

    Article  Google Scholar 

  13. Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002)

    Google Scholar 

  14. Katz, S., Downs, T.D., Cash, H.R., Grotz, R.C.: Progress in development of the index of ADL. The Gerontologist 10(1 Part 1), 20–30 (1970)

    Article  Google Scholar 

  15. Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare - a case study in a dutch hospital. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2011. CCIS, vol. 273, pp. 425–438. Springer, Heidelberg (2009)

    Google Scholar 

  16. Mitchell, C.D., Jamieson, L.H.: Modeling duration in a hidden Markov model with the exponential family. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 331–334 (1993)

    Google Scholar 

  17. Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press, London (1981)

    MATH  Google Scholar 

  18. Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39(5), 949–959 (2009)

    Article  Google Scholar 

  20. Rashidi, P., Cook, D.J., Holder, L.B., Schmitter-Edgecombe, M.: Discovering activities to recognize and track in a smart environment. IEEE Trans. Knowl. Data Eng. 23(4), 527–539 (2011)

    Article  Google Scholar 

  21. Reinecke, P., Krauß, T., Wolter, K.: Phase-type fitting using hyperstar. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 164–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer Science Applications. John Wiley and Sons, New York (2001)

    Google Scholar 

  24. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves De Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007)

    Article  Google Scholar 

  26. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Proceedings of the International Conference on Ubiquitous Computing, UbiComp 2008, pp. 1–9. ACM, New York, NY, USA (2008)

    Google Scholar 

  28. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719 (2009)

    Article  Google Scholar 

  29. Whitt, W.: Approximating a point process by a renewal process, I: two basic methods. Oper. Res. 30(1), 125–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012)

    Article  Google Scholar 

  31. Zimmermann, A.: Dependability evaluation of complex systems with TimeNET. In: Proceedings of the International Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems, pp. 33–34 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Carnevali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Carnevali, L., Nugent, C., Patara, F., Vicario, E. (2015). A Continuous-Time Model-Based Approach to Activity Recognition for Ambient Assisted Living. In: Campos, J., Haverkort, B. (eds) Quantitative Evaluation of Systems. QEST 2015. Lecture Notes in Computer Science(), vol 9259. Springer, Cham. https://doi.org/10.1007/978-3-319-22264-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22264-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22263-9

  • Online ISBN: 978-3-319-22264-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics