Skip to main content

RICC: Fast Reachability Query Processing on Large Spatiotemporal Datasets

  • Conference paper
  • First Online:
Advances in Spatial and Temporal Databases (SSTD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9239))

Included in the following conference series:

Abstract

Spatiotemporal reachability queries arise naturally when determining how diseases, information, physical items can propagate through a collection of moving objects; such queries are significant for many important domains like epidemiology, public health, security monitoring, surveillance, and social networks. While traditional reachability queries have been studied in graphs extensively, what makes spatiotemporal reachability queries different and challenging is that the associated graph is dynamic and space-time dependent. As the spatiotemporal dataset becomes very large over time, a solution needs to be I/O-efficient. Previous work assumes an ‘instant exchange’ scenario (where information can be instantly transferred and retransmitted between objects), which may not be the case in many real world applications. In this paper we propose the RICC (Reachability Index Construction by Contraction) approach for processing spatiotemporal reachability queries without the instant exchange assumption. We tested our algorithm on two types of realistic datasets using queries of various temporal lengths and different types (with single and multiple sources and targets). The results of our experiments show that RICC can be efficiently used for answering a wide range of spatiotemporal reachability queries on disk-resident datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient managemet on transitive relationships in large data and knowledge bases. In: ACM SIGMOD, pp. 253–262 (1989)

    Google Scholar 

  2. Bakalov, P., Hadjieleftheriou, M., Keogh, E., Tsotras, V.J.: Efficient trajectory joins using symbolic representations. In: MDM, pp. 86–93 (2005)

    Google Scholar 

  3. Brinkhoff, T., et al.: Generating traffic data. Data Eng. Bull. 26(2), 19–25 (2003)

    Google Scholar 

  4. Cai, J., Poon, C.K.: Path-hop: efficiently indexing large graphs for reachability queries. In: 19th ACM CIKM, pp. 119–128 (2010)

    Google Scholar 

  5. Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: ACM SIGMOD, pp. 599–610 (2004)

    Google Scholar 

  6. Chen, S., Ooi, B.C., Tan, K., Nascimento, M.: St2b-tree: a self-tunable spatio-temporal b+-tree index for moving objects. In: ACM SIGMOD, pp. 29–42 (2008)

    Google Scholar 

  7. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in networks. Geoinformatica 9(1), 33–60 (2005)

    Article  Google Scholar 

  9. Geisberger, R., Rice, M.N., Sanders, P., Tsotras, V.J.: Route planning with flexible edge restrictions. ACM J. Exp. Algorithms 17(1), 1–20 (2012)

    MathSciNet  Google Scholar 

  10. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: 7th International Conference on Experimental algorithms (2008)

    Google Scholar 

  11. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Jensen, C., Lin, D., Ooi, B.: Continuous clustering of moving objects. IEEE TKDE 19, 1161–1174 (2007)

    Google Scholar 

  13. Jeung, H., Yiu, M., Zhou, X., Jensen, C., Shen, H.: Discovery of convoys in trajectory databases. PVLDB 1, 1068–1080 (2008)

    Google Scholar 

  14. Jin, E., Ruan, N., Dey, S., Xu, J.Y.: Scarab: scaling reachability computation on large graphs. In: ACM SIGMOD, pp. 169–180 (2012)

    Google Scholar 

  15. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for reachability query. In: ACM SIGMOD, pp. 813–826 (2009)

    Google Scholar 

  16. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data. In: IEEE ICDE, pp. 997–1008 (2013)

    Google Scholar 

  18. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: ACM PODS, pp. 261–272 (1999)

    Google Scholar 

  19. Merz, F., Sanders, P.: PReaCH: a fast lightweight reachability index using pruning and contraction hierarchies. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 701–712. Springer, Heidelberg (2014)

    Google Scholar 

  20. Nguyen-Dinh, L.V., Aref, W.G., Mokbel, M.F.: Spatio-temporal access methods: part2 (2003–2010). IEEE Data Eng. Bull. 33(2), 46–55 (2010)

    Google Scholar 

  21. Ni, J., Ravishankar, C.V.: Indexing spatiotemporal trajectories with efficient polynomial approximation. IEEE TKDE 19, 663–678 (2007)

    Google Scholar 

  22. Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted trajectories. In: ACM SIGMOD (2004)

    Google Scholar 

  23. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: 26th VLDB Conference, pp. 395–406 (2000)

    Google Scholar 

  24. Shirani-Mehr, H., Banaei-Kashani, F., Shahabi, C.: Efficient reachability query evaluation in large spatiotemporal contact datasets. PVLDB 5(9), 848–859 (2012)

    Google Scholar 

  25. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reachability in mobile and online social networks. ACM SIGCOMM Comput. Commun. Rev. 40(1), 118–124 (2010)

    Article  Google Scholar 

  26. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-temporal data. In: GIS, pp. 286–295. ACM (2009)

    Google Scholar 

  27. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: ACM SIGMOD, pp. 331–342 (2000)

    Google Scholar 

  28. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph reachability queries in constant time. In: ICDE 2006 (2006)

    Google Scholar 

  29. Xiong, X., Mokbel, M.F., Aref, W.G.: Lugrid: Update-tolerant grid-based indexing for moving objects. In: MDM (2006)

    Google Scholar 

  30. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: scalable reachability index for large graphs. PVLDB 3, 276–284 (2010)

    Google Scholar 

  31. Yiu, M.L., Tao, Y., Mamoulis, N.: The bdual-tree: Indexing moving objects by space filling curves in the dual space. VLDB J. 17(3), 379–400 (2008)

    Article  Google Scholar 

  32. Yufei, T., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: 29th VLDB Conference (2003)

    Google Scholar 

  33. Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on large dynamic graphs: a total order approach. In: ACM SIGMOD pp. 1323–1334 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Strzheletska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Strzheletska, E.V., Tsotras, V.J. (2015). RICC: Fast Reachability Query Processing on Large Spatiotemporal Datasets. In: Claramunt, C., et al. Advances in Spatial and Temporal Databases. SSTD 2015. Lecture Notes in Computer Science(), vol 9239. Springer, Cham. https://doi.org/10.1007/978-3-319-22363-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22363-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22362-9

  • Online ISBN: 978-3-319-22363-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics