Abstract
We study a similarity search problem on a raw image by its pixel values. We call this problem as matrix similarity search; it has several applications, e.g., object detection, motion estimation, and super-resolution. Given a data image D and a query q, the best match refers to a sub-window of D that is the most similar to q. The state-of-the-art solution applies a sequence of lower bound functions to filter sub-windows and reduce the response time. Unfortunately, it suffers from two drawbacks: (i) its lower bound functions cannot support arbitrary query size, and (ii) it may invoke a large number of lower bound functions, which may incur high cost in the worst-case. In this paper, we propose an efficient solution that overcomes the above drawbacks. First, we present a generic approach to build lower bound functions that are applicable to arbitrary query size and enable trade-offs between bound tightness and computation time. We provide performance guarantee even in the worst-case. Second, to further reduce the number of calls to lower bound functions, we develop a lower bound function for a group of sub-windows. Experimental results on image data demonstrate the efficiency of our proposed methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is similar to the division of nodes in a quadtree.
- 2.
In general, the space \([1..L_q,1..W_q]\) may have less than \(O(4^{\ell })\) disjoint rectangles.
References
Weather datasets. http://weather.is.kochi-u.ac.jp/sat/GAME/
Ben-Artzi, G., Hel-Or, H., Hel-Or, Y.: The gray-code filter kernels. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 382–393 (2007)
Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)
Brad, R., Letia, I.A.: Extracting cloud motion from satellite image sequences. In: ICARCV, pp. 1303–1307 (2002)
Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)
Dufour, R.M., Miller, E.L., Galatsanos, N.P.: Template matching based object recognition with unknown geometric parameters. IEEE Trans. Image Process. 11(12), 1385–1396 (2002)
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)
Fu, A.W., Keogh, E.J., Lau, L.Y.H., Ratanamahatana, C.A., Wong, R.C.: Scaling and time warping in time series querying. VLDB J. 17(4), 899–921 (2008)
Gharavi-Alkhansari, M.: A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. Image Process. 10(4), 526–533 (2001)
Hel-Or, Y., Hel-Or, H.: Real-time pattern matching using projection kernels. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1430–1445 (2005)
Ho, C., Agrawal, R., Megiddo, N., Srikant, R.: Range queries in OLAP data cubes. In: SIGMOD, pp. 73–88 (1997)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC, pp. 604–613 (1998)
Jagadish, H.V., Ooi, B.C., Tan, K., Yu, C., Zhang, R.: idistance: an adaptive b\({}^{\text{+ }}\)-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)
Keim, D.A., Bustos, B.: Similarity search in multimedia databases. In: ICDE, p. 873 (2004)
Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E.L., Protopapas, Z.: Fast nearest neighbor search in medical image databases. In: VLDB, pp. 215–226 (1996)
Kriegel, H.-P., Kröger, P., Kunath, P., Renz, M.: Generalizing the optimality of multi-step k-nearest neighbor query processing. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 75–92. Springer, Heidelberg (2007)
Moshe, Y., Hel-Or, H.: Video block motion estimation based on gray-code kernels. IEEE Trans. Image Process. 18(10), 2243–2254 (2009)
Ouyang, W., Cham, W.: Fast algorithm for walsh hadamard transform on sliding windows. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 165–171 (2010)
Ouyang, W., Tombari, F., Mattoccia, S., di Stefano, L., Cham, W.: Performance evaluation of full search equivalent pattern matching algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 127–143 (2012)
Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E.A.P.A., Westover, M.B., Zhu, Q., Zakaria, J., Keogh, E.J.: Searching and mining trillions of time series subsequences under dynamic time warping. In: KDD, pp. 262–270 (2012)
Samet, H.: Techniques for similarity searching in multimedia databases. PVLDB 3(2), 1649–1650 (2010)
Schweitzer, H., Deng, R.A., Anderson, R.F.: A dual-bound algorithm for very fast and exact template matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 459–470 (2011)
Seidl, T., Kriegel, H.: Optimal multi-step k-nearest neighbor search. In: SIGMOD, pp. 154–165 (1998)
Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest neighbor search. In: SIGMOD, pp. 563–576 (2009)
Tombari, F., Mattoccia, S., di Stefano, L.: Full-search-equivalent pattern matching with incremental dissimilarity approximations. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 129–141 (2009)
Viola, P.A., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)
Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: VLDB, pp. 385–394 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chan, T.N., Yiu, M.L., Hua, K.A. (2015). A Progressive Approach for Similarity Search on Matrix. In: Claramunt, C., et al. Advances in Spatial and Temporal Databases. SSTD 2015. Lecture Notes in Computer Science(), vol 9239. Springer, Cham. https://doi.org/10.1007/978-3-319-22363-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-22363-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22362-9
Online ISBN: 978-3-319-22363-6
eBook Packages: Computer ScienceComputer Science (R0)