Skip to main content

Stochastic and Deterministic Tensorization for Blind Signal Separation

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

  • 2885 Accesses

Abstract

Given an instantaneous mixture of some source signals, the blind signal separation (BSS) problem consists of the identification of both the mixing matrix and the original sources. By itself, it is a non-unique matrix factorization problem, while unique solutions can be obtained by imposing additional assumptions such as statistical independence. By mapping the matrix data to a tensor and by using tensor decompositions afterwards, uniqueness is ensured under certain conditions. Tensor decompositions have been studied thoroughly in literature. We discuss the matrix to tensor step and present tensorization as an important concept on itself, illustrated by a number of stochastic and deterministic tensorization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the autocorrelation is not required for each source for each of the lags.

References

  1. Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)

    Article  Google Scholar 

  2. Antoulas, A.C., Anderson, B.D.O.: On the scalar rational interpolation problem. IMA J. Math. Control Inf. 3(2–3), 61–88 (1986)

    Article  MATH  Google Scholar 

  3. Belouchrani, A., Abed-Meraim, K., Cardoso, J., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Sig. Process. 45(2), 434–444 (1997)

    Article  Google Scholar 

  4. Boussé, M., Debals, O., De Lathauwer, L.: Deterministic blind source separation using low-rank tensor approximations. Internal report 15–59, ESAT-STADIUS, KU Leuven, Belgium, April 2015

    Google Scholar 

  5. Boussé, M., Debals, O., De Lathauwer, L.: A novel deterministic method for large-scale blind source separation. In: Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015, Nice, France), August 2015. Accepted for publication

    Google Scholar 

  6. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-gaussian signals. IEE Proceedings F Radar Sig. Process. 140(6), 362–370 (1993)

    Article  Google Scholar 

  8. Cichocki, A., Mandic, D., Phan, A.H., Caiafa, C., Zhou, G., Zhao, Q., De Lathauwer, L.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Sig. Process. Mag. 32(2), 145–163 (2015)

    Article  Google Scholar 

  9. Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  10. Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  11. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, New York (2010)

    Google Scholar 

  12. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms – Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-\((L_r, L_r,1)\) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. De Lathauwer, L., Castaing, J.: Tensor-based techniques for the blind separation of DS-CDMA signals. Sig. Process. 87(2), 322–336 (2007)

    Article  MATH  Google Scholar 

  16. De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms – Part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30(3), 1067–1083 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. De Vos, M.: Decomposition methods with applications in neuroscience. Ph.D. thesis, KU Leuven (2009)

    Google Scholar 

  18. Debals, O., Van Barel, M., De Lathauwer, L.: Blind signal separation of rational functions using Löwner-based tensorization. In: IEEE Proceedings on International Conference on Acoustics, Speech and Signal Processing, pp. 4145–4149. April 2015. Accepted for publication

    Google Scholar 

  19. Debals, O., Van Barel, M., De Lathauwer, L.: Löwner-based blind signal separation of rational functions with applications. Internal report 15–44, ESAT-STADIUS, KU Leuven, Belgium, March 2015

    Google Scholar 

  20. Deburchgraeve, W., Cherian, P., De Vos, M., Swarte, R., Blok, J., Visser, G.H., Govaert, P., Van Huffel, S.: Neonatal seizure localization using PARAFAC decomposition. Clin. Neurophysiol. 120(10), 1787–1796 (2009)

    Article  Google Scholar 

  21. Domanov, I., De Lathauwer, L.: On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part I: basic results and uniqueness of one factor matrix. SIAM J. Matrix Anal. Appl. 34(3), 855–875 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Domanov, I., De Lathauwer, L.: On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part II: uniqueness of the overall decomposition. SIAM J. Matrix Anal. Appl. 34(3), 876–903 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  24. Dreesen, P., Ishteva, M., Schoukens, J.: Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM J. Matrix Anal. Appl. 36(2), 864–879 (2015)

    Article  MathSciNet  Google Scholar 

  25. Eggert, J., Korner, E.: Sparse coding and NMF. IEEE Proc. Int. Joint Conf. Neural Netw. 4, 2529–2533 (2004)

    Google Scholar 

  26. Elad, M., Milanfar, P., Golub, G.H.: Shape from moments – an estimation theory perspective. IEEE Trans. Sig. Process. 52(7), 1814–1829 (2004)

    Article  MathSciNet  Google Scholar 

  27. Fiedler, M.: Hankel and Löwner matrices. Linear Algebra Appl. 58, 75–95 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  29. Gillis, N.: Nonnegative matrix factorization: complexity, algorithms and applications. Ph.D. thesis, UCL (2011)

    Google Scholar 

  30. Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector tensorization, April 2010

    Google Scholar 

  31. Harman, H.H.: Modern Factor Analysis, 3rd edn. University of Chicago Press, Chicago (1976)

    Google Scholar 

  32. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MATH  MathSciNet  Google Scholar 

  33. Hunyadi, B., Camps, D., Sorber, L., Van Paesschen, W., De Vos, M., Van Huffel, S., De Lathauwer, L.: Block term decomposition for modelling epileptic seizures. EURASIP J. Adv. Sig. Process. 2014(1), 1–19 (2014)

    Article  Google Scholar 

  34. Jiang, T., Sidiropoulos, N.D., ten Berge, J.M.: Almost-sure identifiability of multidimensional harmonic retrieval. IEEE Trans. Sig. Process. 49(9), 1849–1859 (2001)

    Article  Google Scholar 

  35. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kroonenberg, P.: Applied Multiway Data Analysis, vol. 702. Wiley-Interscience, Hoboken (2008)

    Book  MATH  Google Scholar 

  37. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lee, D., Seung, H., et al.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  39. McCullagh, P.: Tensor Methods in Statistics, vol. 161. Chapman and Hall, London (1987)

    MATH  Google Scholar 

  40. Nikias, C.L., Petropulu, A.P.: Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. PTR Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  41. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  42. Pham, D.T., Cardoso, J.F.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Sig. Process. 49(9), 1837–1848 (2001)

    Article  MathSciNet  Google Scholar 

  43. Roemer, F., Haardt, M., Del Galdo, G.: Higher order SVD based subspace estimation to improve multi-dimensional parameter estimation algorithms. In: Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 961–965. IEEE (2006)

    Google Scholar 

  44. Sidiropoulos, N.D.: Generalizing Caratheodory’s uniqueness of harmonic parameterization to N dimensions. IEEE Trans. Inf. Theory 47(4), 1687–1690 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. Smilde, A.K., Bro, R., Geladi, P., Wiley, J.: Multi-way Analysis with Applications in the Chemical Sciences. Wiley Chichester, UK (2004)

    Book  Google Scholar 

  46. Vandevoorde, D.: A fast exponential decomposition algorithm and its applications to structured matrices. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1998)

    Google Scholar 

  47. Zibulevsky, M., Pearlmutter, B.: Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 13(4), 863–882 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research is funded by (1) a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT), (2) Research Council KU Leuven: CoE PFV/10/002 (OPTEC), (3) F.W.O.: projects G.0830.14N and G.0881.14N, (4) the Belgian Federal Science Policy Office: IUAP P7/19 (DYSCO II, Dynamical systems, control and optimization, 2012–2017), (5) EU: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC Advanced Grant: BIOTENSORS (no. 339804). This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the contained information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Debals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Debals, O., De Lathauwer, L. (2015). Stochastic and Deterministic Tensorization for Blind Signal Separation. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics