Abstract
Given an instantaneous mixture of some source signals, the blind signal separation (BSS) problem consists of the identification of both the mixing matrix and the original sources. By itself, it is a non-unique matrix factorization problem, while unique solutions can be obtained by imposing additional assumptions such as statistical independence. By mapping the matrix data to a tensor and by using tensor decompositions afterwards, uniqueness is ensured under certain conditions. Tensor decompositions have been studied thoroughly in literature. We discuss the matrix to tensor step and present tensorization as an important concept on itself, illustrated by a number of stochastic and deterministic tensorization techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the autocorrelation is not required for each source for each of the lags.
References
Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)
Antoulas, A.C., Anderson, B.D.O.: On the scalar rational interpolation problem. IMA J. Math. Control Inf. 3(2–3), 61–88 (1986)
Belouchrani, A., Abed-Meraim, K., Cardoso, J., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Sig. Process. 45(2), 434–444 (1997)
Boussé, M., Debals, O., De Lathauwer, L.: Deterministic blind source separation using low-rank tensor approximations. Internal report 15–59, ESAT-STADIUS, KU Leuven, Belgium, April 2015
Boussé, M., Debals, O., De Lathauwer, L.: A novel deterministic method for large-scale blind source separation. In: Proceedings of the 23rd European Signal Processing Conference (EUSIPCO 2015, Nice, France), August 2015. Accepted for publication
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-gaussian signals. IEE Proceedings F Radar Sig. Process. 140(6), 362–370 (1993)
Cichocki, A., Mandic, D., Phan, A.H., Caiafa, C., Zhou, G., Zhao, Q., De Lathauwer, L.: Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Sig. Process. Mag. 32(2), 145–163 (2015)
Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation. Wiley, Hoboken (2009)
Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3), 287–314 (1994)
Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, New York (2010)
De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)
De Lathauwer, L.: Decompositions of a higher-order tensor in block terms – Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)
De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-\((L_r, L_r,1)\) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)
De Lathauwer, L., Castaing, J.: Tensor-based techniques for the blind separation of DS-CDMA signals. Sig. Process. 87(2), 322–336 (2007)
De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms – Part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30(3), 1067–1083 (2008)
De Vos, M.: Decomposition methods with applications in neuroscience. Ph.D. thesis, KU Leuven (2009)
Debals, O., Van Barel, M., De Lathauwer, L.: Blind signal separation of rational functions using Löwner-based tensorization. In: IEEE Proceedings on International Conference on Acoustics, Speech and Signal Processing, pp. 4145–4149. April 2015. Accepted for publication
Debals, O., Van Barel, M., De Lathauwer, L.: Löwner-based blind signal separation of rational functions with applications. Internal report 15–44, ESAT-STADIUS, KU Leuven, Belgium, March 2015
Deburchgraeve, W., Cherian, P., De Vos, M., Swarte, R., Blok, J., Visser, G.H., Govaert, P., Van Huffel, S.: Neonatal seizure localization using PARAFAC decomposition. Clin. Neurophysiol. 120(10), 1787–1796 (2009)
Domanov, I., De Lathauwer, L.: On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part I: basic results and uniqueness of one factor matrix. SIAM J. Matrix Anal. Appl. 34(3), 855–875 (2013)
Domanov, I., De Lathauwer, L.: On the uniqueness of the canonical polyadic decomposition of third-order tensors – Part II: uniqueness of the overall decomposition. SIAM J. Matrix Anal. Appl. 34(3), 876–903 (2013)
Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in Neural Information Processing Systems (2003)
Dreesen, P., Ishteva, M., Schoukens, J.: Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM J. Matrix Anal. Appl. 36(2), 864–879 (2015)
Eggert, J., Korner, E.: Sparse coding and NMF. IEEE Proc. Int. Joint Conf. Neural Netw. 4, 2529–2533 (2004)
Elad, M., Milanfar, P., Golub, G.H.: Shape from moments – an estimation theory perspective. IEEE Trans. Sig. Process. 52(7), 1814–1829 (2004)
Fiedler, M.: Hankel and Löwner matrices. Linear Algebra Appl. 58, 75–95 (1984)
Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)
Gillis, N.: Nonnegative matrix factorization: complexity, algorithms and applications. Ph.D. thesis, UCL (2011)
Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector tensorization, April 2010
Harman, H.H.: Modern Factor Analysis, 3rd edn. University of Chicago Press, Chicago (1976)
Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)
Hunyadi, B., Camps, D., Sorber, L., Van Paesschen, W., De Vos, M., Van Huffel, S., De Lathauwer, L.: Block term decomposition for modelling epileptic seizures. EURASIP J. Adv. Sig. Process. 2014(1), 1–19 (2014)
Jiang, T., Sidiropoulos, N.D., ten Berge, J.M.: Almost-sure identifiability of multidimensional harmonic retrieval. IEEE Trans. Sig. Process. 49(9), 1849–1859 (2001)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Kroonenberg, P.: Applied Multiway Data Analysis, vol. 702. Wiley-Interscience, Hoboken (2008)
Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)
Lee, D., Seung, H., et al.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)
McCullagh, P.: Tensor Methods in Statistics, vol. 161. Chapman and Hall, London (1987)
Nikias, C.L., Petropulu, A.P.: Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. PTR Prentice Hall, Englewood Cliffs (1993)
Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)
Pham, D.T., Cardoso, J.F.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Sig. Process. 49(9), 1837–1848 (2001)
Roemer, F., Haardt, M., Del Galdo, G.: Higher order SVD based subspace estimation to improve multi-dimensional parameter estimation algorithms. In: Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 961–965. IEEE (2006)
Sidiropoulos, N.D.: Generalizing Caratheodory’s uniqueness of harmonic parameterization to N dimensions. IEEE Trans. Inf. Theory 47(4), 1687–1690 (2001)
Smilde, A.K., Bro, R., Geladi, P., Wiley, J.: Multi-way Analysis with Applications in the Chemical Sciences. Wiley Chichester, UK (2004)
Vandevoorde, D.: A fast exponential decomposition algorithm and its applications to structured matrices. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY (1998)
Zibulevsky, M., Pearlmutter, B.: Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 13(4), 863–882 (2001)
Acknowledgements
The research is funded by (1) a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT), (2) Research Council KU Leuven: CoE PFV/10/002 (OPTEC), (3) F.W.O.: projects G.0830.14N and G.0881.14N, (4) the Belgian Federal Science Policy Office: IUAP P7/19 (DYSCO II, Dynamical systems, control and optimization, 2012–2017), (5) EU: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC Advanced Grant: BIOTENSORS (no. 339804). This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the contained information.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Debals, O., De Lathauwer, L. (2015). Stochastic and Deterministic Tensorization for Blind Signal Separation. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-22482-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22481-7
Online ISBN: 978-3-319-22482-4
eBook Packages: Computer ScienceComputer Science (R0)