Abstract
In this paper we study the identifiability of the Paralind model with sparse interaction matrices (i.e. S-Paralind). We provide some theoretical results on how to obtain the sparsest interaction matrices in some particular configurations and when these matrices are unique. These results could be use for the design and analysis of \(\ell _0\)-based decomposition algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
PARAllel profiles with LINear Dependencies.
- 2.
CONstrained FACtor decomposition.
- 3.
The Kruskal-rank of a matrix \(\mathbf {A}\) (denoted \(k_\mathbf {A}\)) is the maximum number \(\ell \) such that every \(\ell \) columns of \(\mathbf {A}\) are linearly independent.
References
Aharon, M., Elad, M., Bruckstein, A.: On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra Appl. 416, 48–67 (2006)
de Almeida, A.L.F., Favier, G., Mota, J.C.M.: A constrained factor decomposition with application to MIMO antenna systems. IEEE Trans. Signal Process. 56(6), 2429–2442 (2008)
de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Constrained tensor modeling approach to blind multiple-antenna CDMA schemes. IEEE Trans. Signal Process. 56(6), 2417–2428 (2008)
Bahram, M., Bro, R.: A novel strategy for solving matrix effect in three-way data using parallel profiles with linear dependencies. Anal. Chim. Acta 584(2), 397–402 (2007)
Brie, D., Klotz, R., Miron, S., Moussaoui, S., Mustin, C., Ph, B., Grandemange, S.: Joint analysis of flow cytometry data and fluorescence spectra as a non-negative array factorization problem. Chemometr. Intell. Lab. 137(1), 21–32 (2014)
Bro, R., Harshman, R.A., Sidiropoulos, N.D., Lundy, M.E.: Modeling multi-way data with linearly dependent loadings. J. Chemometr. 23(7–8), 324–340 (2009). special Issue: In Honor of Professor Richard A. Harshman
Caland, F., Miron, S., Brie, D., Mustin, C.: A blind sparse approach for estimating constraint matrices in paralind data models. In: Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European, pp. 839–843. Bucharest, Romania (2012)
Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)
Chen, H., Zheng, B., Song, Y.: Comparison of PARAFAC and PARALIND in modeling three-way fluorescence data array with special linear dependences in three modes: a case study in 2-naphthol. Chemometr. Intell. Lab. 25(1), 20–27 (2011)
De Lathauwer, L.: Decompositions of a higher-order tensor in block terms - Part II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)
Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)
Gribonval, R., Schnass, K.: Dictionary identification - sparse matrix-factorisation via \(\ell _1\)-minimisation. IEEE Trans. Inf. Theory 56(7), 3523–3539 (2010)
Guo, X., Miron, S., Brie, D., Stegeman, A.: Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings. SIAM J. Matrix Anal. Appl. 33(1), 111–129 (2012)
Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multimodal factor analysis. UCLA Working Papers Phonetics 16, 1–84 (1970)
Kruskal, J.B.: Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)
Liu, X., Guang, L., Yang, L., Zhu, H.: PARALIND-based blind joint angle and delay estimation for multipath signals with uniform linear array. EURASIP J. Appl. Signal Process. 2012(1), 1–13 (2012)
Nion, D., De Lathauwer, L.: A block component model-based blind DS-CDMA receiver. IEEE Trans. Signal Process. 56(11), 5567–5579 (2008)
Stegeman, A., de Almeida, A.L.F.: Uniqueness conditions for constrained three-way factor decompositions with linearly dependent loadings. SIAM J. Matrix Anal. Appl. 31(3), 1469–1499 (2009)
Xiaofei, Z., Fei, W., Dazhuan, X.: Blind signal detection algorithm for MIMO-OFDM systems over multipath channel using PARALIND model. IET Commun. 5(5), 606–611 (2011)
Zhang, X., Gao, X., Wang, Z.: Blind paralind multiuser detection for smart antenna CDMA system over multipath fading channel. Prog. Electromagnet. Res. 89, 23–38 (2009)
Zhang, X., Zhou, M., Li, J.: A PARALIND decomposition-based coherent two-dimensional direction of arrival estimation algorithm for acoustic vector-sensor arrays. Sensors 13(4), 5302–5316 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Miron, S., Brie, D. (2015). Some Rank Conditions for the Identifiability of the Sparse Paralind Model. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-22482-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22481-7
Online ISBN: 978-3-319-22482-4
eBook Packages: Computer ScienceComputer Science (R0)