Skip to main content

Some Rank Conditions for the Identifiability of the Sparse Paralind Model

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

In this paper we study the identifiability of the Paralind model with sparse interaction matrices (i.e. S-Paralind). We provide some theoretical results on how to obtain the sparsest interaction matrices in some particular configurations and when these matrices are unique. These results could be use for the design and analysis of \(\ell _0\)-based decomposition algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    PARAllel profiles with LINear Dependencies.

  2. 2.

    CONstrained FACtor decomposition.

  3. 3.

    The Kruskal-rank of a matrix \(\mathbf {A}\) (denoted \(k_\mathbf {A}\)) is the maximum number \(\ell \) such that every \(\ell \) columns of \(\mathbf {A}\) are linearly independent.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra Appl. 416, 48–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Almeida, A.L.F., Favier, G., Mota, J.C.M.: A constrained factor decomposition with application to MIMO antenna systems. IEEE Trans. Signal Process. 56(6), 2429–2442 (2008)

    Article  MathSciNet  Google Scholar 

  3. de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Constrained tensor modeling approach to blind multiple-antenna CDMA schemes. IEEE Trans. Signal Process. 56(6), 2417–2428 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bahram, M., Bro, R.: A novel strategy for solving matrix effect in three-way data using parallel profiles with linear dependencies. Anal. Chim. Acta 584(2), 397–402 (2007)

    Article  Google Scholar 

  5. Brie, D., Klotz, R., Miron, S., Moussaoui, S., Mustin, C., Ph, B., Grandemange, S.: Joint analysis of flow cytometry data and fluorescence spectra as a non-negative array factorization problem. Chemometr. Intell. Lab. 137(1), 21–32 (2014)

    Article  Google Scholar 

  6. Bro, R., Harshman, R.A., Sidiropoulos, N.D., Lundy, M.E.: Modeling multi-way data with linearly dependent loadings. J. Chemometr. 23(7–8), 324–340 (2009). special Issue: In Honor of Professor Richard A. Harshman

    Article  Google Scholar 

  7. Caland, F., Miron, S., Brie, D., Mustin, C.: A blind sparse approach for estimating constraint matrices in paralind data models. In: Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European, pp. 839–843. Bucharest, Romania (2012)

    Google Scholar 

  8. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  9. Chen, H., Zheng, B., Song, Y.: Comparison of PARAFAC and PARALIND in modeling three-way fluorescence data array with special linear dependences in three modes: a case study in 2-naphthol. Chemometr. Intell. Lab. 25(1), 20–27 (2011)

    Google Scholar 

  10. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms - Part II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  12. Gribonval, R., Schnass, K.: Dictionary identification - sparse matrix-factorisation via \(\ell _1\)-minimisation. IEEE Trans. Inf. Theory 56(7), 3523–3539 (2010)

    Article  MathSciNet  Google Scholar 

  13. Guo, X., Miron, S., Brie, D., Stegeman, A.: Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings. SIAM J. Matrix Anal. Appl. 33(1), 111–129 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multimodal factor analysis. UCLA Working Papers Phonetics 16, 1–84 (1970)

    Google Scholar 

  15. Kruskal, J.B.: Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, X., Guang, L., Yang, L., Zhu, H.: PARALIND-based blind joint angle and delay estimation for multipath signals with uniform linear array. EURASIP J. Appl. Signal Process. 2012(1), 1–13 (2012)

    Article  Google Scholar 

  17. Nion, D., De Lathauwer, L.: A block component model-based blind DS-CDMA receiver. IEEE Trans. Signal Process. 56(11), 5567–5579 (2008)

    Article  MathSciNet  Google Scholar 

  18. Stegeman, A., de Almeida, A.L.F.: Uniqueness conditions for constrained three-way factor decompositions with linearly dependent loadings. SIAM J. Matrix Anal. Appl. 31(3), 1469–1499 (2009)

    Article  MathSciNet  Google Scholar 

  19. Xiaofei, Z., Fei, W., Dazhuan, X.: Blind signal detection algorithm for MIMO-OFDM systems over multipath channel using PARALIND model. IET Commun. 5(5), 606–611 (2011)

    Article  MathSciNet  Google Scholar 

  20. Zhang, X., Gao, X., Wang, Z.: Blind paralind multiuser detection for smart antenna CDMA system over multipath fading channel. Prog. Electromagnet. Res. 89, 23–38 (2009)

    Article  Google Scholar 

  21. Zhang, X., Zhou, M., Li, J.: A PARALIND decomposition-based coherent two-dimensional direction of arrival estimation algorithm for acoustic vector-sensor arrays. Sensors 13(4), 5302–5316 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Miron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Miron, S., Brie, D. (2015). Some Rank Conditions for the Identifiability of the Sparse Paralind Model. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics