Skip to main content

Multivariate Fusion of EEG and Functional MRI Data Using ICA: Algorithm Choice and Performance Analysis

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

It has become common for neurological studies to gather data from multiple modalities, since the modalities examine complementary aspects of neural activity. Functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) data, in particular, enable the study of functional changes within the brain at different temporal and spatial scales; hence their fusion has received much attention. Joint independent component analysis (jICA) enables symmetric and fully multivariate fusion of these modalities and is thus one of the most widely used methods. In its application to jICA, Infomax has been the widely used, however the relative performance of Infomax is rarely shown on real neurological data, since the ground truth is not known. We propose the use of number of voxels in physically meaningful masks and statistical significance to assess algorithm performance of ICA for jICA on real data and show that entropy bound minimization (EBM) provides a more attractive solution for jICA of EEG and fMRI.

Y. Levin-Schwartz—This work was supported in part by NSF grant NSF-IIS 1017718 and NIH grant R01 EB 005846.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abney, S.: Bootstrapping. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 360–367 (2002)

    Google Scholar 

  2. Adalı, T., Levin-Schwartz, Y., Calhoun, V.D.: Multi-modal data fusion using source separation: Application to medical imaging. In: Proceedings of the IEEE (2015, in review)

    Google Scholar 

  3. Bell, A., Sejnowski, T.: An information maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  4. Calhoun, V.D., Adalı, T., Pearlson, G., Kiehl, K.: Neuronal chronometry of target detection: Fusion of hemodynamic and event related potential data. NeuroImage 30, 544–553 (2006)

    Article  Google Scholar 

  5. Calhoun, V.D., Adalı, T.: Feature-based fusion of medical imaging data. IEEE Trans. Inf. Technol. Biomed. 13(5), 711–720 (2009)

    Article  Google Scholar 

  6. Calhoun, V.D., Allen, E.: Extracting intrinsic functional networks with feature-based group independent component analysis. Psychometrika 78(2), 243–259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardoso, J.F.: Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4(4), 112–114 (1997)

    Article  Google Scholar 

  8. Correa, N., Adalı, T., Li, Y.O., Calhoun, V.D.: Canonical correlation analysis for data fusion and group inferences. IEEE Signal Process. Mag. 27(4), 39–50 (2010)

    Article  Google Scholar 

  9. Ernst, M., Nelson, E.E., McClure, E.B., Monk, C.S., Munson, S., Eshel, N., Zarahn, E., Leibenluft, E., Zametkin, A., Towbin, K., Blair, J., Charney, D., Pine, D.S.: Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42(12), 1585–1597 (2004)

    Article  Google Scholar 

  10. Friston, K.J.: Modalities, modes, and models in functional neuroimaging. Science 326(5951), 399–403 (2009)

    Article  Google Scholar 

  11. Gu, X., Han, S.: Neural substrates underlying evaluation of pain in actions depicted in words. Behav. Brain Res. 181(2), 218–223 (2007)

    Article  Google Scholar 

  12. James, A.P., Dasarathy, B.V.: Medical image fusion: A survey of the state of the art. Inf. Fusion 19, 4–19 (2014)

    Article  Google Scholar 

  13. Li, X.L., Adalı, T.: Independent component analysis by entropy bound minimization. IEEE Trans. Signal Process. 58(10), 5151–5164 (2010)

    Article  MathSciNet  Google Scholar 

  14. Maldjian, J.A., Laurienti, P.J., Burdette, J.H.: Precentral gyrus discrepancy in electronic versions of the talairach atlas. NeuroImage 21(1), 450–455 (2004)

    Article  Google Scholar 

  15. Maldjian, J.A., Laurienti, P.J., Kraft, R.A., Burdette, J.H.: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3), 1233–1239 (2003)

    Article  Google Scholar 

  16. Mangalathu-Arumana, J., Beardsley, S., Liebenthal, E.: Within-subject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm. NeuroImage 60(4), 2247–2257 (2012)

    Article  Google Scholar 

  17. Mckeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J.: Analysis of fMRI Data by Blind Separation Into Independent Spatial Components. Hum. Brain Mapp. 6, 160–188 (1998)

    Article  Google Scholar 

  18. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R.: Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106(31), 13040–13045 (2009)

    Article  Google Scholar 

  19. Sui, J., Adalı, T., Yu, Q., Chen, J., Calhoun, V.D.: A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204(1), 68–81 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Levin-Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Levin-Schwartz, Y., Calhoun, V.D., Adalı, T. (2015). Multivariate Fusion of EEG and Functional MRI Data Using ICA: Algorithm Choice and Performance Analysis. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics