Skip to main content

Texture Retrieval Using Scattering Coefficients and Probability Product Kernels

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

In this paper we introduce a content based image retrieval system that leverages the benefits of the scattering transform as a means of feature extraction. To measure similarity between feature vectors, we adapt a probability product kernel and derive an approximate version which can be implemented efficiently. The proposed approach achieves a retrieval performance superior to comparable filterbank transform systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.gol.ei.tum.de/fileadmin/w00bhl/www/texture_retrieval_scattering_15.zip.

  2. 2.

    http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

References

  1. Anden, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Signal Process. 62(16), 4114–4128 (2014)

    Article  MathSciNet  Google Scholar 

  2. Choi, E., Lee, C.: Feature extraction based on the bhattacharyya distance. Pattern Recogn. 36(8), 1703–1709 (2003)

    Article  Google Scholar 

  3. Choy, S., Tong, C.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)

    Article  MathSciNet  Google Scholar 

  4. Do, M.N., Vetterli, M.: Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden markov models. IEEE Trans. Multimedia 4(4), 517–527 (2002)

    Article  Google Scholar 

  5. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Article  MathSciNet  Google Scholar 

  6. Goudail, F., Réfrégier, P., Delyon, G.: Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images. J. Opt. Soc. Am. A 21(7), 1231–1240 (2004)

    Article  Google Scholar 

  7. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. J. Mach. Learn. Res. 5, 819–844 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using new rotated complex wavelet filters. IEEE Trans. Syst. Man Cybern. 35(6), 1168–1178 (2005)

    Article  Google Scholar 

  9. Kwitt, R., Uhl, A.: Image similarity measurement by kullback-leibler divergences between complex wavelet subband statistics for texture retrieval. In: ICIP 2008. 15th IEEE International Conference on Image Processing, pp. 933–936 (2008)

    Google Scholar 

  10. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  11. Mallat, S.: Group invariant scattering. Commun. Pure Appl. Math. 65(10), 1331–1398 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sifre, L., Mallat, S.: Combined scattering for rotation invariant texture analysis. In: ESANN 2012. 20th European Symposium on Artificial Neural Networks, pp. 127–132 (2012)

    Google Scholar 

  13. Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: CVPR 2013. 26th IEEE Conference on Computer Vision and Pattern Recognition, pp. 1233–1240 (2013)

    Google Scholar 

  14. Sornette, D.: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer Series in Synergetics, pp. 185–194. Springer, Heidelberg (2006)

    Google Scholar 

  15. Torgerson, W.: Theory and Methods of Scaling. Wiley, New York (1958)

    Google Scholar 

  16. Tzagkarakis, G., Beferull-Lozano, B., Tsakalides, P.: Rotation-invariant texture retrieval with gaussianized steerable pyramids. IEEE Trans. Image Process. 15(9), 2702–2718 (2006)

    Article  Google Scholar 

  17. You, C.H., Lee, K.A., Li, H.: An svm kernel with gmm-supervector based on the bhattacharyya distance for speaker recognition. IEEE Signal Process. Lett. 16(1), 49–52 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sagel, A., Meyer, D., Shen, H. (2015). Texture Retrieval Using Scattering Coefficients and Probability Product Kernels. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics