Skip to main content

Integrating Synthetic and Analytical Aspects of Geometry Through Solving Problems Using a DGS

  • Conference paper
  • First Online:
Learning Technology for Education in Cloud (LTEC 2015)

Abstract

In this paper we document and analyze the extent to which the systematic use of a Dynamic Geometry System (DGS) in problem solving activities can become a means to integrating the synthetic and analytical aspects of geometry. We analyze some solution paths for a task of geometric construction, implemented by three participants at a problem-solving seminar. We identify limitations of purely analytical approaches as well as the usefulness of integrating analytical and synthetic techniques to construct or justify a solution path. We observed that solving problems of geometric construction without the support offered by digital technology reduces the opportunities that a solver has to interpret algebraic procedures from a geometric perspective and to construct meaning for mathematical ideas and concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos-Trigo, M., Reyes-Martinez, I.: The coordinated use of digital technologies in learning environments. In: Uden, L., Sinclair, J., Tao, Y.-H., Liberona, D. (eds.) LTEC 2014. CCIS, vol. 446, pp. 61–71. Springer, Heidelberg (2014)

    Google Scholar 

  2. Schmidt, E., Cohen, J.: The New Digital Area: Reshaping the Future of People. Nations and Business. Random House and Google Inc., New York (2013)

    Google Scholar 

  3. Hiebert, J., Carpenter, T.P., Fennema, E., Fuson, K.C., Wearne, D., Murray, H., Olivier, A., Human, P.: Making Sense: Teaching and Learning Mathematics With Understanding. Heinemann, Portsmouth (1997)

    Google Scholar 

  4. Contreras, A., Contreras, M., Garcia, M.: Sobre la geometría sintética y analítica. La elipse y sus construcciones. Rev. Lat. Inv. Mat. Educ. 5(2), 111–132 (2002)

    Google Scholar 

  5. Ancochea, B.: Las funciones de las calculadoras simbólicas en la articulación entre la geometría sintética y la geometría analítica en secundaria. In: Bosch, M., Gascon, J., Ruiz, A., Artaud, M., Bronner, A., Chevallard, Y., Cirade, G., Ladage, C., Larguier, M. (eds.) Un panorama de la TAD III Congreso Internacional sobre la TAD, pp. 533–551. Centre de Recerca Matemàtica, Barcelona (2010)

    Google Scholar 

  6. Gascón, J.: Evolución de la controversia entre geometría sintética y geometría analítica. Un punto de vista didáctico-matemático. Dis. Mat. Sem. Mat. Fund. 28, 1–21 (2002)

    Google Scholar 

  7. Santos-Trigo, M., Espinosa-Perez, H., Reyes-Rodriguez, A.: Constructing a parabolas’ world using dynamic software to explore properties and meanings. IJMEST 12(3), 125–134 (2005)

    Google Scholar 

  8. Santos-Trigo, M., Reyes-Rodriguez, A., Espinosa-Perez, H.: Musing on the use of dynamic software and mathematics epistemology. TEAMAT 26(4), 167–178 (2007)

    MATH  Google Scholar 

  9. Polya, G.: How to Solve It. Princeton University Press, Princeton (1945)

    Google Scholar 

  10. Pea, R.D.: Cognitive technologies for mathematics education. In: Schoenfeld, A. (ed.) Cognitive Science and Mathematics Education, pp. 89–122. Erlbaum, Hillsdale (1987)

    Google Scholar 

  11. Drijvers, P., Kieran, C., Mariotti, M.A., Ainley, J., Andresen, M., Chan, Y., Dana-Picard, T., Gueudet, G., Kidron, I., Leung, A., Meagher, M.: Integrating technology into mathematics education: theoretical perspectives. In: Hoyles, C., Lagrange, J.-B. (eds.) Mathematics Education and Technology: Rethinking the Terrain. New ICMI Study Series, vol. 13, pp. 89–132. Springer, New York (2010)

    Chapter  Google Scholar 

  12. Balacheff, N.: Computer-Based Learning Environment in Mathematics. In: Bishop, A.J., Clements, K., Kilpatrick, J., Laborde, C. (eds.) International Handbook of Mathematics Education. Kluwer International Handbooks of Education, vol. 4, pp. 469–501. Springer, Heidelberg (2010)

    Google Scholar 

  13. Moreno-Armella, L., Sriraman, B.: Structural stability and dynamic geometry: Some ideas on situated proofs. ZDM Math. Educ. 37(3), 130–139 (2005)

    Article  Google Scholar 

  14. Arzarello, F., Olivero, F., Paola, D., Robutti, O.: A cognitive analysis of dragging practices in Cabri environments. ZDM Math. Educ. 34(3), 66–72 (2002)

    Google Scholar 

  15. Schoenfeld, A.H.: Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In: Grouws, D. (ed.) Handbook for Research on Mathematics Teaching and Learning, pp. 334–370. MacMillan, New York (1992)

    Google Scholar 

  16. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  17. Duval, R.: Sémiosis et pensée humaine: Registres sémiotiques et apprentissage intellectuels. Peter Lang, Berne (1995)

    Google Scholar 

  18. Ruben, K., Hennessy, S., Deaney, R.: Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Comp. Educ. 51(1), 297–317 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Reyes-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Guerrero-Ortiz, C., Reyes-Rodriguez, A., Espinosa-Perez, H. (2015). Integrating Synthetic and Analytical Aspects of Geometry Through Solving Problems Using a DGS. In: Uden, L., Liberona, D., Welzer, T. (eds) Learning Technology for Education in Cloud. LTEC 2015. Communications in Computer and Information Science, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-22629-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22629-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22628-6

  • Online ISBN: 978-3-319-22629-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics