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Advances in Proof-Theoretic Semantics:
Introduction

Thomas Piecha and Peter Schroeder-Heister

Abstract As documented by the papers in this volume, which mostly result from the
second conference on proof-theoretic semantics in Tiibingen 2013, proof-theoretic
semantics has advanced to a well-established subject in philosophical logic.

Keywords Proof-theoretic semantics

In the mid-1980s, the term “proof-theoretic semantics” (Schroeder-Heister 1991
[13], and before in lectures) was proposed (1) to explain meaning in terms of proof
rather than denotation or truth and (2) to give a semantics for proofs. Though related
to the meaning-as-use approach in the philosophy of language, and belonging to
what in a more general setting has been called “inferentialism” (Brandom 1994 [1]),
the intention of proof-theoretic semantics was to capture and continue the specific
line of research that originated from the work of Gentzen (1934/35) [5S] (and also
Jaskowski 1934 [6]) and was taken up and developed, amongst others, by Lorenzen
(1955) [8], Prawitz (1965, 1971) [11, 12], von Kutschera (1968) [15], Martin-Lof
(1975, 1984) [9, 10], and Dummett (1975, 1991) [2, 3]. Whereas in the 1980s proof-
theoretic semantics was almost exclusively the business of proof-theorists, the field
has since expanded into the wider area of philosophical logic. The first conference
on proof-theoretic semantics was held in 1999 in Tiibingen with a special issue of
Synthese originating from it, which was published in 2006 (Kahle and Schroeder-
Heister 2006 [7]). At the time of this first conference, the subject still belonged to a
relatively small community of logicians and philosophers. This has changed in the
meantime. One only needs to look at the multitude of papers published on issues
of proof-theoretic semantics in the past decade and at the widespread usage of this
term. “Proof-theoretic semantics” is no longer the provocative title it used to be,
containing an alleged contradictio in adjecto between proof theory as dealing with
syntax, and semantics as dealing with meaning. The link between proofs and meaning
is well-established now. Given the growing interest in the subject, we organised a
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2 T. Piecha and P. Schroeder-Heister

second conference on proof-theoretic semantics in Tiibingen in 2013 to discuss the
advances in the now well-established field (for overviews see Wansing 2000 [16],
Schroeder-Heister 2012 [14]). Some speakers of the second conference had already
spoken at the first, namely DoSen, Dyckhoff, Hallnis, Kahle, Prawitz, Sundholm,
Tait and Usberti.

The presentations given at the conference were the following.

e Sergei N. Artémov: On Brouwer-Heyting-Kolmogorov provability semantics
Walter Dean and Hidenori Kurokawa: Kreisel’s second clause and the Theory of
Constructions

Kosta DoSen: Two ways of general proof theory

Roy Dyckhoff: Generalised elimination rules

Lars Hallnds: On the proof-theoretic foundations of set theory

Wilfrid Hodges: The choice of semantics as a methodological question

Reinhard Kahle: The mode of presentation

Yoshihiro Maruyama: On paradoxes in proof-theoretic semantics

Jan von Plato: Explicit composition and its application in normalization proofs
Dag Prawitz: Remarks on relations between Gentzen and Heyting inspired PTS
Giovanni Sambin: Unification of logics by reflection

Goran Sundholm: BHK and Brouwer’s theory of the creative subject

William W. Tait: Compositional semantics for predicate logic: Eliminating bound
variables from formulas and deductions

Gabriele Usberti: Intuitionism, the Paradox of Knowability and empirical negation
Heinrich Wansing: A two-sorted typed lambda-calculus

This volume collects the contributions of many of the participants, not necessarily
in the form presented, and also some additional papers by authors who did not speak at
the conference. Therefore it exemplifies from many perspectives what proof-theoretic
semantics is about. The papers by Prawitz and Dean and Kurakowa confront the
proof-theoretic approach with the constructive semantics of Heyting and of Kreisel
and Goodman, respectively. DoSen pleads for a categorial approach to proof-theoretic
semantics, arguing that it best exhibits the structures of deductions. Dyckhoft’s paper
is a critical examination of approaches in proof-theoretic semantics based on general
elimination rules of a certain form. Maruyama gives a taxonomy of various forms
of paradoxes based on a categorial approach to proof-theoretic harmony. Usberti
proposes a solution to the epistemic knowability paradox from the standpoint of logic.
Von Plato investigates the significance of a rule of explicit composition in natural
deduction which makes the substitution of a derivation for an open assumption an
inference step of its own. Kahle applies proof-theoretic semantics to the treatment of
equality by elucidating the difference between extensional and intensional equality
in a non-denotational way. Hallnds sketches some ideas towards a proof-theoretic
foundation for set theory using generalisations of definitional reflection. The paper by
Hodges, which is the only one not written from the perspective of a proof-theoretic
semanticist or constructivist, defends model theory against false claims from the
proof-theoretic semantics ‘camp’. It is followed by a reply by DoSen.
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Goldfarb’s paper has been circulating for more than 15 years and has been referred
to repeatedly. It was the subject of Dummett’s presentation at the first conference
in 1999. It represents significant results on the proof-theoretic semantics of intu-
itionistic logic, in particular on the question of completeness. Another contribution
not presented at the conference is a chapter of Ekman’s thesis (Ekman 1994 [4]). It
uses an interesting way of associating labels with formulas that are proved, which
is different from standard Curry—Howard term-annotation and particularly suited
to analyse non-well-founded and paradoxical reasoning, a topic which has recently
gained much attention in the proof-theoretic semantics community. There are also
papers by us, the editors: An overview on results concerning completeness in proof-
theoretic semantics and a presentation of three open problems that are considered
significant for the further development of the subject.

We would like to thank all participants of the conference, and in particular all
contributors to this volume, who made this work possible, as well as those who
helped with reviewing and editing the papers. We are also very grateful to Marine
Gaudefroy-Bergmann for invaluable organisational assistance. The second editor
is particularly grateful to Reinhard Kahle and Thomas Piecha, who organised the
conference as a present for his 60th birthday including a special colloquium with
friends and colleagues.
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On the Relation Between Heyting’s
and Gentzen’s Approaches to Meaning

Dag Prawitz

Abstract Proof-theoretic semantics explains meaning in terms of proofs. Two differ-
ent concepts of proof are in question here. One has its roots in Heyting’s explanation
of a mathematical proposition as the expression of the intention of a construction,
and the other in Gentzen’s ideas about how the rules of Natural Deduction are jus-
tified in terms of the meaning of sentences. These two approaches to meaning give
rise to two different concepts of proof, which have been developed much further, but
the relation between them, the topic of this paper, has not been much studied so far.
The recursive definition of proof given by the so-called BHK-interpretation is here
used as an explication of Heyting’s idea. Gentzen’s approach has been developed as
ideas about what it is that makes a piece of reasoning valid. It has resulted in a notion
of valid argument, of which there are different variants. The differences turn out to
be crucial when comparing valid arguments and BHK-proofs. It will be seen that
for one variant, the existence of a valid argument can be proved to be extensionally
equivalent to the existence of a BHK-proof, while for other variants, attempts at
similar proofs break down at different points.

Keywords Proof + Valid argument - Meaning + Semantics *+ Heyting - Gentzen

1 Introduction

The term “proof-theoretic semantics” was introduced to stand for an approach to
meaning based on what it is to have a proof of a sentence. The idea was, at least
originally, that in contrast to a truth-conditional meaning theory, one should explain

This is an elaborated version of a talk at the “Second conference on proof-theoretic semantics”
at Tiibingen in March 2013. Earlier versions have also been presented elsewhere and have been
circulated among some colleagues, which has given me the benefit of several comments. I thank
especially Per Martin-Lof, Peter Schroeder-Heister and Luca Tranchini for their suggestions, which
have stimulated me to prove stronger results and to improve the presentation.
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6 D. Prawitz

the meaning of a sentence in terms of what it is to know that the sentence is true,
which in mathematics amounts to having a proof of the sentence.!

There are in particular two different concepts of proof that have been used in
meaning theories of this kind, but the relation between them has not been paid much
attention to. They have their roots in ideas that were put forward by Arend Heyting
and Gerhard Gentzen in the first part of the 1930s. Their approaches to meaning are
quite different and result in different concepts of proof. Nevertheless there are clear
structural similarities between what they require of a proof. The aim of this paper
has been to compare the two approaches more precisely, in particular as to whether
the existence of proofs comes to the same.

I shall first retell briefly how Heyting and Gentzen formulated their ideas and
how others have taken them. In particular, I shall consider how the ideas have been
or can be developed so that they become sufficiently precise and general to allow a
meaningful comparison, which will then be the object of the second part of the paper.

2 Heyting’s Approach to Meaning

A mathematical proposition expresses according to Heyting the intention of a con-
struction that satisfies certain conditions. He explained the assertion of a proposition
to mean that the intended construction had been realized, and a proof of a proposi-
tion to consist in the realization of the intended construction (Heyting 1930 [5, pp.
958-959], 1931 [6, p. 2471, 1934 [7, p. 14]). Thus, according to this explanation, to
assert a proposition is equivalent with declaring that there is proof of the proposition.
The notion of proof retains in this way its usual epistemic connotation: to have a
proof is exactly what one needs in order to be justified in asserting the proposition.

As an important example, Heyting explained the meaning of implication, saying
that “a D b means the intention of a construction that takes any proof of a to a proof
of b”.

There are several proposals for how to develop Heyting’s ideas more explicitly.
One early proposal due to Kreisel (1959, 1962) [10, 11] suggests quite straightfor-
wardly that the constructions intended by implications and universal quantifications
are constructive functionals of finite type satisfying the conditions stated by Heyting.

The so-called BHK-interpretation stated by Troelstra and van Dalen (1988) [24],
which is less developed ontologically, defines recursively “what forms proofs of

ISchroeder-Heister (2006) [22], who coined the term and used it as the title of a conference that he
arranged at Tiibingen in 1999, writes that proof-theoretic semantics “is based on the fundamental
assumption that the central notion in terms of which meanings can be assigned to expressions of
our language ... is that of proof rather than truth”.

2Kreisel was interested in this interpretation as a technical tool for obtaining certain non-derivability
results. For a foundation of intuitionistic logic he suggested another interpretation that took a proof
of an implication to consist of a pair («, 8) where « is a construction satisfying the condition stated
by Heyting and 8 is a proof of the fact that « satisfies this condition (Kreisel 1962 [12]).
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logically compound statements take in terms of the proofs of the constituents”.?
What is here called a proof corresponds rather to what Heyting calls an intended
construction, but it has become common in intuitionism to speak about proofs in this
way, and I shall follow this way of speaking.

For my purpose here it is sufficient to stay roughly at the level of precision of the
BHK-interpretation. I assume that we are given a set P of proofs of atomic sentences
of a first order language and an individual domain D. What it is to be a proof over
P of a closed compound sentence A in that language is then defined by recursive
clauses like the ones below:

(1) ais aproof over P of A D B, if and only if, « is an effective operation such that
if B is any proof over P of A then «(f) is a proof over P of B.

(2) « is a proof over P of VxA(x), if and only if, « is an effective operation such
that for any element e in the individual domain D, «(e) is a proof over P of the
instance A(e).

Instead of speaking of proofs of open sentences A (x) under assignments of individ-
uals to variables, I have here assumed for convenience that each element e in the
individual domain D has a canonical name, and understand by A(e) the closed sen-
tence obtained by substituting in A(x) this canonical name of e for x. Furthermore, I
assume that if « is as stated in clause (2), then there is another effective operation o™,
effectively obtained from «, such that for any closed term ¢, «*(¢) is a proof of A(¢).

To distinguish proofs defined by recursive clauses of this kind, I shall sometimes
refer to them as BHK-proofs.

3 Gentzen’s Approach to Meaning

Gentzen’s approach to meaning is commonly described by saying that he had the
idea that the meaning of a logical constant is determined by its introduction rule in
Natural Deduction, or as he put it himself: “the introductions present, so to speak, the
‘definitions’ of the symbols concerned” (Gentzen 1934-35 [4, p. 189]). However,
this should not be confused with what has later become known as inferentialism, the
view that the meaning of a sentence is given by the inference rules concerning the
sentence that are in force, which was advocated by Carnap (1934) [1] at about the
same time. For Gentzen only some of the inference rules are meaning constitutive,
viz. the introduction rules. To indicate their special status, a proof or deduction
whose last step is an introduction is now commonly called canonical or is said to be
in canonical form.*

3BHK stands here for Brouwer-Heyting-Kolmogorov, but there is also another interpretation stated
by Troelstra (1977) [23] that is called the BHK-interpretation, where BHK stands for Brouwer-
Heyting-Kreisel. It is more akin to Kreisel’s second proposal mentioned in footnote 2.

4Prawitz (1974) [19]. The term “canonical proof”’, which was used already by Brouwer in a different
context, was applied to normal proofs by Kreisel (1971) [13] and to proofs mentioned in the
intuitionistic meaning explanations (such as the BHK-interpretation) by Dummett (1975) [2].
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Besides introduction rules there are elimination rules and about them Gentzen
says “in an elimination we may use the constant only in the sense afforded to it by
the introduction of that symbol”. What is intended is clearly that we may use the
constant only in this sense, if we are to justify the elimination inference. Gentzen is
obviously concerned with what justifies inferences: the introductions stipulate what
the logical constants mean, and the eliminations are justified because they are in
accord with this meaning.

He clarifies how his ideas are to be understood by giving one example, saying that
given an implication A D B as premiss, “one can directly infer B when A has been
proved, because what A D B attests is just the existence of a proof of B from A”.

Three important principles can be distinguished here. Firstly, what a sentence
“attests” is the existence of a canonical proof. An introduction is therefore immedi-
ately justified: given proofs of its premisses, the conclusion is warranted, since what
the conclusion attests is just that there is a canonical proof of it—the introductions
are self-justifying, as one says, when they are taken to be what gives the meanings
of the logical constants. Thus, in view of what a sentence attests, a canonical proof
is in order, or is valid, provided only that its immediate sub-proofs are.

Secondly, the justification of an elimination consists more precisely in the fact
that given that there are proofs of the premisses of the elimination and that the proof
of the major premiss is of the kind attested to exist, that is, is in canonical form, a
proof of the conclusion can be obtained from these proofs without the use of that
elimination. For instance, as Gentzen points out, a proof of the conclusion B of an
implication elimination can be obtained from proofs of the premisses if the proof of
the major premiss A D B is in canonical form, because then there is a proof of B
from A, and by replacing the assumption A in that proof by the proof of the minor
premiss A, one obtains a proof of B, as is illustrated by the following figure:

[A] |
| o [A]
B | gives rise to (is reduced to) |
ADB A
-5 B

[A] stands for the set of assumptions that are discharged by the exhibited
D-introduction in the first figure and become replaced by the proof of A in the
second figure. The operation by which the proof to the left is transformed to the one
to the right, that is, substituting in the proof of B from A the proof of the minor pre-
miss A for the occurrences of A that belong to [A], is what is called an D-reduction.
These kinds of reductions, which were introduced explicitly in the proof of the nor-
malization theorem for natural deduction (Prawitz 1965 [16]), but which Gentzen
was already quite aware of,% have in this way a semantic import in being what shows

S«kann man ... aus einem bewiesenen A sofort B schlieB[en]. Denn A D B dokumentiert ja das
Bestehen einer Herleitung von B aus A” (Gentzen 1934-35 [4, p. 189]).

6 Although Gentzen never stated these reductions in any published work, it seemed clear already
from his example quoted here that he was aware of them. This was later verified when finding an
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the eliminations to be justified. By this way of reducing a proof that ends with an
elimination to another proof of the same conclusion, the conclusion of the elimination
becomes warranted, provided of course that this other proof is valid. Thus, proofs
that end with eliminations are valid, if the proofs that they reduce to by applying
certain reductions are valid.

Thirdly, when saying that we get a valid proof of B by making the substitution
just described, we are tacitly taking for granted that a valid proof from assumptions
remains valid when making such substitutions.

We can in this way extract from Gentzen’s example three principles about what
makes something a valid proof or a valid deduction, as 1 prefer to say (since when
the term proof is used, it is normally taken for granted that the reasoning is valid, a
convention not strictly adhered to in my informal explanations above). The principles
are formulated more precisely below, where I have adopted the terminology that a
deduction is open when it depends on assumptions and closed when all assumptions
are discharged or bound.

Principle I.  Introductions preserve validity: a closed deduction in canonical form
is valid, if its immediate sub-deductions are.

Principle Il.  Eliminations are justified by reductions: a closed deduction not in
canonical form is valid if it reduces to a valid deduction.

Principle Il. An open deduction is valid, if all results of substituting closed valid
deductions for its free (undischarged) assumptions are valid.

Because of the fact that the premises of an introduction and the assumptions that
an introduction may bind are of lower complexity than that of the conclusion, these
principles can be taken as clauses of a generalized inductive definition of the notion of
valid deduction, relative to a basic clause stating what is counted as valid deductions
of atomic sentences. The effect of defining the notion inductively in this way is that
no deduction is valid if its validity does not follow from I-III and that the converses
of I-1III hold true too.

When taking into account also inferences involving quantified sentences, we have
to reckon with inferences that bind free individual variables: for instance, an VI-
inference in which Vx A(x) is inferred from A(a) is said to bind occurrences of the
variable a that are free in sentences of the deduction of A(a); the occurrences are said
to be bound in the deduction of Yx A(x). A deduction is then said to be open/closed
if it contains either/neither occurrences of unbound assumptions or/nor occurrences
of unbound variables. Accordingly, in principle III the substitution referred to is also
to replace all free individual variables by closed individual terms. We then arrive at
a notion of validity for natural deductions in general.’

(Footnote 6 continued)

unpublished manuscript where Gentzen actually proved a normalization theorem for intuitionistic
natural deduction with these reductions (see von Plato 2008 [25]).

7What was called “validity based on the introduction rules” by Prawitz (1971) [17] differs
from the notion presented here in one substantial respect: in clauses corresponding to prin-
ciple III, extensions of the set of valid deductions for atomic sentences were considered
and it was required that substitutions preserved validity also relative to them; cf. footnote 12.
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Gentzen’s idea could be summarized by saying that the meaning of a sentence
is determined by what counts as a canonical proof of it, which is to say among
other things that non-canonical reasoning must be possible to transform to canonical
form in order to be acceptable—spelled out in full, the idea is that the meaning of
a sentence is determined by what is required from a valid deduction of it. Although
this way of formulating Gentzen’s ideas goes beyond what he said himself, the three
principles of validity formulated here are implicit in the example that he gave, as has
been shown above.

Closed valid deductions may be seen as representing proofs, and I shall sometimes
refer to them as Gentzen proofs.

4 A First Comparison Between Heyting’s and Gentzen’s
Approaches

Both Heyting and Gentzen approached questions of meaning in relation to what
it is to prove something, but as seen from the above, their approaches were still
very different. Gentzen was concerned with what justifies inferences and thereby
with what makes something a valid form of reasoning. These concerns were absent
from Heyting’s explanations of mathematical propositions and assertions. The con-
structions that Heyting refers to in his meaning explanations, called proofs in the
BHK-interpretation, are mathematical objects, naturally seen as belonging to a hier-
archy of effective operations as suggested by Kreisel. They are not proofs built up
from inferences. Nor does a proof in Heyting’s sense, the realization of an intended
construction, constitute a proof built up of inferences, although it does constitute
what is required to assert the proposition in question. As was later remarked by
Heyting (1958) [8], the steps taken in the realization of the intended construction, in
other words, in the construction of the intended object, can be seen as corresponding
to inference steps in a proof as traditionally conceived.

These differences between what I am calling BHK-proofs and Gentzen proofs
do not rule out the possibility that the existence of such proofs nevertheless comes
materially to the same. For instance, a BHK-proof of an implication A D B is defined
as an operation that takes a BHK-proof of A into one of B, and a closed Gentzen proof
of A D B affords similarly a construction that takes a Gentzen proof of A into one
of B; the latter holds because the validity of a closed deduction of A D B guarantees
a closed valid deduction in canonical form (by principle I when seen as a clause in
an inductive definition) containing a valid deduction of B from the assumption A
(principle I), which gives rise to a closed valid deduction of B when a closed valid

(Footnote 7 continued)

In addition to this notion, I also defined a notion of “validity used in proofs of normalizability”,
similar to Martin-Lof (1971) [14] notion of computability, but as pointed out by Schroeder-Heister
(2006) [22], this notion of validity is quite different and should not be counted as a semantic notion
explicating Gentzen’s idea of meaning, because normalizable deductions are defined outright as
computable although (if open) they may not be reducible to canonical form.
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deduction of A is substituted for the assumption (principle III). Such similarities may
make one expect that one can construct a BHK-proof given a Gentzen proof and vice
versa.

However, the ideas of Gentzen discussed above are confined to a specific formal
system with particular elimination rules associated with reductions, while there is
no comparable restriction of the effective operations that make up a BHK-proof. It
is easily seen that for each (valid) deduction in that system there is a corresponding
BHK-proof (provided that there are BHK-proofs corresponding to the deductions
of atomic sentences), but the converse does not hold. For instance, there is a BHK-
proof (over the set of proofs of arithmetical identities) of the conclusion obtained by
an application of mathematical induction if there are BHK-proofs of the premisses,
but there is no corresponding valid deduction unless we associate a reduction to
applications of mathematical induction. If Gentzen proofs are to match BHK-proofs,
Gentzen’s ideas have first to be generalized, making them free from any particular
formal system.

S Further Development of Gentzen’s Ideas

The generalization to be considered in this section will retain Gentzen’s ideas of
explaining the meaning of sentences in terms of certain canonical forms of reasoning
and of connecting the meaning so explained with the justification of inferences. It
should be mentioned however that Gentzen’s and Heyting’s ideas have also been
developed in another way, resulting in a certain fusion of their ideas. The explanations
in the BHK-interpretation may be enriched by saying a la Gentzen how proofs of
sentences of various forms can be constructed. To Gentzen’s introduction rules there
then correspond canonical ways of forming BHK-proofs of compound sentences
from BHK-proofs of the constituents, while to the elimination rules there correspond
operations on BHK-proofs to BHK-proofs defined in essentially the same way as the
reductions in natural deduction. These correspondences, which further develop the
Curry-Howard isomorphism (Howard 1980 [9]), constitute cornerstones of Martin-
Lof’s type theory (see especially Martin-Lof 1984 [15, p. 24]). In the other direction,
I have suggested that a legitimate inference is to be seen as involving not only a
transition from assertions to assertions but also an operation on grounds for the
premisses that yields a ground for the conclusion, where grounds are BHK-proofs
formed in the way just described (Prawitz 2015 [21]).

In this paper, I am not concerned with such fusions of Heyting’s and Gentzen’s
ideas, but want to compare BHK-proofs with forms of reasoning that appear as valid
in accordance with Gentzen’s ideas about the justification of inferences, sufficiently
generalized.

In outline the general idea is this: We consider pieces of reasoning, which will be
called argument structures, proceeding by arbitrary inferences, and possible justifi-
cations of these inferences in the form of a set of reductions. An argument structure
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paired with a set of reductions is called an argument, and we define what it is for an
argument to be valid by essentially the same three clauses that defined the notion of
valid deduction. I shall develop two new notions of validity, called weak and strong
validity. They are variants of notions of valid arguments that have been proposed
earlier, and will be shown to have distinct features that are especially important
when it comes to compare valid arguments and BHK-proofs.

Atthe end of the paper, I reflect upon the fact that all the variants of valid arguments
considered so far deviate in one important respect from the intuitions connected with
Gentzen’s approach as described above, and point to how the notion of justification
may be developed in another way that stays closer to the original ideas.

5.1 Argument Structures

In order to extend the notion of validity defined for deductions so that it can be applied
to reasoning in general that proceeds by making arbitrary inferences, I consider tree-
formed arrangements of sentences of the kind employed in natural deduction, except
that now the inference steps need not be instances of any fixed rules. They will be
described by using common terminology from natural deduction, and are what will
be called argument structures. A sentence standing at the top of the tree is to be seen
either as an assumption or as asserted (inferred from no premisses). An occurrence
of an assumption can be bound (discharged) by an inference further down in the tree.
Indications of which sentences in the tree are assumptions and where they are bound
(if they are bound) are to be ingredients of the argument structure.

An inference may also bind occurrences of a free variable (parameter) in sen-
tences above the conclusion. Again it has to be marked how variables are bound by
inferences. An argument structure is thus a tree of sentences with indications of these
kinds, and can also be seen as a tree-formed arrangement of inferences chained to
each other.

The notions of free assumption and free variable, of open and closed argument
structure, and of a sentence or argument structure depending on a free assumption
or parameter are carried over to the present context in the obvious way.

There are no restrictions on the argument structures except that an inference may
not bind a variable that occurs in an assumption that remains free after the inference,
that is, that the conclusion of the inference depends on (otherwise there would be a
clash with the idea that an occurrence of a free assumption is free for substitution of
closed argument structures, while bound variables are not free for substitution).

81n particular, T have in mind my original notion of valid argument (Prawitz 1973 [18]) and the
variants proposed by Michael Dummett (1991) [3] and Peter Schroeder-Heister (2006) [22] after
profound discussions of my notion. See further footnotes 10 and 12.
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An argument structure may for instance look as follows

)]

[A(a)]
Ay Ay A3(a)
Nt A©0)  A(s(a)

A0 (Da

where the exhibited inference binds assumptions in the part 43 of the form A(a)
marked (1) as well as variables a that are free in 43. The inference can be seen as
representing an application of mathematical induction, where N stands for ‘natural
number’ and s is the successor operation.

We keep open what forms of sentences are used in an argument structure in
order to make the notion sufficiently general. However, when making comparisons
with BHK-proofs of sentences in a first order language, we restrict ourselves to
such languages. It is assumed that for each form of compound sentences there are
associated inferences of a certain kind called introductions, for which we retain the
condition from natural deduction that for some measure of complexity, the premisses
of the inference and the assumptions bound by the inference are of lower complexity
than that of the conclusion. For instance, we could allow the pathological operator
tonk proposed by Prior and associate it with the introduction rule that he proposed.

We shall say that an argument structure is canonical or in canonical form if its
last inference is an introduction.

5.2 Arguments

The inferences of an argument structure that are not introductions should be justified
by reductions as in natural deduction. I shall now be following Schroeder-Heister
(2006) [22] partially by taking a justification to be simply a set of reductions’ and
a reduction to be a pair (41, 4;) of argument structures such that 4 is not canon-
ical and A4, ends with the same sentence as 4| and depends at most on what 4
depends on.

An argument is a pair (A4, J), where 4 is an argument structure and 7 is a justifi-
cation. An argument is said to be closed, open, or canonical (or in canonical form),
if the respective attribute is applicable to the argument structure.

A1 is said to reduce immediately to 4, with respect to 7, if (41, 4,) belongsto 7.
A reduction sequence with respect to the justification J is asequence 41, 4;, ..., 4,
(n > 1) such that for each i < n, either 4; reduces immediately to 4;4; with
respect to J or A;,| is obtained from A; by replacing an initial part A" of 4; by
an argument structure 4" such that 4’ reduces immediately to 4" with respect to 7.
An argument structure 4 is said to reduce to the argument structure A* with respect
to the justification 7, if there is a reduction sequence with respect to J whose first
element is 4 and last element is 4%,

°T have dropped the requirement that the justifications should be closed under substitutions.
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Justifications of deductions as described above (Sect. 3) and of argument structures
as [ originally defined them were effective operations assigned to inference schemata
and differ in this respect from the notion that I am now adopting. The main difference
is that the relation ‘to reduce immediately to’ becomes now one-many instead of
one-one. The present notion of justification is of particular interest when we come
to comparing valid arguments with BHK-proofs,'? but as we shall see it has some
unwanted consequences.

Schroeder-Heister remarks that to take justifications to be relations corresponds to
the idea that there can be “alternative justifications” of the same argument structure.
I think that this idea is somewhat doubtful; anyway, as we shall soon see, it can be
taken in many ways.

Since a justification is just a set of reductions, it may not “really” justify the
argument structure. We could say that what is called a justification is merely a pro-
posed or possible justification, a justification candidate. What is required of a “real”
justification gets expressed by the definition of what it is for an argument to be valid.

For instance, one can invent a justification of an argument structure using Prior’s
elimination rule for fonk by assigning some reductions to applications of the rule,
but this will never give rise to valid arguments that make creative uses of Prior’s rule.

An important example of justifications outside the standard ones for the elim-
ination rules in natural deduction is one that can be associated with the argument
structures exhibited in the preceding subsection as representing applications of math-
ematical induction. It consists of a pair (B, B,) where thus B, is an argument
structure of this form. What B, is depends on the form of the first premiss of the last
inference, N, which may be called the major premiss of the inference. If the major
premiss has the form N0 and the conclusion accordingly has the form A(0), B> is
to be 4,, the argument structure for A(0) that represents the induction base. If it has
the form Ns(¢) and stands as conclusion of an inference whose premiss is N¢, the
conclusion accordingly having the form A(s(z)), B, is to be argument structure

)]

[A(a)]
Ay A3 A3z(a)
Nt A(0) A(s(a)) 1) a
[A(D)]
A3(t)
A(s (1))

101t also offers one way to avoid a problem connected with my earlier definition of justification.
When generalizing principle III in the definition of valid deduction to argument structures, the
substitutions of valid argument structures (4;, J;) in open arguments (4, J) had to be restricted
to ones where J; was consistent with J. The restriction is unwanted and may make the notion
of validity too weak (essential also when comparing with BHK-proofs). A possible alternative in
order to avoid this problem while keeping the relation ‘to reduce immediately to’ one-one is to
take reductions to be assignments of effective operations to occurrences of inferences (instead of
inference schemata or inferences).
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If the term 7 is anumeral n, the argument structure is finally transformed by successive
reductions of this kind to an argument structure consisting of the induction base 4,
followed by n applications A3(0), A3(1), ..., Az(n — 1) of the induction step on
top of each other. These reductions represent indeed the natural and commonly given
justification for inferences by mathematical induction.

5.3 Validity of Arguments

We can now define what it is for an argument to be valid by adopting three principles
analogous to the ones stated for valid deductions:

I. Aclosed canonical argument (A4, J) is valid, if for each immediate sub-argument
structure A* of A, it holds that (A*, ) is valid.
II. A closed non-canonical argument (A4, 9) is valid, if A reduces relative to J to
an argument structure 4* such that (A% 7) is valid.

III. Anopenargument (4, J) depending on the assumptions Ay, Aa, ..., Ay isvalid,
if all its substitution instances (A*, 7%) are valid, where A* is obtained by first
substituting any closed terms for free variables in sentences of A, resulting in an
argument structure A° depending on the assumptions A{, A3, ..., A;, and then
for any valid closed argument structures (A;, %) for A?,i < n, substituting A;
for A? in A°, and where J* = |J; -, J; U J.

Because of the assumed condition on the relative complexity of the ingredients of
an introduction inference, the principles I-III can again be taken as clauses of a
generalized inductive definition of the notion of valid argument relative to a base
‘B, which is to consist of a set of closed argument structures containing only atomic
sentences. If 4 is an argument structure of B, the argument (A4, #J), where @ is the
empty justification, is counted as canonical and outright as valid relative to B. A base
is seen as determining the meanings of the atomic sentences. An argument that is
valid relative to any base can be said to be logically valid.

If 4 is an argument structure representing mathematical induction as exhibited in
Sect. 5.1, 7 is the justification associated with 4 as described in Sect.5.2, and B is a
base for arithmetic, say corresponding to Peano’s first four axioms and the recursion
schemata for addition and multiplication, then the argument (4, 7) is valid relative
to B (as was in effect first noted in a different conceptual framework by Martin-Lof
(1971) [14]. This is an example of a valid argument that is not logically valid but
whose validity depends on the chosen base. However, I shall often leave implicit the
relativization of validity to a base.

Instead of saying that the argument (A4, 7) is valid it is sometimes convenient to
say that the argument structure 4 is valid with respect to the justification J. But it is
argument structures paired with justifications that correspond to proofs and that will
be compared to BHK-proofs.
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6 Weak and Strong Validity and Their Features

6.1. As is easily seen, it comes to the same if we in clause II of the definition of
validity require instead that 4 reduces relative to  to a canonical argument structure
A*that is valid with respect to J.

An important question concerning valid arguments, especially crucial when com-
paring them with BHK-proofs, is whether this canonical argument 2* required by
clause II can be found effectively.

6.1.1. If the definition of validity is read constructively, or in other words, if the
existential quantifier in clause II is understood intuitionistically, the answer is of
course yes, the canonical argument 4* can be found effectively. If so, there is also
an effective operation denoted by * that is defined for every valid closed argument
(4, 9) and yields a canonical argument structure 4* such that 4 reduces to 4™ with
respect to 7 and (A% 9) is valid.

6.1.2. Otherwise, if the definition is not taken in a constructive sense, it is not guar-
anteed that A4* can be found effectively. Even if we require of a justification that
it should be possible to generate its reductions effectively, it is still not guaranteed
that 4* can be found effectively. It is true that when we are generating the reduction
sequences with respect to a justification 7 that start from a closed non-canonical
argument structure A4 that is valid with respect to J, we sooner or later hit upon
a canonical argument structure 4* such that (4% 7) is valid. But since validity is
not a decidable property, we may not be able to tell which one(s) of the canonical
structures A4* that we reach in this way is (are) the right one(s).

6.2. The situation was quite different when we were dealing with valid deductions
based on the standard reductions in natural deduction. Given a closed valid deduction
A4, a valid canonical deduction A4* as required by principle II can always be found
effectively because of two facts: firstly, as already noted, the justifications consist of
effective operations, which means that a deduction reduces immediately to at most
one other deduction; and secondly, it can be shown that, regardless of the order in
which the operations are applied, they will transform a closed deduction to a valid
canonical one. This second feature can be called strong validity,!" in analogy with
how in proof theory one says that a natural deduction is strongly normalizable if all
reduction sequences terminate in a normal deduction.

Similarly, we can speak of strong validity of arguments when the canonical argu-
ment 4* is found regardless of the order in which the reductions are taken and
regardless of which reductions in 7 are employed. More precisely, a definition of an
argument structure (A4, 7) being strongly valid (relative to a base B whose argument
structures are now counted outright as strongly valid) is obtained by clauses I*-I1T*,
where I* and IIT* are like I and III except that “valid” is replaced with “strongly
valid” and the second clause reads:

T have previously used the expression strongly valid for deductions and arguments in another way
where it would be better to say strongly computable—cf. second part of footnote 7.



On the Relation Between Heyting’s and Gentzen’s Approaches to Meaning 17

IT* A closed non-canonical argument (A4, J) is strongly valid, if each reduction
sequence relative to J starting from A can be prolonged to a reduction sequence
that contains a canonical argument structure A* such that (4% 7) is strongly
valid.

Henceforth, I shall refer to the notion of validity defined by I-1II as weak validity.

6.3. Effectiveness is restored when going from weak validity to strong validity, in
spite of the justification still being a relation instead of a set of operations, provided
that we require that its reductions can be generated effectively. When we generate
in some arbitrarily chosen order the reduction sequences with respect to J that start
from a closed argument structure 4 that is a strongly valid with respect to 7, the first
canonical argument 4* that we find is guaranteed to be strongly valid with respect
to 7, to verify this fact, note that reductions obviously preserve strong validity: if 4
reduces to 4* with respect to J and (A4, J) is strongly valid, then so is (4% 7).

6.3.1. That effectiveness is obtained can be seen as an aspect of the fact that strong
validity requires all so-called “alternative justifications” to be “real” justifications,
so to say—if a closed argument (A4, 7) is strongly valid and the reductions (A1, 42)
and (41, 43) both belong to 7, clause II* requires that regardless of which one is
used in a reduction sequence, it takes 4 a step towards a valid canonical argument.
Clause II, in contrast, only requires that one of the reductions does so, which means
that the other reduction may lead astray and may have no significance for the validity
of the argument in question.

6.3.2. An aspect of the last feature is that weak validity is obviously monotone with
respect to justifications: if (4, J) is weakly valid and J C 7%, then (A% J%) is
weakly valid too—whatever reductions we add to 7, the argument remains weakly
valid. In contrast, strong validity is not monotone with respect to justifications—
added “alternative justifications” must be “real”, if validity is to be preserved.

6.3.3. Yet another aspect of essentially the same feature is that the property of an
argument structure to be weakly valid with respect to some justification 7 is indeed
a very weak property. In fact, there is a justification 7 for a given language such
that any non-canonical argument structure 4 for a sentence A in that language is
weakly valid with respect to 7, provided only that there exists a weakly valid closed
argument (4% 9*) in that language for 4. We can simply choose as § the universal set
of reductions in that language, call it UR.. Since 7* C UR,, the argument (4%, UR)
is weakly valid by the monotonicity of weak validity, and since 4 reduces to 2*with
respect to UR,, (A4, J) is weakly valid too in virtue of clause II.

It must be said that this argument (A4, UR ) may be quite far from an intuitively
valid argument for A—the inferences in 4 may lack any significance for the validity
of the argument, and the only relevant property of UR for the validity is that the
reduction (4, 4% is an element and that 7* is included.

6.4. It should be noted that strong validity does not entail weak validity; a strongly
valid argument for an implication A D B is also weakly valid if A does not contain
implication, but as soon as implication becomes nested in the antecedent, this may
cease to hold because of the third clause in the definitions of validity.
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The features discussed here of the two variants of validity are essential when we
are to compare the valid argument with the BHK-proofs, as will be seen in the next
: 12
section.

7 Mappings of Valid Arguments on BHK-Proofs
and Vice Versa

After having now made Gentzen’s approach free from ties to a specific formal sys-
tem, we return to the question whether the two approaches come to the same thing
extensionally. Let us assume that P is a set of BHK-proofs of atomic sentences, that
B is a base of valid arguments for atomic sentences, and that they have been mapped
on each other. We shall try to extend these mappings to compound sentences.

In other words, we shall try to define one mapping called

Proof which applied to a valid closed argument relative to B for a sentence A gives
as value a BHK-proof of A over P,

and a mapping in the other direction called

Arg which applied to a BHK-proof over P of a sentence A gives as value a valid
closed argument relative to B for A,

assuming as an induction assumption that we have been able to define such effective
mappings for all sentences of complexity less than that of A.

If a is a BHK-proof of a sentence A, Arg(«) has to be a pair, which will be written
(Arg,(a), Arg,(a)); thus, Arg, (@) is an argument structure for A and Arg, (@) is a
justification.

I'restrict myself to the cases when A is an implication or a universal quantification,
and shall consider in parallel the problems that arise for different variants of validity
of arguments.

12 As to the other variants of validity mentioned in footnote 8, Dummett defines validity directly for
argument structures, thus leaving the justifications implicit. I have commented on this difference
elsewhere [20], but then overlooked one important consequence of it, which is now taken up in
footnote 14.

Schroeder-Heister’s notion of validity differs from weak validity as defined here by following
my previous definition of valid deduction as regards extensions of the given base B (see footnote 7).
We get this notion by requiring in clause III that also for every extension B* of ‘B, it holds that all
substitution instances (A% 7*) are valid relative to B* where A*is obtained by substituting for 47
a closed argument structure 4; such that (4;, %) is valid relative to B*.

To consider extensions of the given base in this way is natural when a base is seen as representing
a state of knowledge, but is in conflict with the view adopted here that a base is to be understood as
giving the meanings of the atomic sentences. For instance, the argument representing reasoning by
mathematical induction presented in Sect. 5.3 ceases to be valid relative to the arithmetical base B
if we require in clause III that validity be monotone with respect to the base.

Concerning my original notion of validity see remarks made in the text and in footnote 10.
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7.1 Extending the Mapping Proof to Arguments for A

7.1.1. Consider first the case when A is an implication B D C. Proof is then to be
defined for any valid closed argument (A4, J) for A, which is done by saying that
Proof(A4, J) is to be the operation « defined for BHK-proofs B of B such that

Arg,(B)
«(B) = Proof [gj . U Arg,(B) (a)
C

I have to explain what operation A4° is and show—under the assumptions that (4, 7)
is a valid closed argument for A and that B is a BHK-proof of B and the induction
assumption—that:

(i) the operation A4° is an effective procedure for finding an argument structure for
C, and

(ii) the pair to which Proof is applied above in (a) is effectively obtained from (4, 9)
and B, and is a valid closed argument for C.

It then follows by the induction assumption that Proof is defined for this argument
and that () as defined in (a) is a BHK-proof of C, which means that the operation
a is a BHK-proof of A.

If 4 is in canonical form, that is, has the form

()]

[B]
ﬂ/
C

55c M

we let 4° be the immediate sub-structure 4" of 4, which is an argument structure
for C.13

If 4 is not in canonical form, we want 4° to be the immediate sub-structure of
a closed canonical argument structure 4*to which 4 reduces with respect to 7 and
that is valid with respect to 7. Now it becomes important what kind of validity we are
dealing with. If the argument (A4, 7) is strongly valid, then as noted in Sect. 6.3, there
is an effective procedure for finding such an argument structure 4* that is strongly
valid with respect to 7: Generating the reduction sequences with respect to 7 that

13Note the difference between the two notations below, commonly used in natural deduction:

Aa A

A A

The left one stands for the same argument structure as 4 and is used to indicate that the last sentence
of 4 is A. The right one stands for an argument structure formed by putting A under the structure
A (and it is left open what the last sentence of 4 is).
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start from 4 in some arbitrarily chosen order, we take the first canonical argument
structure 4*that we find. We then let 4° be its immediate sub-structure; that is, “4°
is again A4’ if 4*has the form shown above.

Note that if (4, 7) is weakly valid, the procedure described above may result in
an argument structure such that 4*is not weakly valid with respect to 7, and that if
(A4, 9) is neither strongly nor weakly valid, the procedure may not give any result at
all. But when (4, J) is strongly valid and closed, the operation 2*is defined and is
an effective procedure. Hence, A° is an effective procedure for finding an argument
structure for C.

If (4, 7) is weakly valid and this is taken in a constructive sense, then as already
noted (Sect. 6.1.1), there is an effective procedure * defined for all weakly valid
closed arguments (4, 7) which yields an argument structure 4* such that 4 reduces
to A* with respect to J and 4* is weakly valid with respect to 7. Letting 4° be
the immediate substructure of 4% we have again explained the operation 4° as an
effective procedure for finding an argument structure for C.

Task (i) has thus been carried out for strong validity and for weak validity read
constructively, but not for weak validity read non-constructively. In the two suc-
cessful cases, task (ii) is now easy. That the pair to which Proof is applied in (a) is
effectively obtained follows from the induction assumption and the effectiveness of
the operation 4°. The demonstration of the fact that the pair is a strongly or weakly
valid closed argument for C follows the same pattern for the two cases of validity,
so we may let valid mean either weakly or strongly valid: That (4°, 7) is a valid
argument for C follows from the validity of (4, J) or of (4% 7), as the case may
be. By the induction assumption (,‘erg1 B), Aarg, (B)) is a valid argument for B, and
from these two facts it follows by clause IIT* or III that the argument to which Proof
is applied in (a) is a closed valid argument for C, as was to be shown.

7.1.2. Let now A be the sentence Vx B(x), and let (4, J) be a closed argument for
Vx B(x) that is strongly valid or is weakly valid taken in a constructive sense.

As in Sect. 2, it is assumed that the elements in the individual domain D have
canonical names. I apply the conventions explained there, and define Proof(4, J) to
be the operation « defined for the elements e in the individual domain D such that

a(e) = Proof(A°(e), J) (b)

The operation A4° is explained analogously to how it was explained in the preceding
case. Thus, if 4 is in canonical form, 4 has the form

A’ (a)
B(a)
VxB(x)

and we let 4° be 4’(a), the immediate sub-structure of 4. 4°(e) is then the result
of substituting for a in 4°(a) the canonical name for e.
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If 4 is not in canonical form, we find effectively as in the preceding case a closed
canonical argument structure A4* to which 4 reduces with respect to 7 such that
(A% 9) has the same kind of validity as (4, 7). We let then 4°(a) be the immediate
substructure of 4*and 4°(e) the result of substituting for a in 4°(a) the canonical
name for e.

Since by clauses I* and III* or by clauses I and III (A4%e), 7) is a closed valid
argument for B(e), validity taken in one of the two forms here considered, it follows
by the induction assumption in question, that Proof is defined for this argument and
that a(e) as defined in (b) is a BHK-proof of B(e). Thus, « is a BHK-proof of A.

7.2 Extending the Mapping Arg to BHK-Proofs of A

7.2.1. Now I first consider the easiest case when A is a universal sentence Vx B(x).
Let o be a BHK-proof of A. I define Arg(e) = (Arg,(a), Arg,(a)) as follows:

B(@)

9@ =5 B0

Arg, (o) = | Ang, (™ (1) U{(B@®). Arg, (@* (1))}
t

The line above the top sentence B(a) in the argument structure that Arg, (o)
assumes as value is meant to indicate that B(a) is not an assumption but is inferred
from zero premisses; thus, the parameter a does not occur in any assumption that
the sentence at the bottom depends on, and it becomes therefore bound by the VI-
inference as usual.

For the argument structure Arg, (o) to be valid with respect to a justification 7, it
is necessary and sufficient that 7 contains a reduction such that any instance of the
argument structure B(a) reduces with respect to J to an argument structure A4 that is
valid with respect to 7. The problem is that it is not sufficient to find, for each closed
term ¢, appropriate reductions for B(r).'* Instead we must find a set  of reductions
such that it can be shown that, for each term ¢, 7 contains appropriate reductions. I
succeed in showing this only for the case of weak validity. The set Arg, («) defined
above will be shown to be such a justification in that case. The same result could be
obtained more easily by choosing the universal set of reductions for the language in
question, but it may be of some interest to see that this smaller set will do.

For the understanding of the definition of Arg, (&), recall that a* is the effective
operation assumed in Sect.2 to be possible to obtain effectively from « such that
for each closed term ¢, a™(t) is a BHK-proof of B(z). I also want to make clear
that Ay, («) is the union of two sets (i) and (ii) where (i) is the union of all sets
Arg,,(e* (1)) for closed terms ¢ and (ii) is the set of all pairs (B(r), Arg, (a* (1))
where 7 is a closed term. By the induction assumption, Arg, (a*()) and Arg, (e* (1))
are both defined.

14This is all that is required by Dummett’s notion of valid argument structure, which means that his
notion is quite obviously extensionally equivalent to the notion of BHK-proof.
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In order to show that (Arg, (), Aarg, () is a weakly valid argument for Vx B(x),
we have to show in view of principles I and Il and since Arg, () is a closed argument
structure for Vx B(x) in canonical form that the argument (B(1), Arg,(a)) is weakly
valid for each closed term ¢. To this end we must show in view of principle II that
B(1) for each closed term ¢ reduces with respect to Arg,(a) to an argument structure
A such that (4, ﬂlrgz(a)) is weakly valid.

We shall now verify that for each closed term ¢, Arg | (a*(2)) is such an argument
structure 4. Firstly note that it has been arranged so that m reduces to Arg, (a™(1))
with respect to Arg, («) for each closed term 7 by the defining Arg, () as a union
of two sets (i) and (ii) where (ii) is the set of all pairs (B(1), Arg, (e*(1))) for closed
terms 7. Secondly, note that by the induction assumption, for each closed term ¢,
(Arg, (@*(1)), Arg,(a*(1))) is a closed weakly valid argument for B(t), since a*(t)
is a BHK-proof of B(¢). Thirdly, we recognize that from the last fact follows the
wanted result that (Arg, (™ (1)), Arg,(a)) is weakly valid, because Arg, (o*(2)) is
a subset of Arg, () (in virtue of being a subset of the set (i) described above) and
weak validity is monotone with respect to justifications, as remarked in Sect.6.3.2.

As seen the monotonicity of weak validity with respect to justifications is used in
establishing this mapping, and therefore a similar demonstration does not go through
for strong validity, not being monotone with respect to justifications.

7.2.2. Let now A be an implication B D C and let « be a BHK-proof of B O C. The
construction of Azg(c) is similar to the preceding case. Clearly, Arg, (@) is to be the
canonical argument structure
ey
[B]
C

5>c M

It is weakly valid with respect to Arg,(c), if and only if, for each weakly valid,
closed argument (A4, J) for B, the argument structure

a
B ©

C

reduces with respect to J U Ay, (o) to an argument structure 4° such that (4°, J U
Arg,(a)) is weakly valid (as is seen by applying clauses L, III, and II in this order).
To guarantee that there is such an A4° for each weakly valid closed argument (A4, 7),
I define

Arg,(a) = Lj{ﬂlrg2 ((Proof(A4, 7))) : (4, ) is a weakly valid closed argument for B}

U {(a*, 4*) : there is weakly valid closed argument (4, 7) for B
such that A*is of the form (c) and A** is A1y, (e(Proof(4, 7)))}
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Assume now that (A4, 7) is a closed argument for B that is weakly valid. We shall
verify that Arg, ((Proof(A4, 7))) is the wanted A4°. Firstly, note that the argument
structure (c) reduces with respect to J U Arg, (@) to Arg, (o (Proof(A, 9))) in virtue
of the fact that the pair ((¢), Arg, (¢ (Proof(4, 7)))) is a member of the second set
in the union that by definition constitutes Arg, (). Secondly, we note that by the
induction assumption, Proof(4, J) is a BHK-proof of B. Hence a(Proof(4, 7)) is
a BHK-proof of C. Therefore, by the induction assumption in the other direction,

(Arg | (a(Proof(A, 9))), Arg, (a(Proof(A, 7)))) (d)

is a weakly valid argument for A. Thirdly, we recognize that from the weak validity
of the argument (d) follows the wanted result that the argument (Arg | (a(Proof(4,
N),J U ,‘ergz(a)) is weakly valid, because ﬂrgz((p(LPraaf(ﬂL 7)) is a subset of
Arg,(p) (in virtue of being a subset of the first set of the union that constitutes
Aryg, () by definition) and weak validity is monotone with respect to justifications.

The demonstrations in 7.2.1 and 7.2.2 have been entirely constructive and thus
show that the result that Arg(«) is a closed weakly valid argument for A when «
is a BHK-proof of A holds even when the notion of weak validity is understood
constructively.

8 Concluding Remarks

8.1. We have thus shown that the notion of a weak valid argument taken constructively
is extensionally equivalent with the notion of a BHK-proof.

When weak validity is taken non-constructively, I have not been able to construct a
BHK-proof of A from a weakly valid argument for A, but only in the other direction a
weakly valid argument for A from a BHK-proof of A, given the induction assumption.

In contrast, from a strongly valid argument for A, I have constructed a BHK-proof
of A, given the induction assumption and the assumption that the reductions can be
generated effectively, but have not been able to construct in the other direction a
strongly valid argument for A from a BHK-proof of A.

Since the mentioned constructions depend on the assumption that there are map-
pings in both directions for sub-sentences, nothing has been established about the
relations between on the one hand BHK-proofs and on the other hand arguments that
are weakly valid understood in a non-constructive sense or are strongly valid.

8.2. As has been seen above, when the notion of valid deduction is generalized to
the notion of valid argument, the justifications come to play the major role and the
inferences of the argument structures a correspondingly minor role. Some of the
intuitions behind the notion of valid deduction are lost in this way. It would therefore
be interesting to investigate a more restricted notion of reductions than the one used
here in connection with arguments.



24 D. Prawitz

The standard reductions in natural deduction are all transformations of a given
deduction by two kinds of very simple effective operations, possibly combined with
each other. One kind consists of operations ¢ such that ¢ (D) is a sub-deduction of D.
The other kind consists of operations ¢ such that ¢(9D) is the result of substituting
in D an individual term occurring in a sentence of D for a free variable occurring
in a sentence of D or substituting in a sub-deduction of D for a free assumption (in
that sub-deduction) another sub-deduction of D. Also the reduction associated with
mathematical induction (Sect. 5.2) is a transformation built up of these two kinds of
operations.

By applying operations of these two kinds to a deduction or an argument structure
one obtains an argument structure that is contained in the given deduction or argument
structure; in case substitutions have been carried out, we should perhaps say that
the result is implicitly contained. A reduction of this kind associated to an inference
constitutes a justification of the inference in a much stronger sense than the reductions
that have been considered in connection with argument structures: Given that the
arguments for the premisses are acceptable, there is an acceptable argument for the
conclusion, because an argument for the conclusion is already contained, at least
implicitly, in the arguments for the premisses taken together. This is actually the
kind of justification of Gentzen’s elimination rules that I have labelled the inversion
principle, using a term from Lorenzen, and have presented as the intuition behind
the normalization theorem for natural deductions [16].

An argument structure that is valid with respect to a justification that assigns
such operations to occurrences of inferences would in itself have an epistemic force.
Perhaps one could say that the function of the justifications would then be to verify
that they have such a force, whereas valid arguments as they have been defined here
often get their entire epistemic force from the justifications.

A notion of valid argument based on justifications of this kind would be a quite
different concept from the variants of valid argument that have been dealt with in
this paper. It would also be different from the notion of BHK-proof, it seems.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Kreisel’s Theory of Constructions,
the Kreisel-Goodman Paradox,
and the Second Clause

Walter Dean and Hidenori Kurokawa

Abstract The goal of this paper is to consider the prospects for developing a consis-
tent variant of the Theory of Constructions originally proposed by Georg Kreisel and
Nicolas Goodman in light of two developments which have been traditionally associ-
ated with the theory—i.e. Kreisel’s second clause interpretation of the intuitionistic
connectives, and an antinomy about constructive provability sometimes referred to as
the Kreisel-Goodman paradox. After discussing the formulation of the theory itself,
we then discuss how it can be used to formalize the BHK interpretation in light of
concerns about the impredicativity of intuitionistic implication and Kreisel’s pro-
posed amendments to overcome this. We next reconstruct Goodman’s presentation
of a paradox pertaining to a “naive” variant of the theory and discuss the influence
this had on its subsequent reception. We conclude by considering various means of
responding to this result. Contrary to the received view that the second clause inter-
pretation itself contributes to the paradox, we argue that the inconsistency arises in
virtue of an interaction between reflection and internalization principles similar to
those employed in Artemov’s Logic of Proofs.

Keywords BHK interpretation - Intuitionistic logic + Theory of Constructions - the
Kreisel-Goodman paradox * Logic of Proofs

1 Introduction

The Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic is
traditionally characterized as a means of associating with each formula A of first-
order logic a so-called proof condition which specifies what is required for an object
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to serve as a constructive proof of A in terms of its structure. An interpretation of this
form was originally proposed by Heyting [19-21] and Kolmogorov [24], leading to
the now familiar formulation reported in [46]:

(PA) A proof of A A B consists of a proof of A and a proof of B.
(Py) A proof of A Vv B consists of a proof of A or a proof of B.
(P_.) A proof of A — B consists of a construction which transforms any proof of
A into a proof of B.
(P-) A proof of —A consists of a construction which transforms any hypothetical
proof of A into a proof of L (a contradiction).
(Py) Aproofof Vx A consists of a construction which transforms all ¢ in the intended
range of quantification into a proof of A(c).
(P3) A proof of 3x A consists of an object ¢ in the intended range of quantification
together with a proof of A(c).

Alongside such a formulation it is conventional to add the caveat that the notions
of proof and construction alluded to in these clauses should be understood as primi-
tives, and thus cannot be taken to correspond to derivations in any particular formal
system. Rather than providing a formal semantics for intuitionistic first-order logic
in a manner parallel to that provided by Tarski’s definitions of truth and satisfac-
tion for classical logic, the BHK interpretation is now often described as providing
a so-called meaning explanation of the intuitionistic logical connectives [39]—i.e.
“an account of what one knows when one understands and correctly uses the logical
connectives” [47].

Despite the fact that it itself is not intended as a mathematical interpretation in
the technical sense, the BHK interpretation has been a substantial source of work in
proof theory and related disciplines which can be understood as attempting to provide
a formal semantics for intuitionistic logic. Among such developments are Kleene
realizability, Godel’s Dialectica interpretation, and Martin-Lof’s Intuitionistic Type
Theory [ITT]. The class of systems which we will investigate in this paper—i.e. the
so-called Theory of Constructions which was originally developed by Georg Kreisel
[25, 26], and Nicolas Goodman [16-18] in the 1960s and 1970s' —was also put forth
in much the same spirit. For instance Kreisel originally explained the aims of the
theory as follows:

Our main purpose here is to enlarge the stock of formal rules of proof which follow directly
from the meaning of the basic intuitionistic notions but not from the principles of classical
mathematics so far formulated. The specific problem which we have chosen to lead us to
these rules is also of independent interest: to set up a formal system, called ‘abstract theory
of constructions’ for the basic notions mentioned above, in terms of which formal rules of
Heyting’s predicate calculus can be interpreted.

1 As we will see below, the theories which are presented in these papers as “theories of constructions”
vary in some crucial respects. Although it is thus inaccurate to speak of a unique formal system as
corresponding to “the” Theory of Constructions, we will retain the definite article in speaking of
the family of theories in question when no confusion will result.
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In other words, we give a formal semantic foundation for intuitionistic formal systems in
terms of the abstract theory of constructions. This is analogous to the semantic foundation
for classical systems [42] in terms of abstract set theory [25, pp. 198—199] (emphasis in the
original).

The Theory of Constructions was thus unabashedly put forth as an attempt to
mathematically formalize the BHK interpretation. But as we will see, there are at
least two reasons to view the theory as providing a more direct analysis of the
individual BHK clauses than the approaches mentioned above. First, (unlike, e.g.,
Dialectica or ITT) it treats constructive proofs explicitly as abstract objects whose
properties we can reason about directly. This allows us to construct expressions
which can be understood as direct translations of the BHK clauses into a language
with variables which are intended to range over such proofs. Second, Goodman
describes his formulation of the system as “a type- and logic-free theory directly
about the rules and proofs which underlie constructive mathematics” [17, p. 101].
At least in the eyes of its originators, the Theory of Constructions thus represents
an attempt to provide an account of intuitionistic validity in terms of elementary
notions which (unlike, e.g., Beth or Kripke models or Kleene realizability) do not
presuppose classical logic or mathematics.

But despite these far ranging ambitions, the Theory of Constructions has largely
been neglected in surveys of the semantics of intuitionistic logic (e.g. [7, 46]) from
the early 1980s onward. Two reasons for this appear to be as follows: (1) a “naive”
form of the theory was shown by Goodman [16, 17] to be inconsistent in virtue of
a “self-referential” antinomy involving constructive provability (we will see below
that this is similar in form to what is now known as Montague’s paradox); (2) it
was in the context of presenting the Theory of Constructions in which Kreisel first
presented a modification to the clauses (P_, ), (P-) and (Py) (which has come to be
known as the second clause) which proved to be controversial and has subsequently
been excised from modern expositions of the BHK interpretation.

The broad goal of the current paper will be to take some initial steps towards reeval-
uating the Theory of Constructions with respect to its original foundational goals.
We will do so by first focusing on how the aspects of the theory just mentioned—
i.e. Kreisel’s second clause and the Kreisel-Goodman paradox—influenced both the
original formulation of the theory as well as its subsequent reception. In Sect. 2, we
will consider the features of the original formulation of the BHK interpretation which
appear to have motivated Kreisel to introduce the second clause—i.e. the decidability
of what we will refer to as the proof relation and the putative impredicativity of the
clauses (P_,), (P-) and (Py). In Sect. 3 we will then provide a concise account of the
various formal systems considered by Kreisel and Goodman, their use in formaliz-
ing the BHK interpretation (inclusive of the second clause), and their relationship
to the Kreisel-Goodman paradox. In Sect.4 we will consider the reaction of various
theorists to the Theory of Constructions and the second clause, as well as evaluating
Weinstein’s [49] claim that the second clause is itself to blame for the paradox. After
concluding that this contention is unjustified, in Sect. 5 we will consider other poten-
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tial diagnoses of the paradox, as well as discussing the prospects for formulating
a version of the Theory of Constructions which addresses Kreisel and Goodman’s
original foundational goals.

2 Predicativity, Decidability, and the BHK Interpretation

One of Kreisel’s goals in proposing the Theory of Constructions was to respond to a
potential objection to the BHK interpretation which had been raised by Godel. This
problem can be understood to arise in two stages. First note that the BHK clauses
initially appear to provide a characterization of the relation “p is a proof of A” in
terms of the logical form of A, an observation which might in turn be taken to provide
an implicit definition of the class of constructive proofs to which the interpretation
refers. But on the other hand, note that the BHK clauses themselves cannot be taken
as constituting a proper inductive definition of such a class in virtue of the fact that
the clauses (P_,), (P-), and (Py) contain quantifiers which are intended to range over
the class of all constructive proofs, potentially inclusive of those which figure in the
proof conditions of yet more complex formulas.

We will refer to this prima facie objection to the BHK interpretation as the problem
of impredicativity. Godel remarked on this aspect of the interpretation already in
the following passage from a 1933 lecture in which he is attempting to compare
the relative merits of Hilbert’s finitism (as codified by the system he calls A) and
intuitionism as foundational frameworks for formulating mathematical consistency
proofs:

So Heyting’s axioms concerning absurdity and similar notions differ from the system A only
by the fact that the substrate on which the consequences are carried out are proofs instead
of numbers or other enumerable sets of mathematical objects. But by this very fact they
do violate the principle, which I stated before, that the word “any” can be applied only to
those totalities for which we have a finite procedure for generating all their elements. For the
totality of all possible proofs certainly does not possess this character, and nevertheless the
word “any” is applied to this totality in Heyting’s axioms, as you can see from the example
which I mentioned before, which reads: “Given any proof for a proposition p, you can
construct a reductio ad absurdum for the proposition —p”. Totalities whose elements cannot
be generated by a well-defined procedure are in some sense vague and indefinite as to their
borders. And this objection applied particularly to the totality of intuitionistic proofs because
of the vagueness of the notion of constructivity [13, p. 53].

Godel can be understood as flagging three points which have played a substantial
role in guiding the subsequent understanding of the BHK interpretation: (1) a crucial
difference between finitism and intuitionism is that, unlike finitists, intuitionists do
not reject the meaningfulness of unrestricted quantification over a potentially infinite
domain; (2) the class of constructive proofs form such a totality; but (3) this class
should not be regarded as inductively generated in virtue of the occurrence of the
universal quantifier over proofs in (e.g.) the clause (P-).



Kreisel’s Theory of Constructions, the Kreisel-Goodman Paradox ... 31

The first point is stressed by Weinstein [49] in the course of suggesting how the
Theory of Constructions might play a role in how an intuitionist ought to reply to
Benacerraf’s [4] dilemma in philosophy of mathematics. One horn of the dilemma
alleges that a “combinatorial” theorist (i.e. one who attempts to identify truth and
provability in the characteristic manner of both intuitionism and formalism) will be
unable to provide a semantical account of mathematical language which is continu-
ous with the standard referential semantics which we may wish to give for natural
language as a whole. But in addition to this, Benacerraf also argues that Hilbert’s
development of finitism has the added disadvantage of needing to provide distinct
accounts of finitary (i.e. “real””) and infinitary (i.e. “ideal”’) mathematics.

Itis in this regard that Weinstein suggests that intuitionism may have an advantage
over finitism in the sense that the BHK clauses can be understood as providing a
uniform semantic account applicable to both real and ideal mathematical statements.
As he stresses in the following passage, however, this advantage can only be claimed
if it is ensured that the proof relation is decidable:

Proofs, for the intuitionist, are not to be equated with formal proofs, that is with some kind
of finite quasi-perceptual objects, and, more to the point, decidable properties of proofs
may involve considerations about the intuitive content of these mathematical constructions.
Hence, it is precisely by admitting as meaningful the notion of a decidable property hold-
ing for arbitrary mathematical constructions that intuitionists achieve an interpretation of
those sentences which are from Hilbert’s point of view devoid of intuitive content. And, for
intuitionists, to admit this notion as meaningful is to claim that statements asserting that
decidable properties of mathematical constructions hold universally have tolerably clear
proof conditions. Thus, by enlarging the contentual portion of mathematics to include uni-
versal decidable statements which are not finitary the intuitionists achieve an interpretation
of mathematical statements of arbitrary logical complexity [49, p. 268].

Weinstein goes on to explain the connection between the decidability of the proof
relation and the attribution of content to mathematical statements as follows:

[I]ntuitionists identify the truth of a mathematical statement, A, with our possession of a
construction, ¢, which is a proof of the statement A. This latter statement, that the construction
c is a proof of A, involves no logical operations and is moreover the application [of] a
decidable property to a given mathematical construction. Hence, this statement does not
itself require a non-standard semantical interpretation and, it is hoped, can be understood
along the lines of statements like “The liberty bell is made out of brass” [. . . ] The idea is just
that the intended intuitionistic interpretation of a mathematical language reduces the truth
of any sentence of that language to the truth of an atomic sentence which is the application
of a decidable predicate to a term and this latter sentence can be understood as having an
ordinary referential interpretation [49, pp. 268-269].

Although we will see below that the decidability of the proof relation has occasion-
ally been disputed, these passages make clear why it has traditionally been thought to
play a crucial role in ensuring that the BHK clauses are compatible with the general
goal of explaining how truth can be understood in terms of constructive provability.
To see how this is related to Godel’s second and third points about how the class of
constructive proofs may be characterized, note that if we assume that the proof rela-
tion itself is decidable, then the clauses (P_, ), (P-), and (Py) are all analogous in form
to I1 ? statements in the language of arithmetic—i.e. they begin with an unrestricted
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universal quantifier over proofs applied to a decidable matrix.? As such statements
are not in general decidable in the technical sense of computability theory, it seems
that there is reason to worry that they do not satisfy Weinstein’s criteria of having
“tolerably clear proof conditions” even when understood informally.

It is now only a small step which must be taken to justify the use of the term
“impredicativity” to label the problem which was described by Godel. For as Kreisel
later observed

[1]t is one of the peculiarities of constructive logic that, for some A, a natural formal proof

of A goes via proofs of A — B and (A — B) — A: such a proof of A actually contains a
proof of A — B [27, p. 58].

Although Kreisel formulates this point for formal proofs, there seems to be no a priori
reason to suspect that the same comment should not apply to the pre-theoretical notion
of constructive proof which the BHK interpretation seeks to characterize. And if this
is indeed the case—i.e. that there exist formulas A which are demonstrable by proofs
which may contain sub-demonstrations of formulas which contain A itself—then it
seems that the quantifier over constructive proofs occurring in (e.g.) (P_,) must be
understood as ranging over a totality to which it itself belongs.

A variety of other commentators have also used terms like “circular” or “impred-
icative” to describe either the BHK clauses or the status of implication in intuitionistic
logic more generally.> As we will see below, it appears that Kreisel added the second
clause to the formulations of (P_, ), (P-), and (Py) precisely to avoid such charges and
thereby also to provide a characterization of the proof relation which could plausibly
be regarded as decidable. What remains to be seen is whether his attempt should be
regarded as successful and also whether the various latter day critiques which have
been directed towards the second clause also undermine the rationale for adopting
the Theory of Constructions itself.

3 The Theory of Constructions and the Second Clause

Without further ado, we now present Kreisel’s proposed modification of (P_,):

(P2,) A proof of A — B consists of a construction that transforms any proof of
A into a proof of B together with a proof that this construction satisfies the
desired property.

The italicized material represents what is customarily referred to as the “second-
clause”—i.e. the requirement that a constructive proof ¢ of a conditional A — B is

2It might also be objected that the explanation of implication given by (P_, ) is circular because it
employs the conditional “if p is a proof of A, then f(p) is a proof of B” on its righthand side.
Note, however, that if it can be maintained that the proof relation is decidable, then it can also be
maintained that it is permissible to interpret this conditional truth functionally.

3E.g. Gentzen [11, p. 167], Goodman [16, p. 7], Troelstra [45, p. 210], Dummett [7, Sect.7.2],
Fletcher [10, p. 81], and Tait [41, p. 221].
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not just a construction transforming arbitrary proofs of A into proofs of B in the sense
of the original clause (P_,) but rather a pair (p, ¢) consisting of such a construction
together with another proof p which demonstrates that ¢ has this property. The
second-clause variants are formed by adding similar clauses to (P-) and (Py).

Such a reformulation of BHK—which we henceforth refer to as the BHK? inter-
pretation—was stated for the first time by Kreisel [25, p. 205] and again in [26,
p. 128]. In both instances, Kreisel used the formal language of the Theory of Con-
structions to formulate (Pz_)). But although both of these treatments appear to have
been informed by Heyting’s [21] mature exposition of the original interpretation, in
neither instance does Kreisel motivate the second clause directly nor does he flag
that he is intending to either refine or depart from Heyting’s original intentions.

These observations notwithstanding, the initial reception of the second clause
appears to have been positive—e.g. second clauses are included in both Troelstra
[43, p. 5] and van Dalen’s [48, p. 24] surveys of intuitionistic logic (again without
additional historical comment). But as we will discuss further below, by the early
to mid-1980s the consensus appears to have shifted to the view that not only should
the second clause not be included in the canonical formulation of BHK, but also that
its very formulation rested on dubious assumptions about the nature of constructive
proof.#

One of our goals below will be to better understand what underlies this shift in
opinion about the second clause. Although subsequent commentators have typically
followed Troelstra and van Dalen in formulating (Pi) informally, we will suggest
below that its status is bound up not only with the issues of impredicativity and
decidability discussed in the prior section, but also with certain details about how
(P%,) should be formalized within the Theory of Constructions itself. Before turning
to such considerations, it will thus be useful to consider both the formulation of the
theory and how it may be used to formalize the BHK? interpretation.

3.1 An Overview of the Theory of Constructions

Versions of the Theory of Constructions were presented by Kreisel [25, 26], and
Goodman [16-18]. The details of the notation and formal systems formulated in
these papers differ in several respects. Our goal here will thus not be to present a
systematic exposition of the different formalisms proposed by Kreisel and Goodman,
nor even to provide a complete formulation of any one of them. Rather we shall simply
attempt to set down some of the common characteristics of these systems with the
dual goals of explaining how Kreisel and Goodman proposed to use the language
of the Theory of Constructions to formalize Kreisel’s reformulation of the BHK

“This shift in opinions is illustrated by the fact that while when Troelstra [44] originally coined the
acronym “BHK?”, the “K” was taken to stand for Kreisel, this convention is modified by Troelstra
and van Dalen [46] who take the “K” to stand for Kolmogorov.
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clauses and also to be able to reconstruct as closely as possible the reasoning of the
Kreisel-Goodman paradox.

In so doing, we will adhere as closely as possible to the notation and terminology
of the unstratified (or “naive”) theory (which we will henceforth refer to as 7)
which is sketched by Goodman [17] in the course of expositing the paradox. (This
system should be understood in contradistinction to the stratified theory .7 “ which
Goodman officially adopts.”) Before offering a formal description of .7, however, it
will be useful for orientation to record several of its features which are remarked on
by Sundholm [39]:

(I) The system .7 treats proofs as constructions s, f, u, . . ., which themselves are
understood as mathematical objects whose properties the theory attempts to
axiomatize.

(II) Using the theory it is possible to define a decidable predicate I7(A, s) with the
intended interpretation “construction s proves proposition A”.

(III) Statements of the latter form are themselves treated by the theory as proposi-
tions which may themselves admit to proof. In particular, it is possible within
the theory to formulate statements such as I7(IT1(A, s), t) (i.e. “construction ¢
proves that construction s is a proof of A”).

It would appear that the ability to iterate the application of the predicate IT(A, s)
is necessary if we are to formalize clauses such as (P2_)). But note that if this is
allowed, it must also be acknowledged that the constructions must play a dual role
in 7—e.g. if (p, q) is a pair satisfying the proof conditions of A — B per (P2,),
then ¢ is understood as a process (i.e. a method for transforming proofs of A into
proofs of B), while ¢ is regarded as an object (i.e. a completed proof that ¢ has
the required property). Sundholm [39, pp. 164-167] suggests that these two notions
must be carefully distinguished if we are to develop a theory of constructions which
is faithful to Heyting’s original interpretation of the connectives. He also suggests
(at least implicitly) that Kreisel may have conflated them in his own formulations of
7. But although this concern might be taken to call for reconsideration of the theory
on historical grounds, the perspective which we will adopt here is that the specific
proposals of Kreisel and Goodman are of interest in their own right.

3.1.1 The Language of .7

Described in general terms, 7 is an equational term calculus with pairing, projection,
and lambda abstraction operators, application, as well as various other primitive terms

5Goodman’s dissertation [16] provides the most comprehensive exposition of .7, inclusive of the
interpretation of intuitionistic first-order logic, Heyting arithmetic, and accompanying consistency
and faithfulness proofs. But whereas in [16] the Kreisel-Goodman paradox is presented informally,
[17] contains a more detailed derivation in theory (similar or identical to what we will call .7 T)
which is similar to the “starred” variant originally described by Kreisel [25]. We will discuss these
systems in greater detail in the context of evaluating Goodman and Kreisel’s response to the paradox
in Sect. 5.
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and predicates (which are formalized as boolean-valued terms). The terms of the the-
ory are intended to denote “constructions” which can be understood simultaneously
as either proofs or operations on proofs—i.e. what the theory seeks to axiomatize
is a notion of “self-applicable” proof. The distinctive feature of all versions of the
Theory of Constructions is the inclusion of a proof operator & whose intended role
can be most readily described as that of axiomatically mimicking certain properties
of a traditional proof predicate ProofT(x, y) for an arithmetical theory T (such as
Peano or Heyting arithmetic).
More formally, the class of terms of .7 is defined by the grammar

toi=x| TILI(DE) | (D1(®) | (Da2(r)) | (Ax.r) | (e2) | (mwet)

where x, y, z, ... are variables, T and L are intended to denote the truth values true
and false, D(st) is intended to denote the pair (s, #), D;(¢) is intended to denote the
first (i = 1) or second (i = 2) member of ¢ if ¢ is a pair and is undefined otherwise,
and Ax.z (i.e. abstraction) and st (i.e. application) are defined as usual in the untyped
lambda calculus. The formulas of .7 are equations of the form s = ¢. Note, however,
that implicit in Goodman’s [17] (and previously Kreisel’s [25]) decision to base the
Theory of Constructions on the untyped lambda calculus is that terms of the theory
may be undefined. The relation = is thus intended to denote a notion of intensional
identity between terms—i.e. s = ¢ is intended to hold just in case s and ¢ are both
defined and reduce to the same normal form under -conversion.

3.1.2 The Axiomatization of .7

Goodman’s axiomatization of .7 is based on a single conclusion sequent calculus
relative to which A 4 s = t is assigned the intended interpretation “if all the
equationsin A hold, then s = ¢”. The structural rules of the system include weakening
and cut. Additionally, equality axioms for = (e.g. F# s = s) as well as axioms
governing the pairing operators (e.g. - D;(Ds1s2) = s;) are adopted. We will
assume that lambda terms are axiomatized by the formal theory A of [22, p. 70].°
The most significant axioms of .7 are those pertaining to the binary operator 7.
Goodman [17, p. 107] describes the intended interpretation of this symbol as follows:

st = Tif and only if 7 is a proof that for all x, sx =T

The systems of [16, 17] do not officially have the abstraction operator in their language, but rather
the traditional combinators S and K which may be used to mimic lambda abstracti on—e.g. in the
manner described in [22, Sect. 2.2]. But as Goodman makes free use of A-notation throughout both of
his expositions (apparently via such an abbreviation), it will be here simpler to assume that the system
includes A8 instead of the rules which Goodman takes to axiomatize the combinators. Until Sect. 5,
we will also suppress discussion of a number of other primitive notions and their corresponding
axioms pertaining to the treatment of so-called “grasped domains” which are introduced in the
formulation of 7.
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Thus an equation of the form of the wst = T is intended to express that 7 is a
construction which serves as a proof of the fact that for all x the term sx reduces to
the value T.” One of the rules which is assumed to hold of 7 is intended to express
that the proof relation described in Sect. 2 is decidable. This is achieved as follows:

Anruww=1lkFgs=t Anruw=TFgs=t
Abgs=t
The other principle which is assumed to hold of 7 is a form of reflection principle
stating that if the proof relation holds between s and 7 then sx is true:

(DEC)

(EXPRFN) st =T Fgsx =T.

As both DEC and EXPRFN play a role in the derivation of the Kreisel-Goodman
paradox, it will be useful to say something additional both about their motivation and
also their formulation in the Theory of Constructions. As we have observed in Sect. 2,
the decidability of the proof relation appears to have a strong pre-theoretical basis
in the intuitionists’ desire to view the BHK clauses as providing a decidable proof
condition for formulas of arbitrary logical complexity. Although .7 does not contain
any primitive relation symbols itself, a term « can be understood as expressing a
binary relation just in case for all pairs of terms s, 7, if ast is defined, then ast = T
or ast = 1 may be derived in the theory. The decidability of such a relation « may
then be expressed by stating that ast is defined for all pairs of terms s, t—i.e. that
a is bivalent.® This is what is formulated proof theoretically by the rule DEC in the
case of the term w—i.e. in order to exclude the “third” case that wuv is undefined,
we stipulate that it is sufficient to conclude s = ¢ from A if this equation is derivable
from both the hypotheses A, ruv = T and also A, ruv = L.

EXPRFN is a form of what we will call an explicit reflection principle (cf. [1])—
i.e. an expression of the fact that if the proof relation holds between a constructive
proof p and a formula A, then we can conclude that A is true. Kreisel [25, p. 204]
remarks of such a principle that it is “obvious on the intended interpretation” of 7. In
the arithmetical case, we would typically express this using a conditional statement
of the form Prooft(n,"¢ ') — ¢, all of whose instances are both valid in the
standard model and provable in even weak arithmetical systems T.° But since the
Theory of Constructions does not contain a sign for implication in its object language,
this is expressed in .7 by the rule EXPREN which allows us to conclude sx = T

7Relative to this interpretation, rs¢ can be understood as expressing the characteristic function of
the assertion that s is a proof of the universal closure of the logical formula which s interprets. In
the sequel, however, s will most often be closed. And thus it will often be possible to understand
st as simply expressing that ¢ is a proof of the formula interpreted by s.

8Note that by analogy with the arithmetical case, we will typically have T - Prooft (i, "¢7) V
—Prooft(n, "¢7) in virtue of the fact that Prooft(x, y) is standardly defined to be a A(l) arith-
metical formula. This observation about the derivable properties of ProofT(x, y) appears to have
been an important part of Kreisel’s motivation for insisting upon the decidability of 7 in the Theory
of Constructions—a feature which he famously justified by observing that “we recognize a proof
of an assertion when we see one” [26, p. 124]. (See [39] for additional discussion of this point.).
9We will return in Sect. 5.4 to compare EXPREN to the better known “implicit” reflection principle
IxProoft(x, 9™ — ¢.



Kreisel’s Theory of Constructions, the Kreisel-Goodman Paradox ... 37

for all x from the premise wst = T. As Goodman [17, p. 106] observes, in this
sense the derivability relation - o should itself be interpreted as expressing a form
of intuitionistic implication.

3.1.3 Formalizing the BHK Interpretation in .7

Recall that Kreisel’s original goal in introducing the Theory of Constructions was to
formulate a formal system which could play a role analogous to Tarski’s definition
of truth for Heyting Predicate Calculus (HPC). In order to see how this might be
achieved, it is useful to note that at least at an informal level, the BHK clauses can be
understood as serving a role analogous to the clauses in Tarski’s definition of truth in
a model—i.e. that of providing a characterization of “constructive validity” relative
to which it might be hoped that a logical system such as HPC could be shown to
be sound and complete in the same sense that the Classical Predicate Calculus CPC
is sound and complete with respect to classical validity (i.e. truth in all Tarskian
models).

But before investigating how Kreisel and Goodman proposed to interpret the
BHK? clauses in the language of .7, it is useful to first remark upon one important
sense in which these clauses differ from those of Tarski. For note that on the one hand
what occurs on the righthand side of one of the Tarski clauses is a proposition stating
in the language of set theory what must be true in order for a formula A (") to be true
in a model 2 relative to an assignment v of values to variables x . But what occurs
on the righthand side of the BHK (and BHK?) clauses are not propositions but rather
conditions stating the circumstances under which a certain object is to be regarded
as a proof of A(?) (relative to an assignment of vales to the free variables ).
Thus whereas the formalization of the Tarskian satisfaction relation 2l =, A(?)
yields a sentence which can be formalized in the language of set theory, we should
expect the formalization of the BHK clauses to yield a predicate—which Kreisel
[25] symbolizes as IT (A(X), s)—which is intended to hold of a proof s just in case
it is a proof of a formula A(?).

Kreisel and Goodman’s formalizations of the BHK clauses thus can be understood
as attempting to provide a definition of I7 (A(?), s) which were intended to serve
the role of providing a formalization of the proof relation as defined above. In order
to understand the general form which their definitions took, note first that as with
the analogous Tarski clauses, the BHK clauses (as well as their BHK? counterparts)
employ logical connectives on their righthand sides—e.g. the clause (P_, ) states that
p is a proof of A — B just in case for all proofs x, if x is a proof of A, then
p(x) (i.e. the result of applying p to x) is a proof of B. In addition to the problem
of impredicativity discussed in Sect.2, there is also another apparent obstacle in
rendering the conditional if ... then appearing in this clause as a term in the “logic
free” language of .7.

Kreisel and Goodman proposed to circumvent this problem by taking advantage
of the following observations: (1) it is intuitionistically admissible to apply classical
propositional logic to decidable statements; (2) if the truth values T and L are taken
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as abbreviating particular A-terms, it is possible to define bivalent A-terms N, Uy,
and Dy which mimic the classical truth functional connectives A, Vv, and — applied
to binary terms with k free variables'?; (3) the application of these terms to terms of
the form IT (A(?), s) will always yield a term which is defined as long as it can be
ensured that I7 (A(?), s) is itself defined so that it is bivalent.

Taking these observations into account, we can now formulate Kreisel’s [25]
definition of IT(A, s) (where we assume that the free variables of A and B are
contained in X of arity k) in the language of .7 as follows'!:

(Kn) IT(A A B,s):=AX.(II(A, Dis) N (B, D2s))

(Ky) (A Vv B,s):=AX.(II(A, Dis) Uy (B, Dys))

(K_) (A — B,s):=AxX.wt(hy.(II(A, y) D IT(B, (D2s)y)), Dis)
(K-) I(=A,s) =% .w(y.(I(A,y) D [I(L, (D1s)y)), Dis)
(Ky) T(VzA(2), s) := 1 X .t (Ay.[1(Aly/z], (D25)y), Dys)

(K3) T(3zA(2),5) := A% .1 (A[(D15)/z], Das)

Note that these clauses provide a straightforward expression of the clauses of the
BHK? interpretation—e.g. (P2, ) is formalized by requiring that IT(A — B, s) holds
just in case s is a pair such that Dis is a proof that D;s has the property of being
such that if IT(A, y), then IT(B, (D>s)y)). But since (K_,), (K-), and (Ky) are all
of the form s, Kreisel’s clauses can be understood as defining I7(A, s) in terms of
mxy in such a way that the decidability of the primitive proof relation is transferred
inductively to the complex proof relation.

3.1.4 Soundness, Completeness, and Internalization

The foregoing clauses can thus be understood as providing a means of interpreting the
language of HPC into the language of .7 so as to provide an analysis of IT(A, s) as
characterized informally by the BHK? clauses. The next question we must consider
is how this interpretation comports with the intuitionists’ desire to identify truth and
constructive provability. But needless to say, this question is complicated at least to
the extent that it is traditionally maintained that “constructive provability” must be
distinguished from “provable in a given formal system”.

10For instance if we take T =¢¢ Axy.x and L =g Axy.y (cf. [2]), then we may define D to be
Axyz.xzy(w.T)z.

"1Goodman [16, 17] provides a related interpretation of the BHK clauses in the language of the
stratified theory 7. However, relative to his interpretation, the variable y in (K-, ), (K-), and
(Ky) is asserted to range over proofs of a lower “level” than that of the proof Dys (see Sect.5.2).
Kreisel and Goodman also handle the case of atomic formulas differently. On the one hand, Kreisel
introduced primitive terms into the language to serve as constructions which act as the characteristic
functions of non-logical predicates, which are then individually asserted to be decidable. On the
other hand, Goodman considers only the language of primitive recursive arithmetic, wherein all
atomic statements are equations of the form fj (?) = f2(7)4 True equations of this form are
asserted to fall under the decidable equality predicate Q which he introduces as another primitive
to the language of 7.
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One might think that this entails that the related notion of “constructive validity”
which we might hope to characterize using a system in which the BHK clauses can
be interpreted must be distinguished from “valid with respect to a particular form
of formal semantics”.!?> Nonetheless, Kreisel and Goodman both appear to have
viewed the Theory of Constructions as providing an “informally rigorous” analysis
of constructive validity. In particular, both present versions of the following result for
the systems described in [25, 26], and [17] (wherein .7* is the relevant formulation
of the Theory of Constructions):

(VAL) For all formulas A in the language of HPC, Fypc A if and only if there
exists a term s such that =g+ I[T(A,s) =T.

The left-to-right direction of VAL can be taken to express a form of soundness
for Kreisel’s interpretation of HPC into Z*—i.e. if A is derivable from what are
normally regarded as intuitionistically valid principles of reasoning, then A is indeed
“constructively valid” in the sense that there is some construction which witnesses
its derivability. Conversely, the right-to-left direction of VAL can be taken to express
a form of completeness (also known as faithfulness) of the interpretation—i.e. if A is
“constructively valid” in the sense that IT(A, s) holds for some construction s, then
A is in fact derivable from intuitionistically valid principles.

Although both Kreisel and Goodman announced versions of these results, the
situation surrounding their claims is complicated by several factors which we will
not consider in detail here.'* For what is more germane to our immediate concerns
is not whether any particular variant of the Theory of Constructions satisfies VAL,
but rather whether such systems satisfy what can be understood as a generalized
form of soundness which we will refer to as infernalization. Note that if we are able
to demonstrate the left-to-right direction of VAL (say by induction on the length of
proofs in HPC), then it also seems reasonable to suppose that we ought to be able
to do this for all derivations carried out in .7 itself.!> This would suggest that the
Theory of Constructions ought to satisfy a principle of the following form:

(INT) If 2+ s = T, then there exists a term ¢ such that - o+ wsc = T.

Here ¢ might either be taken as a new constant or as a complex term which is built
up according to the structure of the derivation of s = T. (Although we will return to
discuss thisissue in Sect. 5.5, for the moment we will assume the former interpretation

12For discussion of the intuitive notion of constructive validity and its relationship to various formal
semantics for intuitionistic logic, see (e.g.) Scott [37], Dummett [7, chap. 5], and McCarty [32].
13Compare Scott [37, p. 256]: “The reason that A is intuitionistically (constructively, if you prefer)
valid is that there is a specific term 7 [...] such that the assertion - t € A is provable in the theory
of constructions.”.

I4For instance, although Kreisel states versions of the completeness and faithfulness results ([25,
p-205] and [26, Sect.2.311]), in neither case are proofs given. And although Goodman [16] contains
complete proofs of both directions, the interpreting theory in his case is not .7, but rather the stratified
theory 7.

151n fact, this is exactly how the soundness proof for HPC given by Goodman [16, Sect. 11-15] for
7 proceeds.
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so as to maintain conformity with the way in which Kreisel and Goodman handle
internalization.)

3.2 The Kreisel-Goodman Paradox

Although Kreisel [25] sketched a means by which one version of the Theory of
Constructions could be shown to be consistent relative to Heyting arithmetic, he also
observed that a carelessly formulated version of the theory (e.g. the “starred” theory
of [25]) might turn out to be inconsistent. Although he does not explicitly describe
what form such an inconsistency might take, in retrospect it is not difficult to see that
the intended interpretation of w makes the issue of consistency of a system such as
7 or I asignificant cause for concern.

To better appreciate why this is so, it is useful to begin by considering the following
paradox pertaining to the notion of informal (or “absolute”) provability. Suppose
that we elect to express this notion by a predicate P(x) of sentences. Additionally
suppose that T is a mathematical theory which we have adopted for reasoning about
the properties of P(x) and that "- is a device which allows us to name sentences
in ZT (such as Godel numbering). In order to support such a mechanism, it seems
reasonable to assume that T will contain Robinson arithmetic Q (either directly or
by interpretation). And from this it will follow that T will also be able to prove the
existence of self-referential statements about the predicate P (x) via the appropriate
analog of Godel’s Diagonal Lemma.

Now consider the following two intuitively correct principles pertaining to infor-
mal provability:

(RFNP) If A is informally provable, then it is true—i.e. P("TA™) — A.
(INTP) If we can derive A, then A is informally provable—i.e. - A . = P("A™).

Itis now easy to see that the theory T™ obtained by adjoining all instances of RENP to
T and closing under the rule INTP is inconsistent. For by the Diagonal Lemma, let D be
asentence such that (1) Tt - D < —P("D7).Nowsince ) TT+ P("D") — D
by RENP, we have by (1) that (3) Tt = =P (" D). But again by (1), we then also have
(4) T = D. It thus follows by INTP that (5) T™ = P(" D), yielding a contradiction
with (3).

The observation that an arithmetical theory which extends Q, derives all instances
of RENP, and is closed under INTP is inconsistent has come to be known as Mon-
tague’s paradox.'® Weinstein [49] subsequently suggested that the Kreisel-Goodman
paradox can be understood as a translation of this result into the language of the The-
ory of Constructions. Goodman offers two expositions of the paradox—an informal

16The inconsistency of such a system appears to have first been observed by Myhill [34] in the
context of an axiomatic investigation of the notion of informal provability. It was then rediscovered
by Montague [33], who presents it as a simplification of the so-called Paradox of the Knower as
originally formulated in [23]. For more on the history of these results see [5, 6].
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one in [16], and a semi-formal one in a system similar to the theory .7+ which is
described in the introductory sections of [17]. We quote the former in full:

The most natural formalization of the conception [of constructive proof] we have outlined
so far is inconsistent. It suffices to construct, using 7, a function f such that f(x) = 0 if
and only if x(x) is a proof that no y proves that f(x) = 0. Now suppose that y proves that
f(x) = 0. Then f(x) = 0, and so no y proves that f(x) = 0. This contradiction, together
with the decidability of the proof predicate, shows that no y can prove that f(x) = 0.
Therefore there must be a function g such that, for any x, g(x) proves that no y proves that
f(x) = 0. In particular, g(g) proves that no y proves that f(g) = 0. Thatis, f(g) = 0.
Hence there is a proof that f(g) = 0, which is absurd [16, p. 5].

The foregoing passage provides the most complete informal description of the
antinomy which subsequent authors have repeatedly associated with the Theory of
Constructions. It should be borne in mind, however, that Goodman discusses the
paradox before providing his “official” formulation of the theory 7 (which he then
proceeds to show consistent in a manner we will discuss further in Sect.5.2). The
Kreisel-Goodman paradox thus should not be understood to correspond to a formal
contradiction derivable within any of the variants of the Theory of Constructions
which were adopted by Kreisel or Goodman themselves. Nonetheless, it will be useful
for our current purposes to consider how the reasoning which Goodman describes
can be mimicked in the theory 7+ of Sect.3.1.

As an initial step, we reconstruct the reasoning described in the prior passage in
first-order logic by taking the binary predicate R(A, p) to express the proof relation
(i.e. “pis aproof of A”), which we will assume satisfies appropriate analogs of DEC,
EXPREN, and INT.!” Goodman suggests that it is possible to define a function f(x)
(which itself should be thought of as a construction) satisfying the equation

(1) F f(x) =0« R(Vy=R(f(x) =0, y), x(x))

Thus the proposition expressed by f(x) = 0 can be understood to express something
akin to what is expressed by the sentence D constructed in step (1) of the derivation
of Montague’s paradox—i.e. that f(x) = Ois true justin case x (x) is a proof that this
statement itself is not provable. Next suppose that we have the following instance of
the explicit reflection principle EXPRFN for R(A, p)

@) R(fx) =0,y f(x)=0

But then note that by (1”) and modus ponens we also have
2") R(f(x) =0,y) = R(Vy=R(f(x) =0, y), x(x))
Thus by EXPREN again and universal instantiation we have

@") R(f(x) =0,y) F=R(f(x)=0,y)

17To simplify notation we will treat R(A, p) as a two-sorted relation which holds between sentences
in afirst-order language and a class of terms which are understood to denote proofs. It is, nonetheless,
straightforward to see that the derivation (1")—(5") can be further formalized by treating R(x, y) as
a primitive formula which is adjoined to an arithmetical theory such as Q for which an appropriate
Godel numbering of sentences and proofs is available. In this case, the existence of a formula defining
the function f(x) in Eq.(1’) is guaranteed by an appropriate generalization of the Diagonal Lemma.
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If we now assume that R(A, p) is a decidable relation, then by an analog of the rule
DEC we may conclude

(3) F=R(f(x)=0,y)

from (2"7). This in turn can be understood to correspond to the intermediate conclu-
sion (3) =P (" D7) in the derivation of Montague’s paradox.

But now note that since y was arbitrary in the foregoing reasoning, we should
additionally be able to conclude by universal generalization that

(3") FVYy=R(f(x) =0, y)

Noting that the foregoing reasoning is also uniform in the variable x, we also ought
to be able to internalize it in a manner analogous to INT. Doing so yields the existence
of a function g(x) such that

(3") F R(Vy=R(f(x) =0, ), 8(x))

By substituting g for x in (3”") we obtain = R(Yy—R(f(g) =0, y), g(g)). But then
again taking x = g in (1’) and applying modus ponens yields

@) f(g)=0

which can be seen as analogous to step (4) in the derivation of Montague’s paradox.
Internalizing this reasoning again leads to the existence of another construction £
such that

(5) FR(f(g) =0.h)

But now instantiating y by 4 in (3”) finally yields = =R(f(g) = 0, k), and thus a
contradiction with (5").

Although we have not precisely specified the system in which the foregoing deriva-
tion is carried out, it is evident that it must satisfy a number of features. First, it must be
capable of demonstrating the existence of an appropriate “self-referential” construc-
tion f(x) as appears in (1"). Second, it must treat constructions as “self-applicable” in
the sense that it makes sense to apply a construction like f (x) to another construction
g(x). Third, the proof relation R(A, p) must be understood to satisfy the analogs of
EXPRFN and DEC!® which are employed at steps (2), (2”), and (3). Fourth, it must
support the sort of first-order reasoning which stands behind the use of universal
generalization and instantiation employed at steps (3”), (4’), and (5’). And fifth, it
must also support the use of an appropriate analog to INT applicable to reasoning
mediated by all of the prior forms of reasoning about the proof relation.

Although the system .7 which we sketched in Sect. 3.1 is designed so as to satisfy
the second and third of these conditions, it is not clear whether it satisfies the first,
fourth, or fifth. This complicates the task of interpreting the more formal derivation
of the paradox described by Goodman [17, Sect. 9] which appears to be an attempt

18The rule in question applied at step (3') takes the form R(A, p) - =R(A, p) .. - =R(A, p).
Note, however, that this does not represent an additional assumption in the current setting as long
as we assume that the system in which we are reasoning contains intuitionistic propositional logic.
For in this case, the appeal to DEC can be replaced by the derivability of (B — —B) — —B.
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to regiment the prior reasoning in a formal system similar to .7. Note, however, that
although this system itself does not directly contain the Diagonal Lemma, it is still
sufficient for demonstrating the existence of self-referential statements by another
means.

For recall that we have defined .7 so that it includes the untyped lambda calculus
in the form of the equational theory AS (see note 6). Over this theory it is possible
to define so-called fixed-point combinators—i.e. lambda-terms Z such that for any
term x, Fyg Zx = x(Zx). A well known example of such a term is the so-called
Curry combinator Y =gqr Af.(Ax. f(xx))(Ax. f(xx)). Goodman [17] observed that
it is possible to use a similar fixed-point combinator in conjunction with the term 7
S0 as to obtain a term ¢ (x) which can be understood to express that x is not a proof of
this term itself. He then proceeds to describe a derivation which can be understood as
a “free-variable” variant of (1")—(5"), in which it is again assumed that an appropriate
internalization principle is available. What we present here is a simplication of this
derivation which employs the combinator Y itself.

First note that although we would naturally formulate the proposition expressed
by “x does not prove y” in the language of .7 as the equation wyx = L, it can
also be expressed as a term h(y,x) =gqr Ay.Ax.(ryx D1 L1). If we now apply
the Y combinator to /(y, x) we get a term Y (h(y, x)) with only x free such that
Fo Y(h(y, x)) = h(Y (h(y, x)), x). We may now reason in .7 as follows!?:

@) Fa Y(h(y,x)) = h(Y (h(y, x)), x) defn. of Y

(i) 7(Y(h(y,x))x=Thg Y(h(y,x) =T EXPREF

(i) r(Y(h(y,x)x=Tkg h(Y(h(y,x)),x) =T (1), transitivity of =
i) (Y (h(y,x))x=Tkg (Y (h(y,x))x D1 L)=T defn. of h(y, x)

V) nY(h(y,x)x=TkFg L=T defn. D

(i) Fo n(Y(h(y,x)x = L DEC

(vii) Fo @ h(y,x)x D> L)y=T defn. Dy

(viii) Fo h(Y(h(y,x),x) =T defn. h(y, x)

(ix) FaYh(y,x)=T (1), transitivity of =

This derivation—which up to this point may be carried out in the system .7 as
presented above—can again be roughly aligned with steps (1)—(4) in the derivation
of Montague’s paradox—e.g. the use of EXPREN at step (ii) in the former aligns with
the use of REFP at step (2) in the latter, step (vi) of the former corresponds to step
(3) in the latter, etc. In order to continue the derivation, however, we need to assume
that we are working over a system .7+ which satisfies the principle INT. We may
now continue the derivation as follows?’:

AL step (v) weusetherule A,ruv=ThFo L =T . A+ muv = L which can be derived
from DEC and the cut rule in .7.

20The step analogous to (xi) in Goodman’s own presentation of the paradox is (5) on p. 108 of [17].
At this point he simply writes that the relevant internalizing term “must exist” without providing
any further explanation. Note also that his system includes a substitution rule of the form A F u =
v . s=s,Als/x] - uls/x] = v[s/x] where the extra premise s = s serves to ensure the term s
is defined. Hence to bring step xi) into better conformity with Goodman’s system, we should also
include axioms ¢ = ¢ for the new “internalizing constants”.
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(x) Fo+r n(Y(h(y,x)c=T INT for some new constant ¢
(xi) Fa+ n(Y(h(y,x))c= L substituting ¢ for x in vi)
(xii) Far T=1 (x), (xi), transitivity of =

Finally, we observe that it follows that the derivability of T = L from no premises
in 7T entails that all equations are derivable from no premises in this system. But
this is precisely how inconsistency is traditionally defined for systems based on the
lambda calculus.

4 The Reception of the Theory of Constructions
and the Second Clause

The foregoing derivation is carried out in the system .7 1. As we have noted, this
system does not coincide with any of the variants of the Theory of Constructions
explicitly adopted by Kreisel or Goodman. Nonetheless the derivation bears sufficient
resemblance to that sketched by Goodman [17, pp. 107-109] so as to be a reason-
able candidate for what we might call the formalized Kreisel-Goodman paradox.
And although Goodman went on to develop 7 specifically to avoid the paradox,
this initial observation about the “naive” theory we have been discussing played a
substantial role in shaping subsequent opinion about the Theory of Constructions
itself.

Before considering the various ways in which one might react to the paradox
directly in Sect.5, our goals in this section will be twofold. First, we will briefly
describe the manner in which the conventional wisdom about the significance of the
Theory of Constructions shifted during the 1970s and 1980s. Second, we will argue
that several of the criticisms which have been directed against the theory appear to
be based on misapprehensions about its relationship to the second clause and to the
Kreisel-Goodman paradox.

4.1 Shifting Opinions

The shift in the consensus about the status of the Theory of Constructions can be
readily appreciated by comparing the following passages taken respectively from
the prefaces of the first (1977) and second (2000) edition of Dummett’s Elements of
Intuitionism:

The mathematical theory of constructions is of the greatest importance for the foundations
of intuitionistic logic, and it was with greatest regret that I omitted all but a mention of its
existence; but it is as yet in an imperfect state, and its formulation is far too complicated to
permit of a brief summary [7, p. viii].
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In the original Preface I mentioned with enthusiasm the theory of constructions inaugurated
by Kreisel, aimed at supplying a canonical semantics for intuitionistic logic; unfortunately,
it did not prove fruitful [7, p. iv].

Although Dummett provides no further explanation for this change of heart, his
reaction echoes that of other theorists who, in the intervening years, had come to
conclude that the Theory of Constructions not only did not live up to Kreisel’s
promise of providing a “semantical foundation” for intuitionistic logic, but was also
ill-motivated because of its association with the second clause. As we are now in
a good position to appreciate, however, the formulation of a theory such as 7 is
independent of how (or even if) we elect to attempt to use its object language to
formalize the BHK clauses. And as such, it seems that criticisms of the Theory of
Constructions which are grounded in objections to the propriety of adopting the
second clause are likely to be off base.

Putting this observation to the side for the moment, it is also possible to identify
two broad classes of criticisms which have been targeted at the second clause itself.
The first of these is that the transition from (e.g.) (P_,) to (Pz_)) either adds nothing
to the original BHK interpretation or does not serve to resolve the problems which
appear to have motivated Kreisel to introduce it. For instance, Girard [12] says the
following:

Since the — and V cases were problematic (from [the . ..] foundational point of view), it
has been proposed to add to (P_,) [...] the codicil “together with a proof that f has this
property”. Of course that settles nothing, and the Byzantine discussions about the meaning
which would have to be given to this codicil—discussions without the least mathematical
content—only serve to discredit an idea which, we repeat, is one of the cornerstones in Logic
[12,p. 7].

Although Girard does not comment further on the claim that the second clause is
“without mathematical content”, several subsequent commentators appear to expand
on his point that it leads to a substantial complication in how we should understand
the meaning of implication. For instance Prawitz writes

One may ask whether [what is known in understanding an implication] should not consist
of a description of the procedure together with a proof that this procedure has the property
required, as suggested originally by Kreisel [25]. But this would lead to an infinite regress
and would defeat the whole project of a theory of meaning as discussed here [35, p. 27]

Such passages suggest that far from overcoming the apparent deficiency in the origi-
nal BHK account of intuitionistic implication—i.e. that it requires that we understand
what it means to quantify over all constructive proofs—the second clause in fact
makes matters worse in the sense of introducing another kind of infinitary condition
as part of its meaning.

Prawitz also does not expand on what he means by speaking of an “infinite
regress”. But one interpretation is that he too is making the point that in order to
formulate the second clause, we must allow for the fact that it makes sense to think
of the proof relation as holding between a proof p and a sentence A which may
itself make reference to this relation (and thus to other proofs and formulas). If it
is acknowledged that this is legitimate, then there seems to be nothing to prohibit
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arbitrary iterations of the proof relation. For instance, if we continue to use R(x, y) to
denote this relation, then an example of the sort of “regress” Prawitz appears to have
in mind might correspond to the existence of a statement A and proofs py, p2, p3, ...
such that R(A, p1), R(p2, R(A, p2)), R(p3, R(p2, R(A, p2))), ... Itis evident that
the syntax of the Theory of Constructions allows us to express the existence of such
a sequence in the sense that wts; = T, w(mwtsy)so = T, m(mw(wetsy)s2)s3 =T, ...
are all well-formed formulas.

One might reasonably wonder on this basis if grasping the second clause interpre-
tation of a formula ever requires that we grasp such an infinite sequence of conditions.
Beeson discusses a related point:

Is it necessary to include [the second] clause? What does it really mean? At one extreme is
the view that one should simply delete this clause: a constructive proof should contain the
information a computer needs to verify the computational facts [...] At the other extreme is
the view that the “supplementary data” is a proof itself: a proof that ¢ does indeed transform
any proof of A into a proof of B. The difficulties with this view seem to be that (i) it makes
the explanation of proof highly impredicative, destroying any hope of explaining proofs of
complicated propositions in terms of proofs of simpler ones; and (ii) it seems to assume
that “p is a proof of A” is a mathematical proposition “on the same level as” A itself, in
particular, capable of being proved mathematically.” [3, p. 402]

We will come back to discuss the second concern described by Beeson—i.e.
that it assumes that p is a proof of A expresses a mathematical proposition “on
the same level” as expressed by A itself—in the course of comparing the Theory
of Constructions to systems like ITT (wherein p is a proof of A is regarded as a
Jjudgement as opposed to a proposition). But with regard to the first issue he raises,
note that while Kreisel appears to have introduced the second clause precisely so as to
avoid the form of impredicativity discussed in Sect. 2, Beeson suggests that it is this
step itself which introduces impredicativity into the interpretation of intuitionistic
implication.

Although Beeson also fails to expand upon the precise form this impredicativity
takes, it again seems likely that what he also has in mind has something to do with the
self-applicability of the proof relation. For note that not only does the formulation of
the second clause require that we countenance the existence of proofs p which stand
in the proof relation to statements A which may themselves refer to other particular
proofs g (e.g. for A of the form R(B, g)), but also the case where A may contain a
quantifier over all proofs (e.g. for A of the form Vx R(B(x), x)), presumably inclusive
of p itself.

A potentially related point about the existence of proofs with this property is made
by Weinstein in the following remark about the second clause:

If [...] we suppose that universal quantifications over the universe of constructions applied to
decidable properties have decidable proof conditions then we may view [(P2, )] as providing
an assignment of decidable proof conditions to each formula of the language of arithmetic
[...q...] This means of securing the decidability of the proof conditions for formulas of arith-
metic is not without cost. The alternative statement of the proof conditions for conditionals
is self reflexive in a way that the original explanation was not. Both Kreisel and Goodman
noticed that this self reflexivity leads to paradox in a theory of constructions which includes a
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reflection principle for the primitive which constructs the proof conditions for quantification
over the universe of constructions applied to decidable properties [49, p. 264].

Rather than simply suggesting that the second clause is ill-motivated in virtue of
leading to the sort of infinitary or impredicative proof condition mentioned by Prawitz
or Beeson, Weinstein goes beyond this and suggests that it leads to a form of “self-
reflexivity” which in turn is responsible for the Kreisel-Goodman paradox. It is this
claim which we will focus on in the next section.

4.2 Guilt by Association?

The passages collected in the prior section make clear that not only have most com-
mentators reacted negatively to Kreisel’s proposed modifications to the clauses (P_, ),
(P-), and (Py), but also that this reaction has contributed to their assessment of the
Theory of Constructions itself. Against this backdrop, we now wish to frame two
observations: (1) the second clause interpretations of the intuitionistic connectives
play norole in the formulation of the Theory of Constructions itself—rather the theory
merely provides a formal language in which these interpretations can be expressed;
(2) the Kreisel-Goodman paradox also does not arise in virtue of assigning the con-
nectives appearing in its premises their second clause interpretations.

The first point may be appreciated by simply recalling that variants of the Theory
of Constructions like .7 are indeed “logic free” in the sense that they do not contain
logical connectives such as —, — or V amongst their primitive symbols. Rather
such systems contain other primitives—e.g. the abstraction operator A and the proof
operator m—which Kreisel and Goodman hoped to show are sufficient for analyzing
the meaning of the intuitionistic connectives. As we have seen, these analyses take
the form of providing a definition of a predicate I7(A, s) which they suggest can be
understood as formalizing the second clause variants of the traditional BHK clauses.

Only once such a definition has been undertaken may we ask whether the defined
proof relation 7T (A, s) has certain properties such as decidability. But as we are now
in a good position to appreciate, such features apply to the “internal logic” of a theory
which is being interpreted in a system like .7 and not to the formal properties of the
Theory of Constructions itself.>! But from this it also follows that since the second
clause variants of (P_,), (P-), and (Py) are conditions which we attempt to interpret
in .7, they are no more an intrinsic feature of such a system than is the decision to
interpret the natural numbers as finite von Neumann ordinals an intrinsic feature of
ZF set theory.

21 Among subsequent commentators on the Theory of Constructions, Troelstra [43] presents a ver-
sion of the theory in which IT(A, s) is itself treated as a primitive notion, whereas Sundholm [39,
40] (while clearly aware of the technical distinction between st and I7(A, s)) continues to speak
of properties like decidability as features which might be stipulated (rather than proven) to hold for
(A, s).
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Itis also evident that the second clause plays no direct role itself in the formulation
of the Kreisel-Goodman paradox as discussed in Sect.3.2. One indication of this is
that although our proposed regimentation of Goodman’s informal description of the
paradox is conducted in first-order logic, no special treatment is accorded to the
connectives —, — or V. Similarly, when we attempt to mimic this reasoning in .7 +,
it is evident that the derivation of a contradiction does not require that we interpret
the occurrences of the logical connectives occuring in the semi-formal version in
accordance with the second clause interpretations (K_, ), (K-), or (Ky).

From this it would appear to follow that Weinstein is unjustified in at least his
contention that the Kreisel-Goodman paradox is directly engendered by reasoning
with the intuitionistic connectives relative to their second clause interpretations. What
remains to be seen, however, is whether it is possible to sustain what appears to be
his more general point—i.e. that the paradox reveals that any attempt to formalize
the clauses (Pz_) ), (Pi), and (P\Z,) will result in a system which is inconsistent in virtue
of being “self-reflexive”.

In evaluating this claim, it seems possible to interpret the relevant notion of “self-
reflexivity” in one of three ways which we will respectively label “self-applicability”,
“self-dependency”, and “self-referentiality”’. We have already considered a sense in
which the Theory of Constructions formalizes a notion of “self-applicable” proof
in the sense that it allows for iterations of the proof operation in expressions such
as w(mwsty)t; = T. But on its own, this property does not seem to lead obviously
to any sort of antinomy about the proof relation R(x, y). Some evidence of this
is provided by the fact that it is not only consistent with familiar systems T of
formal arithmetic that there exist statements A and pairs of numbers 7, m such that
Prooft(n, "Prooft(m,"A™)™), but instances of such statements will typically be
provable in T itself.??

The foregoing example pertains only to self-applicability in the general sense that
the proof relation R(x, y) is allowed to hold of a sentence A and a proof s in the
case where A itself contains R(B, t) for some sentence B and proof ¢. But although
it would seem that this is all that is needed for the formulation of the second clause,
it might also be thought that the Kreisel-Goodman paradox turns on the existence of
proofs which are “self-dependent” in the sense that their definitions rely on the fact
that they must be understood to already exist. An example would be witnessed by
the existence of a statement D and a proof u such that R(R(D, u), u), whose truth
would appear to entail that u is self-dependent in the sense that the statement proven
by u refers to u itself.

22For instance in the case where T + A, the existence of n and m such that T F
Prooft(n, "Proofy(m, "TA™)7) is a straightforward consequence of the first and third Hilbert-
Bernays derivability conditions for Proofr(x, y).
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In his second exposition, Goodman appears to attribute the paradox to the exis-
tence of proofs with this property:

There is an essential impredicativity in our definition of implication. For [[T(A — B, y)]

involves quantification over all proofs of A, including proofs which may themselves have

been built up in some way from y. Unless something is done to moderate this impredicativity,
it actually leads to paradox [17, p. 107].

Goodman says this after defining [T(A — B, y)—i.e. the proof condition for the
implication A — B—in the same manner as Kreisel’s second clause variant (K_, ). It
is notable, however, that in our reconstruction of Goodman’s formulation of the para-
dox the derivation of an inconsistency depends on our ability to constructin .7 a term
Y (h(y, x)) which functions in a manner analogous to the formula D in the deriva-
tion of Montague’s paradox. But although this statement is indeed self-referential in
the traditional sense of being provably equivalent to its own unprovability, it does
not depend on the existence of a proof which is self-dependent in the sense just
described.??

Note finally that we have already seen in Sect. 2 that the concerns which Goodman
raises about the impredicativity of implication appear to already arise for the original
BHK clause (P_,). As we suggested there, this may indeed highlight an important
conceptual problem about how the notion of constructive proof should be understood.
It seems, however, that the sort of “self reflexivity” which engenders the Kreisel-
Goodman paradox is more closely related to traditional forms of self-reference which
figure in classical inconsistency results like Montague’s paradox. And this in turn
suggests that not only is the paradox not engendered by the second clause in the direct
sense of requiring that we interpret the logical notions which figure in its derivation
in accordance with (Pz_) ), (Pi), and (P%), but also that it is not engendered indirectly
by introducing an impredicative element into the concept of constructive proof which
was not already present.

5 Diagnosing the Paradox

Our aim in the prior section was to argue that the ultimate evaluation of both the
second clause and the Theory of Constructions should be separated from the task
of diagnosing and responding to the Kreisel-Goodman paradox. For not only does
the adoption of the Theory of Constructions not necessitate that we interpret the
intuitionistic connectives using the second clause, but also the inconsistency of the

23The same is also true of Goodman’s own derivation of the paradox in [17] in the following
exact sense. First note that Goodman’s proof is based on applying a fixed-point combinator to the
term A'(y, x) = Ay.Ax.w(wyx D L)(xx). As this term does contain an iterated application of
7, a plausible interpretation is that it is derived from attempting to express “x is not a proof of
y” within the language of .7 relative to its second-clause interpretation. However, the fixed-point
which Goodman employs in his derivation is still obtained for the variable y and not x—i.e. it
too can be understood as formalizing the existence of a self-referential formula as opposed to a
self-dependent proof.
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“naive” variant .7 " turns on assumptions which are independent of the suitability
of its language for expressing the second clause.

Once these points are acknowledged, a number of other questions naturally arise:
(1) having eliminated the second clause as the direct source of the Kreisel-Goodman
paradox, what other principles might be to blame? (2) was Goodman correct to
conclude the most appropriate response to the paradox was to conceive of the uni-
verse of constructive proofs as stratified in the manner described by his theory .7“?
(3) what is the status of his [16] proofs of consistency, soundness, faithfulness, and
the interpretatibility of Heyting arithmetic for .7 ®? (4) are such results available for
unstratified variants of .7 ? and (5) might such systems be of independent conceptual
or technical interest?

A truly systematic exploration of these issues is beyond the scope of the current
paper. What we hope to achieve here is the more modest goal of laying out the various
principles on which the paradox appears to depend and assessing them relative to
the goal of providing an “informally rigorous” account of the BHK interpretation of
the sort envisioned by Kreisel and Goodman.

5.1 Self-Reference and Typing

As we have seen in Sect. 3.2, one of the principles on which the Kreisel-Goodman
paradox relies is the existence of terms ¢ containing the operator 7 satisfying fixed-
point equations of the form Y (t) = (Y (¢)). As we have suggested in Sect.4.2, such
terms can be understood to play a role analogous to that of self-referential sentences
in traditional formulations of the semantic (or “intensional”’) paradoxes such as the
Liar and Montague’s paradox. In particular, the term Y (2 (y, x)) can be understood
to express that x is not a proof of Y (h(y, x)) itself.

Whereas the existence of sentences with similar intended interpretations is guar-
anteed in the classical setting via the arithmetization of syntax and the Diagonal
Lemma, the existence of Y (i (y, x)) is a consequence of the existence of fixed-point
combinators like Y for the system AB. But although these phenomena may them-
selves be understood to share a common basis (cf., e.g., [2, Sect. 6.7]), the question
also naturally arises why we ought to base a formulation of the Theory of Construc-
tions on a form of the lambda calculus for which such combinators may be shown
to exist.

Part of the answer to this may be understood to follow from the goal of using
the language of the Theory of Constructions to formalize the clauses of the BHK (or
BHK?) interpretation. For note that it is now a familiar observation that the notions of
function abstraction and application which form the basis of the lambda calculus also
appear to be implicit in the BHK clauses. This point is often illustrated by pointing
out that if the formulas appearing in the rules of a traditional natural deduction system
for first-order intuitionistic logic are labeled with terms understood to represent their
proofs, then the implication introduction rule can be understood to correspond to a
form of function abstraction on proofs similar to the one which is implicit in (P_,).
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Similarly, the implication elimination rule can be understood to correspond to a form
of function application on proofs.?*

Such observations provide a strong basis for including the lambda calculus as
part of the primitive machinery in terms of which we might attempt to formalize the
BHK interpretation. It would seem, however, that the interpretation itself does not
nominate a unique form of the calculus to serve in this capacity. For as Sgrensen &
Urzyczyn note:

[N]ot every lambda-term can be used as a proof notation. For instance, the self-application

xx does not represent any propositional proof, no matter what the assumption annotated by

x is. So before exploring the analogy between proofs and terms ... we must look for the
appropriate subsystem of the lambda-calculus [38, p. 56].

Such observations are often cited as the basis of the Curry-Howard isomorphism
which relates logical systems with various typed lambda calculi (such as the simply
typed Church-style system A8~ of [22]). This in turn provides the basis for the
interpretation of intuitionistic logic which is provided by systems such as Martin-
Lof’s ITT.2

However A~ can also be distinguished from the system A8 on which we have
taken 7 to be based in virtue of the fact that the latter allows not only for self-
application of terms (e.g. xx), but also for the definition of fixed-point combinators
like Y. The potential significance of this point with respect to the status of the Kreisel-
Goodman paradox should now be clear—i.e. although it seems reasonable to base a
formal theory in which we might seek to interpret the BHK clauses on some form of
lambda calculus, not only does the informal presentation of the clauses fail to pick out
a unique system, but there is also reason to suspect that A8 allows for the definition
of terms which are not needed for the interpretation of proofs in intuitionistic logic.

Unlike Goodman, Kreisel does not explicitly formulate a paradox as an obstacle
to formulating a “naive” variant of the Theory of Constructions. It seems likely,

24For instance, by adapting the example of [38, pp. 55—56] to the notation of the semi-formal system
of Sect. 3.2, we can see that the “labeled” versions of the rules — -Intro and — -Elim take the forms

[R(4, )]
R(B, 51(x)) R(A— B,11) R(A,1)
R(A — B, s?) R(B, 13)

where s, is naturally understood as having the form Ax.sy(x) and 73 is naturally understood as
having the form #,1,.

2 Martin-Lof [30] cites the Theory of Constructions as one of several earlier systems which antici-
pated his development of ITT. It is indeed clear that there is an affinity between the manner in which
the two systems define embeddings of intuitionistic logic into variants of the lambda calculus whose
constituent clauses are intended to resemble those of the BHK interpretation. (Another historical
affinity derives from the fact that Martin-Lof [29] presents ITT as a “predicative” reformulation of
the system of [28] which was found to be inconsistent in virtue of Girard’s paradox.) An important
difference, however, is that constructive proofs are only represented indirectly in ITT as typed. But
as typing judgements may not be iterated in ITT in the manner of the 7 operator, there is no evident
manner in which the language of Martin-L6f’s system can be used to express the second clause
interpretations of —, —, and V.
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however, that he was aware of the foregoing observations. For in his first formulation
of the theory [25, p. 203] Kreisel explicitly restricts lambda abstraction to the class
of terms which are asserted by the axioms of the theory to be bivalent in the sense
described above. His second formulation [26, pp. 128—129] of the theory is based
on a form of typed lambda calculus similar to A8~ . Both approaches thus have the
effect of prohibiting Y (h(y, x)) from being a well-formed term of the system in
question. As such, Kreisel’s apparent reaction to the threat of a paradox pertaining
to the notion of construction can be compared both with Russell’s [36] reaction to
the set theoretic paradoxes and Tarski’s [42] reaction to the semantic paradoxes—i.e.
the existence of the offending self-referential entities (i.e. sets, formulas, or terms)
are excluded on the basis of being improperly formed.

5.2 Stratification

Goodman'’s reaction to the paradox was guided by his view that an adequate foun-
dation for intuitionistic logic must presuppose neither logic nor a doctrine of types.
He thus proposed to retain the untyped lambda calculus as the basis of the Theory
of Constructions and at the same time conceive of constructions as stratified into
“levels” which he likens to set theoretic ranks.?® Thus while we have just seen that
Kreisel’s reaction to the “self-referential” paradox about provability was at least
superficially similar to Russell’s resolution to the set theoretic paradoxes, Goodman
explicitly suggests that his proposed resolution can be understood as analogous to
that of Zermelo [50]:

The set-theoretic paradoxes are resolved by observing that sets must be sets of objects already
at hand. Similarly we suggest that proofs must be about objects already constructed. Just
as in Zermelo set theory there is an implicit cumulative theory of types, so we propose to
formulate a theory of constructions involving a cumulative theory of levels. At the bottom
level we will have constructive rules operating on each other ... Given any level L, we
suppose that we can extend L to a new level containing all the objects of L, all proofs about
objects of L, and certain additional constructions to be described below ... We emphasize
that this is not a stratification by logical type, but rather a stratification according to the
subject matter of proofs [17, p. 109].

In outline, Goodman proposes to implement this proposal by defining a “stratified”
version of the Theory of Constructions 7® with the following features: (1) the
untyped lambda calculus A is retained, as well as the possibility that terms may

26Goodman’s other apparent reason for employing the untyped lambda calculus in formulation of
7 pertains to his desire to use the system for interpreting Heyting arithmetic. In particular, in order
to define the natural numbers in the language of .7, he first uses the pairing functions to define
0 = Ax.Ay.x,and n + 1 = Dn0. He then shows that it is possible to use a fixed point combinator
similar to Y in order to define a decidable natural number predicate. Goodman’s foundational goals
are thus somewhat more ambitious than those of (e.g.) Martin-Lof [29] in the sense that he hoped
to reduce not only intuitionistic logic, but also intuitionistic arithmetic to a primitive theory of
constructions which does not itself contain a basic natural number type.
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be undefined, identity is to be understood intensionally, etc.; (2) the notion of a
so-called grasped domain of constructions is introduced to play the role of a level
in the stratified hierarchy of constructions as just described?’; (3) such levels are
understood as proceeding from a basic level B =4¢ Lo and forming a hierarchy
Lo € Ly € Ly C ... over which the variables of .7 are intended to range;
(4) various primitive terms are introduced into the language of 7 to formalize
this conception (e.g. Bx iff x is a basic level construction, Gx iff x is a grasped
domain, Exy iff y is the grasped domain corresponding to the level extending x,
etc.) together with axioms which ensure that they have various intended properties
such as decidability; (5) the binary proof operator of 77 xy of the system .7 is replaced
with a ternary proof operator 73 xyz with the intended interpretation “x is a grasped
domain containing y, and z is a proof that yw = T for all w in x”.

Goodman’s proposed resolution to the paradox [16, pp. 111-112] may be under-
stood as turning on the following observations: (a) for each level L, it is possible to
formulate a term ¢, akin to Y (k(y, x)) which may be interpreted as expressing its
own unprovability by all constructions at level n; (b) although it is still possible to
reach a conclusion analogous to (ix) in the original demonstration expressing that
such atermis true (i.e. 7 b t, = T), proving this statement involves reasoning with
a free variable over L,; (c) if we let ¢,, denote this derivation, Goodman’s rules for
grasped domains only allow us to show that ¢, is in L4, but not L,; (d) as such,
no contradiction arises since ¢, is not in the range of the implicit universal quantifier
over proofs which are asserted by 7, = T to not be proofs of #,.

Needless to say, the fact that we cannot derive a formal contradiction in .7 ® in this
manner does not itself constitute a proof that the system is consistent. For this reason,
much of [16] is taken up with providing a formal consistency proof for 7. However,
the details of Goodman’s proof of this are complex. And thus rather than commenting
further on this feature of 7%, we offer the following general observations about the
role he took this theory to have in resolving the paradox.

First, note that it is evident that the transition from .7 to 7 is purchased at
the cost of a substantial complication not only of the class of primitive operations
and relations on constructive proofs which must be adopted (of which we have
mentioned only a few), but also with respect to the axiomatic principles which must
be assumed to hold of them to correctly describe the relationship between the levels
in the stratified hierarchy of constructions which is the intended model of Goodman’s
theory. It would seem, however, that if we wish to provide an “informally rigorous”
account of why .7® is indeed the appropriate formal system with which to achieve
Kreisel and Goodman’s goal of providing a semantic foundation for intuitionistic
logic, then each of these principles must be individually justified in terms of the
network of pre-theoretical notions which figure in the BHK interpretation itself.
However, it is unclear whether it is possible to do so in all of the relevant cases.8

27Goodman [17, pp. 109-110] describes such a domain as the class of constructions which has
been “grasped as a totality” and which is maximal in the sense of “including everything which is
understood when its elements are understood”.

28Especially problematic in this regard is the inclusion in 7 of a so-called reducibility operator F.
Roughly speaking, F is supposed to achieve the role of reducing a “noncanonical” proof of an
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Second, one might reasonably question the basis of Goodman’s claim that the
stratification of the universe of constructions is a matter of “the subject matter of
proofs” as opposed to one of “logical type”. For on the one hand, while the basis
of Goodman’s original contention that a foundation for intuitionistic logic must
itself be type-free presumably derives from the observation that the notion of type
does not explicitly figure in the original expositions of the BHK interpretation, it is
equally evident that these expositions also do not contain any explicit reference to a
stratification of constructive proofs into levels resembling set theoretic ranks.2? And
on the other hand, one consequence of Goodman’s introduction of the ternary proof
operator is to allow us to conclude that 73s7u = L whenever it may be shown that the
proof u is not in E's (i.e. the grasped domain formed by extending s). Thus although
statements of the exhibited sort are still treated as syntactically well-formed, they are
simply stipulated to be false whenever an appropriate containment relation fails to
hold between levels and proofs. And thus although .7 does not contain the formal
machinery of type judgements, the effect of typing seems to be implicitly enforced
by other means.

5.3 Decidability

Although the strategies of Kreisel and Goodman may be sufficient for obtaining a
consistent version of the Theory of Constructions, their approaches are not clearly
grounded in considerations which follow directly from the BHK interpretation itself.
As such, it seems reasonable to consider the status of the other principles which
figure in the Kreisel-Goodman paradox. We will begin by considering the role of the
decidability of the proof relation.

As we have seen, this is formalized within the system .7 by the rule DEC, which
may in turn be understood to ensure that terms of the 7 s7 are always defined.>® We

assertion to the objects pertaining to some level L, in the hierarchy of constructions (i.e. one which
might make reference to proofs of yet higher level) to a proof which is present at level L, 1. Such
an assumption plays an important instrumental role in Goodman’s formulation of the clause (Pi) in
7 ¢ as it allows him to replace the quantifier over all constructive proofs with one which only ranges
over the level one higher than that of the term interpreting A — B. To justify this he writes “It
seems to us essential to the intuitionistic position that given a fixed assertion A about a well-defined
domain, there is an a priori upper bound to the complexity of possible proofs of A” [17, p. 111].
But as Weinstein [49] observes, it is not at all clear whether there is anything implicit in the BHK
interpretation itself which justifies this assumption.

29This is at least true of the formulations given by Heyting [20, pp. 13-15] and Kolmogorov [24,
pp. 329-330]. Martin-Lof [30, p. 128] claims that typing is already implicit in clause (P_,) if
we additionally accept that every function must have a type as its domain. But it is unclear what
necessitates that we adopt such an assumption.

30For reasons discussed in footnote 18 the same effect is also formally achieved by either reasoning
about the proof relation in intuitionistic first-order logic or by adopting Kreisel’s [26] proposal to
base the Theory of Constructions on the calculus A8~ (wherein all terms always reduce to normal
form).
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have also seen that the informal motivation for including such a principle derives
from the desire to ensure that the relation between constructive proofs and theorems
is decidable so as to in turn make available the sort of epistemic account of truth
described in Sect.2. But finally, we have seen that Kreisel introduced the second
clause interpretations precisely so as to ensure that the defined proof relation I7(A, s)
introduced in Sect. 3.1 is decidable (provided that appropriate assumptions are made
about the atomic case, this does indeed follow from the decidability of wst by a
straightforward induction on its definition).

These considerations notwithstanding, Beeson [3, pp. 404-410] has argued
against the propriety of including a rule like DEC in a version of the theory of
constructions as follows: (1) he first formulates a formal inconsistency result for a
system similar to .7 T; (2) he then argues that this result can be understood as a
reductio of DEC. But since he also advocates for the inclusion of second clauses on
the interpretation of —, —, and V, his overall motivation for rejecting decidability
appears somewhat incongruous.' As such, we will henceforth assume that giving
up the rule DEC does not correspond to a well motivated response to the paradox.

5.4 Reflection

The explicit reflection principle EXPRFN formalizes the principle that if p is a con-
struction proving A, then A is true. Like decidability, such a principle may plausibly
be regarded as part of the intended interpretation of the proof relation. To the best
of our knowledge, no one has ever argued explicitly that EXPRFN should be given
up in the face of the Kreisel-Goodman paradox.3> But although we do not wish to
challenge this consensus, we will now adduce several considerations which suggest
that finding an appropriate formulation of reflection in the Theory of Constructions
may not be as straightforward as it might appear.

The central difficulty is most readily appreciated by again invoking the analogy
between the proof relation R(A, p) and the arithmetical proof predicate ProofT
(x, y). If we continue to assume that the system in terms of which we reason about
the former contains intuitionistic first-order logic, than one might at first think that
the relevant analogs of EXPRFN would take the forms

(EXPRFNR) R(A,p) —> A

(EXPRENPRT) Proofr(n, ¢7) — ¢

3TA similar reaction is voiced by Sundholm [40, p. 16]: “Since [the second clauses] had been
introduced by Kreisel solely to guarantee that decidability, I found Beeson’s theory lacking proper
motivation as well as wanting in simplicity”.

32 A partial exception to this is Kreisel who, after observing that EXPREN is “obvious on the intended
interpretation” excludes this principle from his official “unstarred” theory. Although he does so on
the basis of his other observation that EXPRFN is “troublesome for the consistency proof” [25,
p. 204], he does not offer further non-instrumental justification for this.
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Here n should be understood as abbreviating a numeral of the form s”(0) for some
fixed n € N, which may in turn be understood as the Godel number of a proof in T.
And on this model, it seems reasonable to think of p in A as abbreviating some
(possibly complex) closed term in the language of .7 (or a similar theory) which is
intended to denote a particular constructive proof.

Note, however, that the principle EXPRFN which is used in the derivation of the
Kreisel-Goodman paradox differs from EXPRFNR and EXPRFNPR not only in that it
is formulated in terms of the derivability relation - & of the Theory of Constructions,
but also in that it may be used in the case where 7 is a variable of the theory.’> But
note that the free variable instances in EXPRFNR and EXPRFNPR—i.e. R(A, x) — A
and Proof1(x,"¢") — ¢ (where we assume x ¢ FV(A) and x ¢ FV(¢))—are
equivalent over intuitionistic first-order logic to the following “implicit” reflection
principles:

(RFNR) 3xR(A,x) — A
(RENPRT) 3xProoft(x, ¢") — ¢

The contrast between EXPRFNPRT and RFNPR is likely to be familiar: (i) all
instances of EXPRFNPR are both true in the standard model of arithmetic and prov-
able in T 2 Q; (ii) but while all instances of RENPRT are true in the standard
model, in light of Lob’s theorem for T, the only instances of RENPRT which will
be provable in T (provided it is consistent) are those for which T F ¢. More-
over, although arithmetical theories T 2 Q will satisfy an analog of the rule
INT—ie. if T F ¢, then T  IxProofy(x, ¢ )—the result of closing a the-
ory T’ which already proves all instances of RENPR1 will be inconsistent in light
of Montague’s paradox. A related observation is that not only will instances of
dy(Prooft(y, "IxProofr(x,"¢") — ¢ ) be unprovable in T when T ¥ ¢, they
will in fact be false in the standard model in light of the formalized version of L&b’s
theorem.

As the foregoing observations pertain to formal provability in the arithmetical
theory T, it is not immediately clear what (if any morals) can be read off about the
status of EXPRFN or RENR on their intended interpretations.>* What they do suggest,
however, is that when the term ¢ in EXPREN is allowed to contain free variables, the
effect of including this principle in a theory such as .7 may be closer to the effect
of adding RFNR rather than EXPRFNR. For as is exemplified by the derivation of the
Kreisel-Goodman paradox, the free variables of .7 (in conjunction with the relevant
form of substitution principle) function very much like universally bound variables
in first-order logic. And thus although the Theory of Constructions contains neither
quantifiers nor implication in its object language, the instance of EXPRFN with t = x
can be understood as expressing for all proofs x, if x is a proof of s, then s is true.

33Moreover, inspection of the proof reveals that this is essential. For if x were not understood as
free on the lefthand side of step ii), then it would be not admissible to substitute ¢ for x at step (xi).

34For discussion of a related point see [31, pp. 137-138].
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5.5 Internalization

The feature of the Theory of Constructions which we have yet to examine is the
principle of internalization we have labeled INT. This principle has evident affini-
ties with both the first Hilbert-Bernays condition for the arithmetical proof predicate
Proofr(x,y) (i.e. if T+ ¢, then T = IxProoft(x,"¢")) and with the Necessi-
tation rule of normal modal logics (i.e. if - ¢, then = [JA). But such proof theoretic
analogies aside, Kreisel and Goodman’s motivations for including such a principle
in the Theory of Constructions are at least somewhat obscure.

For instance, when rendered in the notation of the theory .7, Kreisel’s original
presentation of INT is as follows:

For any sequence p of sequents, ¢, is a term (if p is a formal derivation in our system of
s = T then ¢, presents an—intuitive—proof of s =) [... ...] If p is a formal derivation
of s =T, thensc, = T is an axiom [25, pp. 203-204].

Kreisel says nothing about how cy, is defined relative to the derivation p, nor does
he further elaborate on the distinction between “intuitive” proofs and formal deriva-
tions. Moreover, he does not provide any examples to justify the inclusion of an
internalization principle in his system. And while Goodman provides a somewhat
more straightforward presentation of internalization as a formal rule of proof, his
intuitive explanation of this principle is similarly opaque.®

Rather than attempting to provide a direct reconstruction of Kreisel or Goodman’s
treatment of internalization in the Theory of Constructions, what we will now do is
to present a partial reconstruction of the reasoning underlying the Kreisel-Goodman
paradox using yet another system—Fitting’s [9] Quantified Logic of Proofs [QLP]—
for which a precise account of internalization is known to be available. QLP is an
extension with first-order quantifiers over proofs of Artemov’s [1] Logic of Proofs
[LP], which itself may be understood as an “explicit” variant of the traditional modal
logic S4 wherein instances of the operator [J are labeled with expressions similar in
form to the terms of the Theory of Constructions.>® We will present only the features
of the system which are necessary to reconstruct the relevant portion of the derivation
of the paradox here and refer the reader to [1, 9] for additional details.

33Goodman’s formulation of the analogous rule in .7 [17, p. 118] is
Abax=Thrgobx=T
A, Ga=ThrFgo mlab(pab) =T

where x is stipulated to not occur free in A, a or b and pab is explained as being an “infinite
canonical proof of ab ... which depends only on @ and b and not on the structure of the formal
proof [of bx = T from A, ax = T]” [17, p. 111]. Despite Goodman’s disavowal of the relationship
between pab and the relevant formal derivation in .7, we will see that it is precisely this dependency
which is made explicit in the system QLP described below.

36 Although there are many affinities between the Theory of Constructions and LP, the original inspi-
ration for the latter is more closely related to Godel’s [15] embedding of intuitionistic propositional
calculus into S4 and the “explicit” refinement thereof which he sketches in [14].
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Like .7, the language of QLP contains expressions known as proof terms
s,t,u, ... which are intended to denote constructive proofs. These are given by
the grammar

te=x,y, 2, L@ ()1 [ (- o) | (e +1) [ ((Ex)Vx)

X, V¥, Z,...are known as proof variables, and a(x), ax(x), ... as axiom terms, !, -,
+ and (¢ (x)Vx) denote proof operations respectively called proof checker (unary),
application (binary), sum (binary), and uniform verifier (binary). Also like .7, the
language of QLP contains a primitive expression intended to denote the proof relation
R(A, t)—in particular ¢ is a proof of A isexpressedast : A. However, unlike .7 (but
like the semi-formal system of Sect. 3.2) the language of QLP contains the standard
first-order connectives and quantifiers.

The axioms of QLP correspond to those of a standard Hilbert system for first-order
logic (where for simplicity we regard all classical tautologies as axioms) together
with the following axioms about the proof relation:

@Pl)t:(A—-> B)—> (s:A—t-5:B)
@LP2)t:A—> A
LP3) t:A—=lt:t: A

Among the rules of QLP are modus ponens and the standard formulation of the
first-order universal generalization rule UG (i.e. if A FqLp A(x), then A FqLp
(Vx)A(x) if x ¢ FV(A)). As it is a form of modal logic, QLP also possesses a form
of the traditional Necessitation rule:

(AXNEC) If B is an axiom of QLP, then qp ap : B for some unstructured proof
term apg with the same free variables as B.

Note that the rule AXNEC is not only similar in form to the principle INT, but can
be given a justification similar to that which Kreisel gestures at above—i.e. if B is
an axiom of the system, then we ought to be able to introduce a constant symbol
ap which is stipulated to bear the proof relation to B to record the thought that we
regard this formula as an axiom of the system.

One of the characteristic features of both LP and QLP is that while such an
internalization principle is asserted to hold for their axioms, it is possible to establish
a parallel result for their theorems as a metatheorem about the system as opposed to
a basic principle. In particular, we have the following:

(LIFT) Ifsy: Ay, ...,sy: Ay FqQLp B, then for some prooftermtz,sy : Ay, ..., sy, :
A, Faup t(s1, ..., 8,) : B.

This result (which is traditionally called the Lifting Lemma—cf. [1, 9]) can be
established by a straightforward induction on derivations. For instance, in the case
of LP (which can be regarded as the quantifier-free fragment of QLP), the case
where B is an axiom is handled by AXNEC, and the case where B is derived from
A — B and A by modus ponens is handled by LP1 as follows: if we assume (as
induction hypotheses) that u(?) : A — B is derivable from ?(?) T A =g
si(T) 2 AT, .. su(T) - A(T) and v(X) : A is also derivable from
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the same premises, then it follows by LP1 that u - v(X) : B is also derivable
from ?(7) : A. However, in order to extend this result to QLP, we also need
to handle the case where s1 : Ay,...,s, : A, FaLp (Yx)B(x) is derived from
s1: A1, ...,8, ¢ Ay FaLp B(x) by UG (and the appropriate free variable condition
is met). This requires the adoption of an additional rule—called explicit universal
generalization —governing the introduction of the universal verifier symbol (-V-):

(EUG) Ifs; : Ay, ...,sp : A, Ht(x) : B(x),thens; : Ay, ...,s, : Ay, B (tVx) :
(Vx)B(x), where x ¢ FV(s; : A;) for1 <i <n.

With this machinery in place, we can now begin to record several additional obser-
vations about the role of the principle INT in the derivation of the Kreisel-Goodman
paradox. Note first that whereas the terms ¢ which are introduced by applications of
INT are treated as constants in the language of .7 T, we have just seen that the terms
t(s1,...,s,) which are introduced by LIFT will typically be complex functional
expressions whose compositional structure represents the derivation of formula B
from the premises sy : Ay, ..., s, : A,.Inparticular, although the derivation (i)—(xii)
given in Sect. 3.2 of the Kreisel-Goodman paradox can be reconstructed (essentially)
line by line in QLP, in the context of such a reconstruction, the proof term corre-
sponding to the constant ¢ which is introduced at step (x) will be a complex term
which encodes the structure of the preceding steps (i)—(ix).

This is significant because while we have seen above that in .7 *, free variables
are treated as universally bound in the derivation of Sect.3.2), the same effect is
achieved in QLP by the use of the traditional first-order quantifiers. Thus while it is
the fact that variable x occurs free in the equation Y (h(y, x)) = T which allows this
expression to be interpreted as expressing the unprovability of the term Y (h(y, x)),
the fact that a formula D has the analogous property would be expressed in QLP as
D < (Yx)—x : D3

In order to reach a contradiction analogous to the clash between steps (x) and
(xi) in the Kreisel-Goodman paradox, an internalizing term d(z) must be found
such that Fq p d(z) : D and also that Fq p —d(z) : D (where it is assumed that
z 1 (D < (Vx)—x : D) in parallel to the assumption at step (i) of the original
derivation).’® However in order to construct d(z) we must rely on the analog of
RFNR for QLP—i.e.

(RFNQ) (Fx)x: A — A

Like 7T, however, QLP also does not contain among its axioms an “implicit”
reflection principle of this sort, but rather its “explicit” counterpart LP2. But like

37For as observed above, in Goodman’s derivation of the paradox it is essential that we are allowed to
substitute the term ¢ for the variable x in the equation 7 (Y (h(y, x))x = L toyield (Y (h(y, x))c =
1 (i.e. “cisaproof of the falsity of ¥ (h(y, x))”). Thus although .7 ™ does not contain object language
quantifiers, part of the effect of quantified reasoning is achieved by the presence of free variables
and substitution in the system.

38Since QLP includes neither arithmetic nor the untyped lambda calculus, there is no evident means
of actually proving the existence of such a z formally in the system. The relevant reconstruction of
the Kreisel-Goodman paradox is hence carried out by reasoning from the assumption that z : (D <
—(3x)x : D). See [5] for details.
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EXPRFN, LP2 admits the case where ¢ corresponds to a free variable x. And it is thus
straightforward to show that RFNQ is derivable in QLP by intuitionistically valid
first-order reasoning about proofs.

This, however, is not sufficient to construct the term d (z) we have described above.
In addition, we must show that the derivation of RFNQ we have just described can
itself be internalized within QLP. This is accomplished by the following derivation:

i Fx:A—> A LP2

) Fr(x):(x: A—> A) AXNEC

(i) F r(x)Vx) : (Vx)(x : A — A) EUG, (ii)

V) Fg: (Vx)x:A—> A) - (Fx)x:A—> A) AXNEC

V) Fg-(rxVx): (Ex)x: A— A) LP1, (iii), (iv)

In this derivation r(x) is an axiom term internalizing the instance x : A — A of
LP2, and ¢ is an axiom term internalizing the first-order Hilbert axiom Vx (A (x) —
B) - (3xA(x) — B) where x ¢ FV(B). The complex proof term g - (r(y)Vy)
then serves to internalize the relevant instance of RENQ, which in turn must serve as
a constituent in the construction of the yet more complex term d(z) which figures in
the derivation of the paradox.

While the existence of the internalizing constant ¢ required in the original deriva-
tion of the Kreisel-Goodman paradox is obtained directly from the rule INT, we can
now see that the term d(z) required to reconstruct the reasoning of the paradox in
QLP is obtained as a consequence of LIFT. As we have just seen, the construction
of this term depends not only on the fact that RENQ can be derived in QLP from
LP2, but also that this proof can be internalized in the system itself. In particular,
since LIFT differs from INT in virtue of being a metatheorem rather than a basic rule,
it is also possible to inquire into the status of each of the elementary principles on
which its derivability depends. And as we have observed, this requires a means of
internalizing each of the basic deductive rules of QLP. If this theory is axiomatized
via a Hilbert system as described here, then these correspond to the case of citing an
axiom, modus ponens, and universal generalization. These principles are respectively
internalized by AXNEC, LP1, and EUG.

Upon inquiring further into the status of these principles, it is evident that LP1 can
be justified on the basis of the analogy between implication elimination and function
application which we have suggested is implicit in the BHK for implication. But
finally taking a step towards a conceptually motivated resolution to the paradox, note
that it is less clear what to say about either AXNEC and (to an even greater extent)
EUG. For although in the context of the Theory of Constructions it might at first seem
unobjectionable to introduce a primitive constant ¢ to record the fact that we regard
a statement as a “self-evident” truth about constructive proofs (e.g. - T = T), it
is already less clear what to say about the interpretation of such a term in the case
where the axiomatic principle in question contains a free variable (e.g. an instance
of EXPRFNsuchas 7 lx 4 1L =T).

When we move to a system like QLP wherein the sort of quantification over
constructive proofs which is implicit in the use of free variables in the Theory of
Constructions is made explicit, it is even less clear what to say about the justification
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of the rule EUG. For it would seem that in order to be intuitively justified in concluding
that a particular term (¢ (x)Vx) is a proof of a universally quantified statement about
constructive proofs (Vx)A(x), there must be constructive justification for the fact
that a proof which is uniform in x is sufficient to demonstrate that A(x) holds of
all constructive proofs simultaneously. When understood relative to the original
formulation of the clause (Py), this would appear to presuppose that we possess a
means of describing the intended range of the quantifiers of a system such as QLP (or
analogously for the interpretations of free variables in the Theory of Constructions).”
And although both systems may be understood as attempting to provide a description
of such a domain, what we appear to lack is an independent criterion for deciding
whether they have succeeded in adequately doing so.

6 Conclusions and Further Work

In this paper we have argued for two central claims: (1) that the apparent consensus
that the Kreisel-Goodman paradox is engendered by the adoption of Kreisel’s second
clause interpretations of —, — and V is mistaken; and (2) that the ability of a formal
system to internalize reasoning about its own proofs plays a larger role in the paradox
than is customarily acknowledged. Taken in conjunction, these observations point
towards the possibility of responding to the paradox by developing a system which
retains as many of the features of the unstratified theory .7 as possible while seeking
a conceptually motivated means of limiting the scope of the internalization principle
INT.

The evident question is what form such a delimitation might take. Taken together
with the observations we have recorded about the role of free variables and reflection
principles in the paradox, one obvious proposal would be to consider subsystems of
formalisms similar to QLP in which the scope of LIFT is limited by the exclusion
of quantifier or substitution rules akin to EUG. Although such a proposal may be
justifiable in terms of Kreisel and Goodman’s original foundational goals, a variety
of questions remain open: (i) is a consistency proof similar to that described by
Goodman [16] available for an appropriate subsystem of .7+ ? (ii) is it possible to
prove the soundness and completeness of HPC in the sense of VAL for such a system?
(iii) are the second clause interpretations of the intuitionistic connectives required for
such a result? (iv) is it possible to formulate a version of Goodman’s interpretation of
Heyting arithmetic relative to the relevant system? Needless to say, these questions
will have to wait for another occasion.

39 A case in point of this was already noted by Godel [14, p. 101] who observes that if we take A = L
in the axiom LP2, then a term analogous to (r(y)Vy) in the derivation constructed above—i.e. such
FaLp (r(y)Vy) : (x : L — L)—would correspond to a consistency proof for the theory. But not
only does such a proof seem too easy, it is for this reason that EUG is invalid when statements of
the form ¢ : A are interpreted arithmetically as Proof1(7t7, TA™) (see [5] for details).
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On the Paths of Categories

Kosta DoSen

Abstract To determine what deductions are it does not seem sufficient to know
that the premises and conclusions are propositions, or something in the field of
propositions, like commands and questions. It seems equally, if not more, important
to know that deductions make structures, which in mathematics we find in categories,
multicategories and polycategories. It seems also important to know that deductions
should be members of particular kinds of families, which is what is meant by their
being in accordance with rules.

Keywords Deduction * Proposition - Command - Question - Category + Multicat-
egory - Polycategory - Rule + Natural transformation - Proof-theoretic semantics *
General proof theory + Categorial proof theory

1 Functions of Language

In a terminology like that of the old logic, the notion of deduction will be for us pri-
marily a hypothetical and not a categorical notion. (This use of categorical should not
be confused with categorial, which is found later in this paper, and which, according
to the Oxford English Dictionary [23], means “relating to, or involving, categories”;
unfortunately, in mathematical category theory categorical dominates in the sense of
categorial.) The distinction between categorical and hypothetical is found when we
speak about categorical and hypothetical proofs. The latter is a proof under hypothe-
ses, while the former depends on no hypothesis. Both may involve deduction, but
we will be concerned here with deduction as found in hypothetical proofs.
Schroeder-Heister (together with P. Contu in [22], Sect. 4, in [20], Sect. 3, and in
[21]; see also [8]) states that the reigning semantics—both classical semantics based
on model theory and constructivist proof-theoretic semantics—is based on dogmas,
the main one of which may be formulated succinctly by saying that categorical
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notions have primacy over hypothetical notions. We conform to this dogma when we
take the notion of proposition, a categorical notion, to have primacy over the notion
of deduction, a hypothetical notion. We conform to the same dogma when we take
that, among functions of language, asserting, which is tied to propositions, is more
basic than deducing.

The question for us here should not be what function of language is the most
important in general, but what function of language is the most important for logic.
Even if it were the case that asserting is the most important function of language in
general, it could happen that, because of the specific goals it has, logic, though it
takes into account the importance of asserting, gives precedence to the function of
deducing. Even if asserting is the most important function of language in general,
for a specific area another function may have precedence. In the nomenclature of a
science wouldn’t the most important function of language consist in naming rather
than in asserting?

It is questionable however that there is a most important function of language in
general. Following Frege’s context principle from the introduction of the Grundlagen
der Arithmetik “never to ask for the meaning of a word in isolation, but only in
the context of a proposition” [14], and following the Wittgenstein of the Tractatus
[25], as usually understood, the most important function of language should be
asserting. The belief that there is such a function and that this function is asserting was
however rejected by the Wittgenstein of the Philosophical Investigations [26]. The
later Wittgenstein said that, using his terminology, there may be language games,
appropriate to particular forms of life, where various functions of language like
commanding, or questioning, would have precedence over asserting, and it could not
be said that these language games are less fundamental. They are not meaningful
only because behind them lurks somehow the activity of asserting.

Philosophers, scientists, those living a theoretical life, were inclined since ancient
times to give precedence to naming, and more recently, as it happened with Frege
and Wittgenstein in the Tractatus, they gave precedence to asserting. (The late Frege
wanted to fuse the two activities.) But does language acquire meaning primarily
in theoretical life? Are not the quarters where that life is led (something like a
university campus, or a leisurely residential upper-class quarter) rather lately built
and not central quarters in the city language (see [26], Sect. 18)?

Even though it is not essential to agree with the later Wittgenstein on this point,
it helps to do so if we want to claim without worry that in logic the most important
function of language is deducing. It is strange that one has to defend nowadays this
rather venerable opinion, but so many developments in the philosophy of modern
logic and the philosophy of language spoke against it in the last two centuries.

Textbooks of logic in the second half of the twentieth century would often start
with a definition of logic as a human endeavour concerned with deduction, and
would practically not mention deduction in the remainder of the book. It is only as
the century was moving to its close that natural deduction or related matters started
getting ground in textbooks of logic.
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2 Deductions Not Necessarily Based on Propositions

A deduction is usually taken to be a transition, a passage, from the premises to
the conclusion. To simplify matters, let us assume that the premises, which are
finitely many in numbers, have all been collected with the help of a connective like
conjunction into a single one. Henceforth, until the last section, we will speak only
about deductions that are a transition from one premise to one conclusion. Such
deductions can mimic all the others.

The terms transition and passage in the preceding paragraph are far from being
completely clear, and we shall return to them later, at the beginning of the third
section. For the time being, let us concentrate on the premise and the conclusion.
These are usually taken to be propositions, and by that is meant pieces of language that
can be asserted. So it seems that our, rather common, characterization of deduction
presupposes that we have propositions. Hence deducing presupposes asserting.

Could one imagine a deduction where one would pass from something that is not
a proposition as a premise to something that is not a proposition as a conclusion?
A deduction from a command to a command, or a deduction from a question to
a question? Or, non-uniformly, a deduction from a proposition to a command, or
from a command to a question? (In [24] and references therein one may find a
defence of deductions where commands occur as premises and conclusions together
with propositions. For the logic of questions, one may consult [16], and references
therein; I don’t know however of a reference dealing explicitly with deductions where
questions occur as premises and conclusions, together perhaps with propositions or
commands.)

Let us take a brief look at the uniform deductions, from a command to a com-
mand, or from a question to a question. Kolmogorov’s contribution in [17] to the
interpretation of intuitionistic logic that bears his name, besides those of Brouwer
and Heyting, suggests that we should understand a deduction in constructive mathe-
matics as taking us not from a proposition to a proposition, but from a problem to a
problem. A problem however is something that does not seem to be necessarily tied
with asserting. When the solution of a problem is expressed by a proposition, the
statement of that problem may be a command, or a question. If the solution of our
problem is “For x, y and z being respectively 3, 4 and 5 we have x> + y? = 72, then
the problem could be the command “Find three natural numbers x, y and z such that
x2 4+ y? = z2!” or the question “Are there three natural numbers x, y and z such that
x4+ y? =27

Kolmogorov’s examples of problems in [17] are expressed by commands, but it
seems that they could equally well be expressed by questions. It is not however clear
in these examples that the solution should be expressed by a proposition rather than
by producing one or several objects, i.e. by naming them.

From x? —I—y2 = 72 one can deduce (z+x)(z—x) = yz. Can’t we say therefore that
from the command “Find three natural numbers x, y and z such that x> 4 y? = z2!”
as a premise one can deduce the command “Find three natural numbers x, y and
z such that (z + x)(z — x) = y2!” as a conclusion? Making one command would
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yield making the other. The second command would follow from the first, it could
be inferred from it. And can’t we say that from the question “Are there three natural
numbers x, y and z such that x2 4+ y2 = z2?” as a premise one can deduce the
question “Are there three natural numbers x, y and z such that (z +x)(z —x) = Y27
as a conclusion? Making one question would yield making the other. The second
question would follow from the first, it could be inferred from it.

To make such a deduction with commands it is not necessary to assume that the
command in the premise is actually made, as in deductions with propositions it is
not necessary to assume that the premise is actually asserted. Analogously, to make
such a deduction with questions it is not necessary to assume that the question in the
premise is actually put.

To make a deduction with propositions it does not matter whether the premise
is true or not. The premise being false does not invalidate the deduction. It would
invalidate it as a proof, if the deduction was proposed as a proof of the conclusion.
As a deduction simpliciter, it is however perfectly legitimate with a false premise.
Analogously, to make a deduction with commands it would not matter whether the
premise can be fulfilled or not. The premise being impossible to fulfil would not
invalidate the deduction. With propositions the deduction may serve to show that the
premise is false because it yields a false conclusion, as in reductio ad absurdum. With
commands, the deduction might serve to show that the premise cannot be fulfilled,
because it yields a conclusion that cannot be fulfilled.

Commands here are assumed to have two fulfilment values: can be fulfilled and
cannot be fulfilled, but it is not clear that therefore the logic of commands should be
taken as fulfilment-functional and two-valued. The negation of a problem p need not
be interpreted as if is not possible to fulfil p, but as from the assumption that p can
be fulfilled one can derive a contradiction, which is in tune with intuitionistic logic
(see [17]). The implication of that logic may be tied to deduction, and hence it would
be intuitionistic.

Can the notion of deduction be widened so as to cover also non-uniform deductions
involving propositions, commands and questions, like those mentioned above? Not
all of these deductions need make sense. It is indeed not easy to see what would be a
deduction from a command to a question. It could however again be a transition from
a problem to a problem, as suggested by Kolmogorov. Deductions from propositions
to commands, and vice versa, from commands to propositions, are easier to conceive,
and have been examined in [24].

We shall next consider a matter that would extend even more the range of the
application of the word deduction, and go beyond the linguistic sphere. We would
thereby transcend its widest application in this sphere.

Can one make deductions involving non-linguistic entities as premises or conclu-
sions? Could one take as a premise the perception of something small a and something
big b, and deduce from that as a conclusion the proposition that a is smaller than b?
Can this transition from a perception to a proposition be called a deduction? And can
one deduce from a proposition a perception, not of something external, but a mental
image? And can one deduce one mental image from another mental image? Why
should this widening of the application of the word deduction to the non-linguistic
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sphere represent a danger for the mathematical theory of deduction, which it is the
duty of logic to formulate and investigate, and which we will consider in the next
two sections?

We will not go so far as to claim that the premise and conclusion of a deduction
can be anything. It seems that one could take a name as a premise or a conclusion of
a deduction only in an elliptical sense. From the context one can find the proposition
involving the name for which the name stands. Without that context, from a pure
name, it is not clear that one could deduce anything. (Kolmogorov’s solutions that
are objects, which we mentioned above, could be taken as being solutions in an
analogous elliptical sense.)

It does not seem unreasonable to claim however that premises and conclusions
can be other things than propositions. Formulae with free variables are tied to propo-
sitions, but are not strictly speaking propositions.! These things, and things like
commands and questions, may perhaps be tied in some way with propositions—
though they are not propositions, they are somehow in the same field. On the other
hand, the connection with propositions in the case of perceptions and mental images
becomes less clear. Are they too in the field of propositions?

3 Deductions in Categories

One can surmise the following. The specificity of transitions that are deductions is
not made uniquely of the things these transitions connect. Deductions are not singled
out by specifying what can be premises and conclusions. Something having to do
with these transitions themselves, independently of the premises and conclusions,
determines that we have to do with deductions.

What could that be? What are anyway the transitions, the passages, that deductions
are? Is the active, dynamic, component in the word transition essential?

One can next surmise the following. The specificity of transitions that are deduc-
tions does not consist in this active component. That side of the matter is psycho-
logical and is not essential from a mathematical, and logical, point of view. (The
dangers of psychologism that lurk here are considered in [8].) Reified in mathemat-
ics, deductions are like arrows in a category.

A category is made of a class whose elements are called arrows, and another class
whose elements are called objects, and two functions from arrows to objects—one
that assigns to every arrow an object that is its source, and the other that assigns to
every arrow an object that is its target. We also have operations on arrows, about which
we will speak in a moment. Otherwise, arrows are not specified more closely. They
can be anything, provided they have sources and targets, and the required operations.
The notion of arrow is very abstract, like the notion of point or the notion of line in
geometry. It is anything that satisfies the assumptions, which are very abstract too.

IT am grateful to Thomas Piecha for suggesting this.



70 K. Dosen

In the same way, deductions have a source, called a premise, and a target, called
a conclusion, and they make a structure given by operations on them. It happens
that on deductions such as we have envisaged them here, with a single premise and a
single conclusion, the main operations are exactly like the main operations on arrows
in categories.

These are the operations that enter into the definition of a category, and they are
the binary operation of composition

f:A— B g:B—>C
gof:A—=C

which in terms of deductions is a simple form of cut of sequent systems, and the
nullary operations of identity arrows 14: A — A, which as deductions are the triv-
ial identity deductions where the premise and conclusion coincide—the primordial
deductions, the axiomatic sequents. The operation of composition is partial; the target
of f must be the source of g for g o f to be defined.

For categories, one assumes associativity of composition:

f:A— B g:B—~C

gof:A—>C h:C— D
ho(gof):A— D

g:B—~C h:C— D
f:A— B hog:B— D
(hog)of:A— D

ho(gof)=(hog)of,

which makes perfect sense as an equality of deductions—it is about permuting cut
with cut in sequent systems. This permuting is involved in usual cut elimination
procedures (see [1], Sect.2), and less usual ones (see [4], Chap.1). It is however
interesting in its own right, independently of these procedures. It is a perfectly natural
assumption about deductions, with which they make the deepest kind of mathematical
structure—a structure one finds in all categories, and in particular in the category of
sets (which we will consider below).

Let us note that if, as in the Curry—Howard correspondence, one designates deduc-
tions by typed lambda terms, which is congenial with understanding proofs in the
categorical, and not the hypothetical, i.e. categorial, way (see [8], Sect.4), then com-
position of deductions is represented by substitution. With that, associativity of com-
position becomes invisible, unless one introduces, as it is sometimes done, an explicit
substitution operator (see [19]). This unary operator is obtained by currying binary
composition. Instead of g o f, we have something like g(x, f), which corresponds
to “g where for x one substitutes f”, and where (x, f) is a unary operator applied
to g. Analogously, %(y, g) corresponds to “h where for y one substitutes g”, and
associativity of composition becomes
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h(y, g{x, f)) = h{y, g)(x, f).

It does not seem we will get closer to associativity with other notations for explicit
substitution (like, for example, the notation with inverse order suggested by [13],
where g(x, f) is replaced by something like (f, x)g, and our equation becomes
(f,x)g, v)h = (f, x)(g, y)h, or a vertical notation like g}, with which our equation
becomes hi: . = hg;).z It is improbable that one could have reached the notion
s

of category, and realized its importance, by conceiving and representing matters
pertaining to composition in that manner.

In categories one assumes moreover identity laws, i.e. laws of composing with
identity arrows:

140 A= A f:A—> B
foly:A— B
f:A— B 13: B— B
lof:A— B
fOlA:lBOfo,

which in terms of deductions say that composing a deduction with an identity deduc-
tion, either on the side of the premise or on the side of the conclusion, leaves the
deduction unchanged. This again makes perfect sense as an equality of deductions,
and is an essential ingredient of cut elimination. When the cuts have been pushed
to the top of the derivation, where they are performed with axiomatic sequents, they
disappear.

Lambek (see [18]) called deductive system the notion generalizing categories by
not assuming the associativity of composition and the laws of composing with identity
arrows. In [3] and [4] (Sect. 1.9) one can see how this notion of deductive system is
characterized proof-theoretically by a representation result in the style of Stone, and
how the notion of category is characterized proof-theoretically by a representation
result in the style of Cayley.

There may be further operations on arrows, with which we enter into the field of
categories with additional structure. One such operation is tied to the biendofunctor
of product, which corresponds to conjunction, both in classical and intuitionistic
logic. Coproduct, with which another such operation is tied, corresponds to disjunc-
tion, in both logics again. With product and coproduct we obtain equations between
deductions that make perfect sense in proof theory. They stem from adjointness of
functors, and are related to normalization in natural deduction and cut elimination in
sequent systems (see [4], [5] and [9]). Other equations, like those involving distribu-
tivity of product over coproduct, i.e. conjunction over disjunction, may, but need not,
be based on adjointness. Intuitionistic logic will differ essentially from classical logic
by tying implication to adjointness (see [2] and [4]), which should not be done for

2Roy Dyckhoff was kind to comment upon this.



72 K. Dosen

classical, material, implication (see [9], Chap. 14). We will not go further into cate-
gorial proof theory, which deals with the equations between deductions suggested by
such categories with additional structure. Let it be said only that it is remarkable how
equations important in mathematics in general, or in particular fields of mathematics,
reemerge as perfectly sensible equations between deductions (see [7]).

What was surmised above is that the structure that deductions make with such
operations is an essential ingredient in the notion of deduction. Could one go as
far as to take this as the main ingredient? As in category theory, the structure of
arrows would be the main thing. And, as in category theory, the arrows would be
more important than the objects. With deductions the objects are the premises and
conclusions, and these premises and conclusions, whatever they are precisely—
propositions, commands, questions, problems, or something else—would not pre-
cede the arrows. Deducing would not be preceded by asserting, or another function
of language.

When functions are reified as sets of ordered pairs, the active, dynamic, component
in the notion of function is lost. This component, which comes from psychology,
is also lost in the reification brought by the categorial notion of function, where
a function is an arrow in a category. Categorially, functions in the category Set,
where the objects are sets and the arrows are functions, are characterized through
composition and identity functions. The same operations characterize deductions in
general.

Although Set has the structure that deductions make, it is not natural for its objects
to be called premises and conclusions, and for its arrows to be called deductions. One
reason may be the nature of these objects, which are not in the field of propositions
(see the end of the preceding section). Another reason might be that we have too
many of these deductions. Any two objects would be connected by a deduction,
except when the premise is not empty while the conclusion is empty. Deductions,
in the categories where arrows may be more naturally designated by that term, are
usually more discriminatory. There are more objects not connected by arrows.

The structure of deductions imitates the structure of the category Set even more
when they involve the binary connectives of conjunction, disjunction and impli-
cation, together with the nullary connectives T and _L. This structure, appropriate
for intuitionistic propositional logic, imitates Set with the biendofunctors of product,
coproduct and exponentiation (for exponentiation we have covariance in the base and
contravariance in the exponent), together with the terminal and initial objects, i.e. a
singleton and the empty set. Still, the arrows of the category Set could not be taken
as deductions, but only as their model. (The question of models of deductions was
discussed in [6].) This is the model that stands behind the standard proof-theoretic
semantics for intuitionistic logic, which through the Curry—Howard correspondence
is tied to the typed lambda calculus.

Matters become clearer when in conceiving this semantics we do not conform to
the dogma mentioned at the beginning. When we look upon this semantics hypothet-
ically, and not categorically, as in the typed lambda calculus, we will end up in the
categorial setting of Set. With the typed lambda calculus we also end up in the sets
of Set, but the categorial setting is hidden.
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In [9] one may find a categorial setting for the proof theory of classical conjunctive-
disjunctive logic different from that of Set, which leads to a categorial setting for the
proof theory of the whole of classical propositional logic where a characterization
through adjunction for classical implication is relinquished. Implication is again
characterized through adjunction in the categorial setting for the proof theory of
linear propositional logic without modalities, which is investigated in [10].

4 Deductions in Multicategories and Polycategories

Let us consider now the deductions where we can have more than one premise,
though we still have a single conclusion. Such deductions, which correspond to
Gentzen’s singular sequents, with not more than one formula on the right-hand side,
correspond to arrows f: I" — A in Lambek’s multicategories, sometimes called
multiarrows, where capital Greek letters like I” stand for finite sequences of objects.
A particular kind of multicategory is an operad, where I in multiarrows f: I" — A
is a finite sequence every member of which is A. The algebraic notion of operad,
which has arisen in algebraic topology, has been much investigated lately. (References
concerning the notions of operad and multicategory, and a discussion of matters
concerning them, may be found in [11].)

Multicategories can be mimicked by categories with additional structure like
monoidal categories, which have a binary operation on objects like conjunction,
enabling us to bind the objects in I" into a single object. The particular structure of
multicategories is however important and interesting, and we shall now examine one
aspect of it.

In multicategories instead of composition we have insertion operations on multi-

arrows:
f:Ir— A g:AA,® - B

gaf:AT,0® - B

which correspond to Gentzen’s cut of singular sequents. The notation g< f is ambigu-
ous, because it does not specify the cut formula. This ambiguity is remedied with
the more precise notation of [11], but for the comments we will make here we can
do with the less precise notation we have just introduced.

In multicategories, besides the associativity of insertion that corresponds to the
associativity of composition in categories:

f:rr— A g:AA,® - B
g<f:A,T,6® - B h:11,B, X - C
h<(g<f):I1,A, I, X - C

g:AA,® > B h:II,B, Y — C
f: I — A h<g:I1,A,A,0,X - C
th<g)<f:II,A,T,0,2 - C
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ha(g<af)=(h<g)<f,
we have another kind of associativity of insertion, which involves also commutativity:

f:Ir— A h:AA,©,B, 11 - C
g: X —> B h<af: A T,0,B, 11> C
(haf)<g: A, T,0, 2,11 > C

g: X — B h: AA,®,B,I1 - C
f:Ir— A h<g: AA, 0,2, 11— C
(h<g)<f:A,T,60,2,11—>C

(haf)ag=(hag)af,

This other associativity is interesting algebraically and combinatorially. It is also
related to interesting polyhedra (see [11], Sect. 13).

In polycategories we have arrows I" — A, which correspond to the plural
sequents of Gentzen, where there may be several formulae on the right-hand side
too. The arrows of polycategories correspond to the deductions of classical logic,
which are investigated graph-theoretically in [12]. For polycategories and their oper-
ations of insertions, which correspond to Gentzen’s cut for plural sequents, we have
besides the associativity and the associativity involving commutativity on the left-
hand side, analogous to those we have just given for multicategories, another associa-
tivity involving commutativity on the right-hand side (see [12], Propositions 2.1-3).

These plural deductions of classical logic are not very natural. They have been
invented following Gentzen’s suggestion, and not found by describing deduction in
real life. They provide however the best means to understand classical logic proof-
theoretically. They are implicit in the categorial approach to the proof theory of
classical logic of [9], and in the categorial approach to the proof theory of linear
logic of [10].

The remarks made here on deduction lead to the following tentative characteri-
zation of this notion. A deduction is an arrow in a category, a multicategory, or a
polycategory, where the objects are more or less akin to propositions—something in
the field of propositions.

5 Rules for Deductions

Nothing has been said up to now about deductions being in accordance with rules.
When we deal with formal deductions, i.e. the deductions of logic, and they are
conceived as arrows in categories with additional structure, which is brought by
something like the functors corresponding to connectives that we mentioned in the
third section, then our deductions are members of families of arrows indexed by
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the objects of the category, which are usually natural transformations involving the
functors we have just mentioned. Being in accordance with rules here amounts to
being members of such families, and the schematic character of the rules is given by
the indexing by objects of the members of our families of arrows. With this indexing,
the objects that are indices serve to make the sources or targets of the arrows, i.e. the
premises or conclusions of the deductions. For example, the natural transformation
p! of the first projection for conjunction elimination with the indices being the objects
A and B gives the deduction p}LB :AANB— A.

Is this indexing necessary for the notion of rule for deduction? Can a rule cor-
respond to a family of arrows that is a singleton, without indexing? Can one call
rule something which covers a single deduction, with which a single deduction is
in accordance? In or outside logic, is generality necessary for rules? Should a rule
always cover many cases? Can a rule cover a single case?

Deductions that are not in logic may still resemble the formal deductions of logic
by being in accordance with schematically given rules. Such would be the deduc-
tion from the premise “The day before yesterday was Thursday” to the conclusion
“Tomorrow will be Sunday” (though it is not immediately clear how to formulate the
rules in question). If they cannot be found in logic, could one find outside logic deduc-
tions that are not instances of something schematic? Shouldn’t they be in accordance
with rules? What would be the appropriate notion of rule there? When bereft of its
psychological or sociological aspects, like compulsoriness, would this notion of rule
leave something to be investigated by precise, perhaps even mathematical, means?
Grammar and linguistics may give an inspiration for considering such matters, which
are close to the concerns of the later Wittgenstein.

In [27] (end of Lecture XIII, Lent Term 1935) Wittgenstein taught that “a rule is
something applied in many cases”, but then disparaged this remark off-handedly. He
considered it useless for learning how to use a rule. Why must this remark serve that
purpose? In another context, where the purpose is to explain what rules are and not
to teach how to use them, it may prove important to determine whether generality
is necessary for rules. Wittgenstein returned to this question in [26] (Sect. 199) and
in other places (for references see [15], Sect. 199, pp. 120-124), with consideration
towards the generality of rules, which he put within a wider scheme.

Wittgenstein ended the lecture from which we have quoted above by a nice and
enigmatic picture: “A rule is best described as being like a garden path in which you
are trained to walk, and which is convenient.” A path is usually something taken many
times, by many people. If a rule is like a path, the deductions in accordance with the
rule could perhaps be like many particular walks on this path. We will however try
to consider more closely this and other matters mentioned in this section on another
occasion.
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Some Remarks on Proof-Theoretic
Semantics

Roy Dyckhoff

Abstract This is a tripartite work. The first part is a brief discussion of what it
is to be a logical constant, rejecting a view that allows a particular self-referential
“constant” e to be such a thing in favour of a view that leads to strong normalisation
results. The second part is a commentary on the flattened version of Modus Ponens,
and its relationship with rules of type theory. The third part is a commentary on
work (joint with Nissim Francez) on “general elimination rules” and harmony, with
a retraction of one of the main ideas of that work, i.e. the use of “flattened” general
elimination rules for situations with discharge of assumptions. We begin with some
general background on general elimination rules.

Keywords General elimination rules + Harmony - Strong normalisation

1 Background on General Elimination Rules

Standard natural deduction rules for Int (intuitionistic predicate logic) in the style
of Gentzen [9] and Prawitz [24] are presumed to be familiar. The theory of cut-
elimination for sequent calculus rules is very clear: whether a derivation in a sequent
calculus is cut-free or not is easily defined, according to the presence or absence of
instances of the Cuf rule. For natural deduction, normality is a less clear concept: there
are several inequivalent definitions (including variations such as “full normality”)
in the literature. For implicational logic it is easy; but rules such as the elimination
rule for disjunction cause minor problems with the notion of “maximal formula
occurrence” (should one include or not include the permutative conversions?), and
more problems when minor premisses have vacuous discharge of assumptions.
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One proposed solution, albeit partial, is the uniform use of general elimination
rules, i.e. GE-rules. These can be motivated in terms of Prawitz’s inversion princi-
ple!: “the conclusion obtained by an elimination does not state anything more than
what must have already been obtained if the major premiss of the elimination was
inferred by an introduction” [25, p. 246]. Normality is now the simple idea [39]
that the major premiss of each elimination step should be an assumption; see also
[13, 36].

The standard elimination rules for disjunction, absurdity and existential quantifi-
cation are already GE rules:

[A] [B] [A(»)]

IxA C
E %LE A € o

AVB C Cv
c

C

(with y fresh in 3F) and the same pattern was proposed (as a GE-rule) in the early

1980 's for conjunction
[A, B]

AAB C
c

by various authors, notably Prawitz [26, 27], Martin-Lof [15] and Schroeder-Heister
[30], inspired in part by type theory (where conjunction is a special case of the
X-type constructor, with A A B =4,r X (A, B) whenever B(x) is independent of x)
and (perhaps) in part by linear logic [10] (where conjunction appears in two flavours:
multiplicative ® and additive &).

To this one can add GE-rules for implication? and universal quantification:

(8] [B(1)]

: Vx.B(x) tt c
ADBCA CDGE x.B(x) Cerm VGE

Rules of the first kind are conveniently called “flattened” [29] (in comparison with
Schroeder-Heister’s “higher-level” rules, for which see [30, 32]). Lopez-Escobar [13]
distinguishes between the premiss A of DGE as a “minor” premiss and that of C
(assuming B) as a “transfer” premiss.’

One thus has a calculus of rules in natural deduction style for Int; such calculi, and
their normalisation results, have been studied by von Plato [39], by Lépez-Escobar

ISee [19, 31] for discussions of this principle, including its antecedents in the work of Lorenzen.
2Reference [3] has an early occurrence of this.

30n the other hand, Francez and Dyckhoff [8] calls A the “support” and, more in line with tradition
than Lépez-Escobar [13], the remaining premiss the “minor premiss”.
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[13] and by Tennant [36]. With the definition (given above) that a deduction is normal
iff the major premiss of every elimination step is an assumption, the main results are:

1.

2.

Weak Normalisation (WN): every deduction can be replaced by a normal deduc-
tion of the same conclusion from the same assumptions [13, 20, 36, 39].

Strong Normalisation (SN), for the implicational fragment: an obvious set of rules
for reducing non-normal deductions is strongly normalising, i.e. every reduction
sequence terminates [12, Sect. 6], [13, 36, 37].

SN, for the full language: a straightforward extension of the proof of [37] for
implication®; also, the proofs for implication “directly carry over” [12] to a system
with conjunctions and disjunctions. An argument (using the ordinary elimination
rule for implication) is given in [35] for the rules for implication and existential
quantification, with the virtue of illustrating in detail how to handle GE rules
where the Tait—-Martin-Lo6f method of induction on types familiar from [11] is not
available. See also [13].

Some straightforward arguments for normalisation (by induction on the structure
of the deduction) [40].

. A 1-1 correspondence with intuitionistic sequent calculus derivations [20, 39].

Some interpolation properties [17].

. Extension of the normalisation results to classical logic [41].

Despite the above results, there are some disadvantages:

1.

2.

Poor generalisation of the GE rule for implication to the type-theoretic constant
I1, of which D can be treated as a special case [15]: details below in Sect. 3.
Too many deductions, as in sequent calculus. Focused [aka “permutation-free’]
sequent calculi [5, 6] have advantages. Sequent calculus has (for each deriv-
able sequent) rather too many derivations, in comparison to natural deduction,
since derivations often have many permutations each of which is, when trans-
lated to ordinary natural deduction, replaced by an identity of deductions. The
GE-rules have the same feature, which interferes with rather than assists in root-
first proof search.

(For some complex constants, if one adopts the methodology beyond the basic
intuitionistic ones) a “disharmonious mess” [4]: details below in Sect. 4.4.

No SN results (yet, in general) for GE-rules for arbitrarily complex constants.

2 Is Bullet a Logical Constant?

Read [28] has, following a suggestion of Schroeder-Heister (with Appendix B of
Prawitz’s [26] and Ekman’s Paradox® [7] in mind), proposed as a logical constant a
nullary operator e (aka R, for “Russell”) with the single (but impure) introduction
rule

4Personal communication from Jan von Plato, May 2009.

5See [34] for a recent discussion.
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[e]

£oI

The GE-rule justified by this (along the same lines as for implication) is then

which, given the usual L E rule and the unnecessary duplication of premisses, can
be simplified to

% oF
So, by this e E rule, the premiss of the e/ rule is deducible, hence e is deducible,
hence L is deducible.

There is however a weakness (other than just that it leads to inconsistency) in the
alleged justification of e as a logical constant: it is a circularity. We follow Martin-Lof
[15, 16] and Dummett [2] in accepting that we understand a proposition when we
understand what it means to have a canonical proof of it, i.e. what forms a canonical
proof can take. In the case of e, there is a circularity: the introduction rule gives us a
canonical proof only once we have a proof of L from the assumption of e, i.e. have
a method for transforming arbitrary proofs of e into proofs of L. The reference here
to “arbitrary proofs of e” is the circularity.

There are similar ideas about type formers, and it is instructive to consider another
case, an apparent circularity: the formation rule (in [15]) for the type N of natural
numbers. That is a type that we understand when we know what its canonical elements
are; these are 0 and, when we have an element n of N, the term s(n). The reference
back to “an element n of N’ looks like a circularity of the same kind; but it is rather
different—we don’t need to grasp all elements of N to construct a canonical element
by means of the rule, just one of them, namely n.

A formal treatment of this issue has long been available in the type theory liter-
ature, e.g. Mendler [18], Luo [14], Coq [1]. We will try to give a simplified version
of the ideas. With the convention that propositions are interpreted as types (of their
proofs), we take type theory as a generalisation of logic, with ideas and restrictions in
the former being applicable to the latter. The simplest recursive case (N ) has just been
considered and the recursion explained as harmless (despite Dummett’s reservations
expressed as his “complexity condition” [2]). What about more general definitions?
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The definition of the type N can be expressed as saying that N is the least fixed
point of the operator @y =gy AX.(1 + X),i.e. N =gor uX.(1 + X). Similarly, the
type of lists of natural numbers is uL.(1 + N x L), and the type of binary trees
with leaves in A and node labels in B is uT.A + (T x B x T). A unary operator
definition @ =g4,r AX. ... is said to be positive iff the only occurrences of the type
variable X in the body ... are positive, where an occurrence of X in the expression
A — B is positive (resp. negative) iff it is a positive (resp. negative) occurrence in
B or anegative (resp. positive) occurrence in A; a variable occurs positively in itself,
and occurs positively (resp. negatively) in A + B and in A x B just where it occurs
positively (resp. negatively) in A or in B. A definition of a type as the least fixed
point of an operator is then positive iff the operator definition is positive.

Read’s e, then, is defined as uX.(X — _L). This is not a positive definition; the
negativity of the occurrence of X in the body X — L is a symptom of the circular
idea that e can be grasped once we already have a full grasp of what the proofs of e
might be.

In practice, a stronger requirement is imposed, that the definition be strictly pos-
itive, i.e. the only occurrences of the type variable X in the body ... are strictly
positive, where an occurrence of X in the expression A — B is strictly positive iff
it is a strictly positive occurrence in B; a variable occurs strictly positively in itself,
and occurs strictly positively in A + B and in A X B just where it occurs strictly
positively in A or in B. A definition of a type as the least fixed point of an operator
is then strictly positive iff the operator definition is strictly positive.

With such definitions, it can be shown that strong normalisation (of a suitable set
of reductions) holds [18, Chap. 3]; similar accounts appear in [1, 14].

3 The GE-rule for Implication and the Type-Theoretic
Dependent Product Type

The present author commented [3] that the general (aka “flattened” [29]) E-rule for
implication didn’t look promising because it didn’t generalise to type theory. Here
(after 27 years) are the details of this problem: Recall [15] that in the dependently-
typed context

A type, B(x) type [x : A],

the rule
[z: E(A, B)] [x: A’)f : B(x)]

p:T(A,B) C() ype c(x,y): C((x,y)) .
split(p,c) : C(p)
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with® semantics split((a, b), c) — c(a, b) is a generalisation of the rule
[x:A,y:B]

p:AxB Ctye c(x,y):C
split(p,c): C

x E

Now, ordinary (but with witnesses) Modus Ponens

f:ADB a:A
fa:B

DF

has, in the dependently-typed context

A type, B(x) type [x : A],
the generalisation (in which ap2( f, a) is often just written as f a or (f a)):

f:I(A,B) a:A
ap2(f,a) : B(a)

I1E

(with IT(A, B) written as A D B whenever B(x) is independent of x); but the
“flattened” GE rule
[y : Bl

f:ADB a:A C type c(yj:C
ap3(f,a,c):C

D GE
with semantics ap3(A(g), a, c) — c(g(a)) doesn’t appear to generalise:
[2: 1A, B)] [y B@]

f:I(AB) a:A C@) type c(y): CA?))
ap3(f,a,c) : C(f)

in which, note the question-mark—what should go there? In the context y : B(a),
the only ingredient is y, which won’t do—it has the wrong type. Addition of an
assumption such as x : A (and making ¢ depend on it, as in c(x, y)) doesn’t help.

9The notation c is used to abbreviate Ax y.c(x, y). Similar abbreviations are used below. c(a, b) is
then just ¢ applied to a and then to b.
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One solution is the system of higher-level rules of Schroeder-Heister [30]. Our own
preference, to be advocated after a closer look at flattened GE-rules, is for implication
(and universal quantification) to be taken as primitive, with Modus Ponens and the
ITE rule taken as their elimination rules, with justifications as in [15].

4 GE-Rules in General

The wide-spread idea that the “grounds for asserting a proposition” collectively form
some kind of structure which can be used to construct the assumptions in the minor
premiss(es)’ of a GE-rule is attractive, as illustrated by the idea that, where two
formulae A, B are used as the grounds for asserting A A B, one may make the
pair A, B the assumptions of the minor premiss of AGE. An example of this is
Lépez-Escobar’s [13], which gives I-rules and then GE-rules for implication® and
disjunction, with the observation [13, p. 417] that:

Had the corresponding I-rule had three “options with say 2, 3 and 5 premises respectively,
then there would have been 2 x 3 x 5 E-rules corresponding to that logical atom.® Also had
there been an indirect'? premise, say VD/ €, in one of the options then it would contribute a
minor premise with conclusion € and a transfer premise with discharged sentence ®© to the
appropriate'! E-rule.

In practice, there is an explosion of possibilities, which we analyse in order as
follows:

1. alogical constant, such as L, A, v, = or @ (exclusive or), can be introduced by
zero or more rules;

2. each of these rules can have zero or more premisses, e.g. T/ has zero, D I and
each VI; have one, Al has two;

3. each such premiss may discharge zero or more assumptions (as in D );

4. each such premiss may abstract over one or more variables, as in V/;

5. and a premiss may take a term as a parameter (as in 7).

It is not suggested that this list is exhaustive: conventions such as those of substruc-
tural logic about avoiding multiple or vacuous discharge will extend it, as would
recursion; but it is long enough to illustrate the explosion. The paper [8] attempted'?
to deal with all these possibilities and carry out a programme of mechanically gen-
erating GE-rules from a set of I-rules with results about harmony.

7In the sense of “all but the major premiss”.

8He also gives primitive rules for negation; in our view this is best treated as a defined notion, since
even its [-rule is impure, i.e. mentions the constant L.

°In our terminology, “logical constant”.

IOVQ/G is the notation of [13] for “& [assuming D]”.
1'Surely, in this, ® and € are the wrong way round.
121 ignorance, alas, of [13].
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4.1 Several I-Rules

Where a logical constant (such as V) is introduced by several alternative'? rules, one
can formulate an appropriate GE-rule as having several minor'# premisses, one for
each of the I-rules, giving a case analysis. This is very familiar from the case of Vv

and the usual V E rule:
[A] [B]

AVB C C
C

so an appropriate generalisation for n > 0 alternative I-rules is to ensure that “the
GE-rule” has n minor premisses. This works well for L, with no I-rules: the L E-rule,
as in [9, 24], has no minor premisses.15

4.2 I-Rule Has Several Premisses

Now there are two possibilities following the general idea that the conclusion of a
GE-rule is arbitrary. Let us consider the intuitionistic constant A (with its only I-rule
having two premisses) as an example. The first possibility is as illustrated earlier:
the rule

[A, B]
AANB C
C /\GE'
The second is to have two GE-rules:
[A] [B]
AAB C AAB C
—c ANGE; —c ANGE;

and it is routine to show that the ordinary GE-rule for A is derivable in a system
including these two rules, and vice-versa. Tradition goes for the first possibility;
examples below show however that this doesn’t always work and that the second
may be required.

131 6pez-Escobar [13] calls these “options”.
14“Transfer” premises in the terminology of [13].
1SLépez-Escobar [13] does it differently.
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4.3 Premiss of I-Rule Discharges Some Assumptions

Natural deduction’s main feature is that assumptions can be discharged, as illustrated
by the I-rule for D and the E-rule for V. This raises difficulties for the construction of
the appropriate GE-rules: Prawitz [26] got it wrong (corrected in [27]), Schroeder-
Heister [30] gave an answer in the form of a system of rules of higher level, allowing
discharge not just of assumptions but of rules (which may themselves discharge
...)—but, although much cited, use of this system seems to be modest. As already
discussed, an alternative was mentioned (disparagingly) in [3] and (independently)
adopted more widely by others [13, 36, 39], the “flattened” GE-rule for O being

[B]

ADB A C
——— DGE
C
Let us now consider the position where two premisses discharge an assumption
(just one each is enough): consider the logical constant = with one I-rule, namely

[A] [B]
B A
A=p =1

According to our methodology, we have two possibilities for the GE-rule; first, have
the minor premiss of the rule with two assumptions B, A being discharged and some
device to ensure that there are other premisses with A and B as conclusions. There
seems to be no way of doing this coherently, i.e. with A somehow tied to the discharge
of B and vice-versa. The alternative is to have rwo GE-rules, along the lines discussed
above for A, and these are clearly

by means of which it is clear that, from the assumption of A = B, one can construct
a proof of A = B using the introduction rule as the last step, implying the “local
completeness” of this set of rules in a sense explored by Pfenning and Davies [22]:

(81" (A

A=B [A? B A=B [B]* A
B A_12.4

I
o

=E,,3

=
I
o]
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We are thus committed in general to the use of the second rather than the first
possibility of GE-rules—the use of two such rules rather than one—when there are
two premisses in an I-rule.

4.4 GE Harmony: A Counter-Example

Francez and the present author [8]'¢ developed these ideas (looking also at the
analogues of universal and existential quantification) by defining the notion of “GE-
harmony” (E-rules are GE-rules obtained according to a formal procedure, of which
parts are as described above) and showing that it implied “local intrinsic harmony”
(local soundness, i.e. reductions, and local completeness, as illustrated above for
=). The classification in [8] corresponds roughly but not exactly to the different
possibilities enumerated above (1 ...5): “non-combining” (zero or one premiss[es])
or “combining” (more than one premiss) corresponds to possibility 2; “hypothet-
ical” (a premiss with assumptions discharge) or “categorical” (no such discharge)
corresponds to possibility 3; “parametrized” (a premiss depends on a free variable)
corresponds roughly to a mixture of 4 and 5; “conditional” (e.g. there is a freshness
condition) corresponds roughly to 4.

Let us now consider a combination of such ideas, e.g. two I-rules each of which
discharges an assumption, e.g. the pair

[A] [B]
B A
A®OB AOB

What is/are the appropriate GE-rule(s)? It/they might be just
[B]

AOB A C
c

but that only captures, as it were, the first of the two I-rules (and implies that (A© B) D
(A D B), surely not what should be the case); so we have to try also

[A]

AOB B C
c

16Written in 20079, several years before publication.
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but then these two need to be combined somehow. If into a single rule,'” it would be

something like
[B]  [A]

AOB A C B C
c

which is weird; with only the second and last of these premisses, already C can be
deduced. The meaning of A © B is thus surely not being captured, whether we go
for two GE-rules or just one.

A similar example was given in 1968 by von Kutschera [38, p. 15], with two I-rules
for an operator F based on the informal definition F (A, B, C) = (A D B)V(C D B)
but the flattened E-rule failing to capture the definition adequately.

4.5 Another [Counter-]Example

Following Zucker and Tragesser’s [42, p. 506], Olkhovikov and Schroeder-Heister
[21] have given as a simpler example the ternary constant » with two introduction

rules:
[A]

B, < .
*(A, B, C) *(A, B, C)
and the “obvious” GE rule!® thereby justified is:

[B] [C]

«(A,B,C) A D D
D *

GE

which is clearly wrong, there being nothing to distinguish it from (A, C, B). Their
main point is to show by a semantic argument that there is no non-obvious GE rule
for «, thus defending the “idea of higher-level rules” [30].

17 As the formula in [13] implies, since 1 x 1 = 1.
18 Again, [13] implies there is just one GE rule.
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4.6 In Other Words

The “flattening” methodology when either the constant being defined has several
introduction rules or one or more of such rules have several premisses can lead

1. to a number (>1) of GE rules, none of which on its own suffices, and
2. to a “disharmonious mess”, i.e. a failure to capture the correct meaning.

Already there are enough problems, before we start considering the cases where the
premiss abstracts over several variables, instantiates a variable as a term or recurses
on the constant being defined.

The solution of Schroeder-Heister [30] is to allow rules to discharge rules. We
prefer, however, to propose instead that one should adopt the standard solution from
(e.g.) Coq [1]: to reject the idea that the rule for handling implication (and other situ-
ations where assumptions are discharged) be treated as illustrated above and instead
to take implication (and its generalisation, universal quantification), together with
an inductive definition mechanism, as primitive, with traditional “special” elimina-
tion rules (e.g. Modus Ponens) but to allow GE rules elsewhere (e.g. for A and its
generalisations X and 3). This deals with =; likewise, it deals with © as if it were

[A?B] [B?A]

AOB C c
c

More precisely, we note that with an introduction rule given in Coq by the inductive
definition

Inductive and (A B : Prop) : Prop :=
and. I : A -> B -> (and A B).

we obtain as a theorem

Theorem and_elim : forall A B C : Prop,
(and A B) -> (A -> B -> C) -> C.

and similarly for © we have the inductive definition

Inductive odot (A B : Prop) : Prop :=

| odot_I_1 : (A -> B) -> (odot A B)
| odot_I_2 : (B -> A) -> (odot A B).

and we can obtain as a theorem
Theorem odot_elim : forall A B C : Prop,
(odot A B) -> ((A -> B) -> C) -> ((B -> A) -> C) -> C.

Not only can we obtain such theorems, but Cog will calculate them (and several
variants) from the definitions automatically. Further details of this approach can be
found in [23]. For example, existential quantification can be defined thus (we give
also the obtained theorem representing the elimination rule):
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Inductive ex (X:Type) (B : X -> Prop) : Prop :=
ex_intro : forall (w:X), B w -> ex X B.

Theorem ex_elim : forall X : Type, B : X -> Prop,
C : Prop, (ex X B) -> (forall (x:X) (B x -> C)) -> C.

Short shrift is given to e:

Inductive bullet : Prop :=
bullet_I : ( (bullet -> False) -> bullet).

Error: Non strictly positive occurrence of"bullet" in
"(bullet -> False) -> bullet"

This pushes the problem (of constructing and justifying elimination rules given a
set of introduction rules, and establishing properties like harmony, local complete-
ness and stability) elsewhere: into the same problem for a mechanism of inductive
definitions and for the rules regarded as primitive: introduction and (non-general)
elimination rules for implication and universal quantification. Apart from the issue of
stability, we regard the latter as unproblematic, and the former as relatively straight-
forward (once we can base the syntax on implication and universal quantification).

To a large extent this approach may be regarded as just expressing first-order con-
nectives using second-order logic, and not very different from Schroeder-Heister’s
higher-level rules. The important point is that there are difficulties (we think unsur-
mountable) with trying to do it all without such higher-order mechanisms.

5 Conclusion

The main conclusion is this: although the idea that the “grounds for asserting a
proposition” are easily collected together as a unit is attractive, the different ways
in which it can be done (disjunctive, conjunctive, with assumption discharge, with
variable abstraction or parameterisation, ..., recursion) generate (if the GE rules
pattern is followed) many problems for the programme of mechanically generating
one (or more) elimination rules for alogical constant, other than in simple cases. There
are difficulties with the mechanical approach in [8]; there are similar difficulties in
[13]. Without success of such a programme, it is hard to see what “GE harmony” can
amount to, except as carried outin (e.g.) Coqg [1] where strictly positive inductive type
definitions lead automatically to rules for reasoning by induction and case analysis
over objects of the types thus defined, and with strong normalisation results. A similar
conclusion is to be found in [33].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Categorical Harmony and Paradoxes
in Proof-Theoretic Semantics
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Abstract There are two camps in the theory of meaning: the referentialist one in-
cluding Davidson, and the inferentialist one including Dummett and Brandom. Proof-
theoretic semantics is a semantic enterprise to articulate an inferentialist account of
the meaning of logical constants and inferences within the proof-theoretic tradition
of Gentzen, Prawitz, and Martin-Lof, replacing Davidson’s path “from truth to mean-
ing” by another path “from proof to meaning”. The present paper aims at contributing
to developments of categorical proof-theoretic semantics, proposing the principle of
categorical harmony, and thereby shedding structural light on Prior’s “tonk” and
related paradoxical logical constants. Categorical harmony builds upon Lawvere’s
conception of logical constants as adjoint functors, which amount to double-line rules
of certain form in inferential terms. Conceptually, categorical harmony supports the
iterative conception of logic. According to categorical harmony, there are intensional
degrees of paradoxicality of logical constants; in the light of the intensional distinc-
tion, Russell-type paradoxical constants are maximally paradoxical, and tonk is less
paradoxical. The categorical diagnosis of the tonk problem is that tonk mixes up
the binary truth and falsity constants, equating truth with falsity; hence Prior’s tonk
paradox is caused by equivocation, whereas Russell’s paradox is not. This tells us
Prior’s tonk-type paradoxes can be resolved via disambiguation while Russell-type
paradoxes cannot. Categorical harmony thus allows us to demarcate a border between
tonk-type pseudo-paradoxes and Russell-type genuine paradoxes. I finally argue that
categorical semantics based on the methods of categorical logic might even pave the
way for reconciling and uniting the two camps.
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1 Introduction

Broadly speaking, there are two conceptions of meaning: the referentialist one based
on truth conditions as advocated by Davidson [7], and the inferentialist one based on
verification or use conditions as advocated by Dummett [10] or more recent Bran-
dom [5]. Along the latter strand of the theory of meaning, proof-theoretic semantics
undertakes the enterprise of accounting for the meaning of logical constants and
inferences in terms of proof rather than truth, thus replacing Davidson’s path “from
truth to meaning” by another Dummettian path “from proof to meaning”; the term
“proof-theoretic semantics” was coined by Schroeder-Heister (for a gentle intro-
duction, see Schroeder-Heister [21]; he also coined the term “substructural logic”
with DoSen). It builds upon the proof-theoretic tradition of Gentzen, Prawitz, and
Martin-Lof, tightly intertwined with developments of Brouwer’s intuitionism and
varieties of constructive mathematics, especially the Brouwer-Heyting-Kolmogorov
interpretation, and its younger relative, the Curry-Howard correspondence between
logic and type theory, or rather the Curry-Howard-Lambek correspondence between
logic, type theory, and category theory (see, e.g., Lambek and Scott [12]). Note how-
ever that Brouwer himself objected to the very idea of formal logic, claiming the
priority of mathematics to logic (cf. Hilbert’s Kantian argument in [11] concluding:
“Mathematics, therefore, can never be grounded solely on logic”). “Harmony” in
Dummett’s terms and the justification of logical laws have been central issues in
proof-theoretic semantics (see, e.g., Dummett [10] and Martin-Lof [14]).

Combining proof-theoretic semantics with category theory (see, e.g., Awodey [2]),
the present paper aims at laying down a foundation for categorical proof-theoretic
semantics, proposing the principle of categorical harmony, and thereby shedding
structural light on Prior’s “tonk” and related paradoxical logical constants. Prior’s
invention of a weird logical connective “tonk” in his seminal paper [18] compelled
philosophical logicians to articulate the concept of logical constants, followed by
developments of the notion of harmony. In a way harmony prescribes the condition
of possibility for logical connectives or their defining rules to be meaning-conferring,
and as such, it works as a conceptual criterion to demarcate pseudo-logical constants
from genuine logical constants. Let us recall the definition of Prior’s tonk. Tonk can
be defined, for example, by the following rules of inference as in the system of natural
deduction:

Eho &+ @ tonk

EF gtonk (tonk-intro.) EF v (tonk-elim.)

(D

In any standard logical system (other than peculiar systems as in Cook [6]), adding
tonk makes (the deductive relation of) the system trivial, and thus we presumably
ought not to accept tonk as a genuine logical constant. In order to address the tonk
problem, different principles of harmony have been proposed and discussed by Bel-
nap [3], Prawitz [17], Dummett [10], and many others. From such a point of view,
harmony is endorsed to ban tonk-like pathological connectives on the ground that
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their defining rules violate the principle of harmony, and are not meaning-conferring
as a consequence of the violation of harmony. They cannot be justified after all.

In the present paper, we revisit the tonk problem, a sort of demarcation problem in
philosophy of logic, from a novel perspective based on category theory. In his seminal
paper [13], Lawvere presented a category-theoretical account of logical constants in
terms of adjoint functors, eventually giving rise to the entirely new discipline of cat-
egorical logic (see, e.g., Lambek and Scott [12]) including categorical proof theory.
Note that “categorical logic” is sometimes called “categorial logic” in philosophy
to avoid confusion with the philosopher’s sense of “categorical” (like “categorical
judgements”); especially, DoSen, a leading researcher in the field, uses “categorial
logic”, even though “categorical logic” is widely used in the category theory com-
munity. Categorical logic is relevant to proof-theoretic semantics in various respects,
as explicated in this paper as well. Among other things, a fundamental feature of
the link between categorical logic and proof theory is that categorical adjunctions
amount to bi-directional inferential rules (aka double-line rules) of certain specific
form in terms of proof theory; by this link, categorical terms can be translated into
proof-theoretic ones. Building upon Lawvere’s understanding of logical constants,
in this paper, I formulate the adjointness-based principle of categorical harmony, and
compare it with other notions of harmony and related principles, including Belnap’s
harmony [3], Dosen’s idea of logical constants as punctuation marks [8, 9], and the
reflection principle and definitional equations by Sambin et al. [19]. And the final
aim of the present paper is to shed new light on the tonk problem from the perspective
of categorical harmony.

In comparison with other concepts of harmony, there is a sharp contrast between
categorical harmony and Belnap’s harmony in terms of conservativity; at the same
time, however, uniqueness is a compelling consequence of categorical harmony, and
so both endorse uniqueness, yet for different reasons. The principle of categorical
harmony looks quite similar to DoSen’s theory of logical constants as punctuation
marks, and also to the theory of the reflection principle and definitional equations
by Sambin et al. It nevertheless turns out that there are striking differences: some
logical constants are definable in Sambin’s or DoSen’s framework, but not definable
according to categorical harmony, as we shall see below. It is not obvious at all
whether this is an advantage of categorical harmony or not. It depends upon whether
those logical constants ought to count as genuine logical constants, and thus upon our
very conception of logical constants; especially, what is at stake is the logical status
of substructural connectives (aka multiplicative connectives; in categorical terms,
monoidal connectives).

Finally, several remarks would better be made in order to alleviate common
misunderstandings on categorical semantics. The Curry-Howard correspondence
is often featured with the functional programmer’s dictum “propositions-as-types,
proofs-as-programs”. Likewise, the Curry-Howard-Lambek correspondence may be
characterised by the categorical logician’s dictum “propositions-as-objects, proofs-
as-morphisms.” One has to be careful of categorical semantics, though. For the
Curry-Howard-Lambek correspondence does not hold in some well-known categor-
ical semantics. The correspondence surely holds in the cartesian (bi)closed category
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semantics for propositional intuitionistic logic, yet at the same time, it is not true at
all in the topos semantics for higher-order intuitionistic logic (or intuitionistic ZF
set theory), and it does not even hold in the logos (aka Heyting category) seman-
tics for first-order intuitionistic logic. For the very facts, the latter two semantics
are called proof-irrelevant: they only allow for completeness with respect to the
identity of propositions, and does not yield what is called full completeness, i.e.,
completeness with regard to the identity of proofs. Some category theorists who do
not care about the proof-relevance of semantics tend to say that the topos semantics
is a generalisation of the cartesian (bi)closed category semantics; however, the claim
is only justified in view of the identity of propositions, and it is indeed wrong in
light of the identity of proofs, which is not accounted for in the topos semantics
at all. Note that locally cartesian closed categories yield proof-relevant semantics
for Martin-Lof’s dependent type theory, and toposes are locally cartesian closed. If
we see toposes as semantics for dependent type theory, then the topos semantics is
proof-relevant; yet, this is an unusual way to interpret the term “topos semantics”.
The Curry-Howard-Lambek correspondence is now available for a broad variety of
logical systems including substructural logics as well as intuitionistic logic, yet with
the possible exception of classical logic. Although quite some efforts have been made
towards semantics of proofs for classical logic, there is so far no received view on
it, and there are impossibility theorems on semantics of classical proofs, including
the categorical Joyal lemma. For classical linear logic, nonetheless, we have fully
complete semantics in terms of so-called x-autotonomous categories.

The rest of the paper is organised as follows. In Sect. 2, we review Lawvere’s cat-
egorical account of logical constants, and then formulate the principle of categorical
harmony. There are several subtleties on how to formulate it, and naive formulations
cannot properly ban tonk-type or Russell-type logical constants. Comparison with
Dosen’s theory is given as well. In Sect. 3, we further compare the principle of cate-
gorical harmony with Belnap’s harmony conditions and Sambin’s reflection principle
and definitional equations. The logical status of multiplicative (monoidal) connec-
tives is discussed as well, and three possible accounts (i.e., epistemic, informational,
and physical accounts) are given. In Sect.4, we look at tonk and other paradoxical
logical constants on the basis of categorical harmony, thus exposing different degrees
of paradoxicality among them. Especially, what is wrong with tonk turns out to be
equivocation. The paper is then concluded with prospects on the broader significance
of categorical logic in view of the theory of meaning. Little substantial knowledge
on category theory is assumed throughout the paper.

2 The Principle of Categorical Harmony

In this section, we first see how logical constants can be regarded as adjoint functors,
and finally lead to the principle of categorical harmony. Although I do not explain
the concept of categories from the scratch, from a logical point of view, you may
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conceive of a category as a sort of proof-theoretic consequence relation: suppose we
have the following concepts given.

e The concept of formulae ¢.

e The concept of hypothetical proofs (or deductions) from formulae ¢ to . For any
formula ¢ there must be an identity proof id, from ¢ to ¢.

e The concept of proof-decorated relation - :

oy Y )

where p is a proof from ¢ to V.
o The concept of sequential composition o of proofs: composing ¢ =, ¥ and ¥ =,
&, we obtain

¢ Fgop &. 3)

If we think of a monodical category for substructural logic, we additionally have
parallel composition ®:

(P®(P/ |_p®p/ vy €]

where ¢ -, ¢ and ¢’ = Y.

e The concept of reduction of proofs such that the identity proofs may be canceled
out(i.e.,id, 0 p equals p modulo reducibility; g oid, equals ¢ modulo reducibility),
and proofs may locally be reduced in any order (i.e., (p o g) or equals po (g or)
modulo reducibility). Moreover, reduction must respect composition (i.e., if p
equals ¢ and r equals s modulo reducibility, p o ¢ must equal r o s modulo
reducibility).

The concept of a proof-theoretic consequence relation (resp. with parallel composi-
tion) thus defined is basically the same as the concept of a category (resp. monoidal
category): a formula corresponds to an object in a category, and a proof to a morphism
in it. To be precise, a proof-theoretic consequence relation is a way of presenting a
category rather than category per se. In most parts of the article, however, full-fledged
category theory shall not be used, for simplicity and readability, and it suffices for the
reader to know some basic logic and order theory, apart from occasional exceptions.

From the perspective of Schroeder-Heister [23], categorical logic (or categorial
logic to avoid confusion) places primary emphasis on hypothetical judgements, which
are concerned with the question “what follows from what?”, rather than categorical
judgements in the philosopher’s sense, which are concerned with the question “what
holds on their own?”. In the traditional accounts of both model-theoretic and proof-
theoretic semantics, the categorical is prior to the hypothetical, and the hypothetical is
reduced to the categorical via the so-called transmission view of logical consequence.
These are called dogmas of standard semantics, whether model-theoretic or proof-
theoretic, in Schroeder-Heister [23]. His theory takes the hypothetical to precede
the categorical, and it is in good harmony with the idea of categorical logic, in
which the hypothetical, i.e., the concept of morphisms, is conceptually prior to the
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categorical, i.e., the concept of morphisms with their domains being a terminal object
(or monoidal unit in the case of substructural logic).

Some authors have discussed how logical constants can be derived from logi-
cal consequence relations (see, e.g., Westerstahl [25]). To that end, category theory
allows us to derive logical constants from abstract proof-theoretic consequence rela-
tions (i.e., categories) through the concept of adjunctions, which even give us infer-
ential rules for the derived logical constants, and hence a proof system as a whole (in
the case of intuitionistic logic, for example, the proof system thus obtained is indeed
equivalent to standard ones, such as NJ and LJ). Given a category (abstract proof-
theoretic consequence relation), we can always mine logical constants (if any) in the
category via the generic criteria of adjunctions. In such a way, category-theoretical
logic elucidates a generic link between logical constants and logical consequence,
without focusing on a particular system of logic.

In the following, let us review the concept of adjoint functors in the simple case
of preorders, which is basically enough for us, apart from occasional exceptions. A
preorder

(L,Fr) 4)

consists of a set P with a reflexive and transitive relation 7 on L. Especially,
the deductive relations of most logical systems form preorders; note that reflexivity
and transitivity amount to identity and cut in logical terms. It is well known that a
preorder can be seen as a category in which the number of morphisms between fixed
two objects in it are at most one. Then, a functor F : L — L’ between preorders L
and L’ is just a monotone map: i.e., ¢ - ¥ implies F (¢) 1/ F (). Now, a functor

F:L—>1L (6)

is called left adjoint to
G:L - L (7N

(or G is right adjoint to F') if and only if

Fiobry & obL GW) ®)

for any ¢ € L and ¢ € L’. This situation of adjunction is denoted by F - G. Note
that a left or right adjoint of a given functor does not necessarily exist.

In this formulation, it would already be evident that an adjunction F 4 G is
equivalent to a sort of bi-directional inferential rule:

Flo)Fr ¢
oL GO (€))

where the double line means that we can infer the above “sequent” from the one
below, and vice versa.
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Let us look at several examples to illustrate how logical constants are characterised
by adjunctions, and to articulate the inferential nature of them. Suppose that L is
intuitionistic logic. We define the diagonal functor A : L — L x L by

Alp) = (9. ¢) (10)
where x denotes binary product on categories (in this case just preorders) or in
the category of (small) categories. Then, the right adjoint of A is conjunction A :
LxL— L:

AAA. (11)
The left adjoint of A is disjunction v : L x L — L:
v HA. (12)

The associated bi-directional rule for A turns out to be the following:

A(p1) Frxr (@2, ¢3)
01 L o2 A g3 (13)

which, by the definition of product on categories, boils down to the following familiar

rule:
1L o o1 L3

01 L 92 A @3 (14)

This is the inferential rule for conjunction A that is packed in the adjunction A - A.
We omit the case of V. Now, implication ¢ — (-) : L — L for each ¢ is the right
adjoint of ¢ A (-), where the expressions “¢ — (-)” and “p A (-)” mean that ¢ is
fixed, and (-) is an argument:

NG o= (). 15)
The derived inferential rule is the following:

YANEFY
o —> Y (16)

Note that we may replace A by comma in the format of sequent calculus. Quantifiers
can be treated in a similar (but more heavily categorical) way using indexed or fibra-
tional structures (L ¢)cec (intuitively, each object C in a category C is a collection of
variables or a so-called context) rather than single L as in the above discussion (see,
e.g., Pitts [16] for the case of intuitionistic logic; for a general variety of substructural
logics over full Lambek calculus, categorical treatment of quantifiers is presented in
Maruyama [15]). The corresponding double-line rules are the following:
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oY Ixp =Y
o EVxy oY (17)

with the obvious eigenvariable conditions (which naturally emerge from a categorical
setting). Categorical logicians say that V is a right adjoint, and 3 is a left adjoint of
substitution (or pullback in categorical terms). Finally, truth constants 1 and T are
left and right adjoints of the unique operation from L to the one-element set {x}, with
the following double-line rules:

iy * %

* % kT (18)
which come down to:

1k T (19)

All the double-line rules above yield a sound and complete axiomatisation of intu-
itionistic logic; equivalence with other standard systems can easily be verified.

Building upon these observations, we can articulate the categorical inferentialistic
process of introducing a logical constant in a meaning-conferring manner:

e At the beginning, there are universally definable operations, i.e., those operations
that are definable in the general language of category theory.

— We may replace “the general language of category theory” by “the general
language of monoidal category theory” if we want to account for substructural
logics as well as logics with unrestricted structural rules.

— For example, diagonal A above is a universally definable operation. As observed
in the above case of the double-line rule for A, the existence of A amounts to
our meta-theoretical capacity to handle multiple sequents at once (in particular,
ability to put two sequents in parallel in the case of A).

e Logical constants are introduced step by step, by requiring the existence of right or
left adjoints of existing operations, i.e., universally definable operations or already
introduced logical constants.

— Inother words, we define logical constants by bi-directional inferential rules cor-
responding to adjunctions concerned. Thus, this may be conceived of as a special
sort of inferentialistic process to confer meaning on connectives. The condition
of adjointness bans non-meaning-conferring rules like tonk’s (discussed later).

— For example, conjunction and disjunction above can be introduced as adjoints
of a universally definable operation (i.e., diagonal); after that, implication can
be introduced as an adjoint of an existing logical constant (i.e., conjunction).

e Genuine logical constants are those introduced according to the above principle,
namely the principle of categorical harmony. Others are pseudo-logical constants.

According to this view, logical constants in a logical system must be constructed step
by step, from old simple to new complex ones, based upon different adjunctions. This
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may be called the iterative conception of logic. The rdle of the powerset operation (or
making a set of already existing sets) in the iterative conception of sets is analogous
to the rdle of the operation of taking adjoint functors.

A remark on monoidal categories for substructural logics is that the language
of monoidal categories is more general than the language of (plain) categories in
the sense that monoidal products ® encompass cartesian products x. Formally, we
have the fact that a monoidal product @ is a cartesian product if and only if there
are both diagonals § : C — C ® C and projections p;j : C® D — C and p» :
C ® D — D where ® is assumed to be symmetric. The logical counterpart of this
fact is that multiplicative conjunction ® is additive conjunction if and only if both
contraction and weakening hold where exchange is assumed. Since contraction may
be formulated as ¢ - ¢ ® ¢, and weakening as ¢ @ ¥ - ¢ and ¢ ® ¥ F ¥, it is
evident that diagonals correspond to contraction, and projections to weakening (this
correspondence can be given a precise meaning in terms of categorical semantics).

There are different conceptions of harmony in proof-theoretic semantics, dis-
cussed by different authors. In the present article, adjointness is conceived of as a
sort of proof-theoretic harmony, and it is somehow akin to Prawitz’s inversion prin-
ciple in that both put emphasis on (different sorts of) “invertibility” of rules; recall
that an adjunction amounts to the validity of a “bi-directional” rule of certain form.
Categorically speaking, adjointness exhibits harmony between two functors; logi-
cally speaking, adjointness tells us harmony between the upward and the downward
rules of the induced bi-directional rule. The precise procedure of introducing logical
constants according to categorical harmony has already been given above. Let us
summarise the main point of categorical harmony as follows.

e A logical constant must be introduced by (the double-line rule of) an adjunction
with respect to an existing operation.

As we observed above, standard logical constants can be characterised by adjunc-
tions or adjunction-induced double-line rules. The idea of capturing logicality by
double-line rules was pursued by DoSen [8, 9]. It seems, however, that his focus was
not on harmony, but rather on logicality only (as pointed out by Schroeder-Heister
[21]), and moreover he did not really use adjointness as a criterion to ban patholog-
ical, non-meaning-conferring rules. Indeed, Bonnay and Simmenauer [4] show that
Dosen’s theory of logicality cannot ban a weird connective “blonk”; nonetheless, the
adjointness harmony of the present paper is immune to blonk, since it is not definable
by an adjunction, even though it is defined by a double-line rule. The approach of this
paper takes adjointness as the primary constituent of harmony, analysing issues in
proof-theoretic semantics from that particular perspective. Although the double-line
and adjointness approaches are quite similar at first sight, however, they are consid-
erably different as a matter of fact, as seen in the case of Bonnay and Simmenauer’s
blonk. There are actually several subtleties lurking behind the formulation above:

e It turns out that definability via one adjunction is crucial, since tonk can be defined
via two adjunctions.

e A logical constant must be defined as an adjoint of an existing operation, since
Russell-type paradoxical constants can be defined as adjoints of themselves.



104 Y. Maruyama

These points shall be addressed later in detail. Before getting into those issues, in
the next section, we briefly compare and contrast categorical harmony with other
principles.

3 Categorical Harmony in Comparison with Other
Principles

Here we have a look at relationships with Belnap’s harmony and the so-called re-
flection principle and definitional equations by Sambin and his collaborators.

The categorical approach to harmony poses several questions to Belnap’s notion
of harmony. As we saw above, implication — in intuitionistic logic is right adjoint
to conjunction A. Suppose that we have a logical system L with logical constants A
and V only, which are specified as the right and left adjoints of diagonal A as in the
above. And suppose we want to add implication — to L. Of course, this can naturally
be done by requiring the right adjoint of A. Now, Freyd’s adjoint functor theorem
tells us that any right adjoint functor preserves limits (e.g., products), and any left
adjoint functor preserves colimits (e.g., coproducts). This is a striking characteristic
of adjoint functors. In the present case, the theorem tells us that A preserves V; in
other words, A distributes over V. Thus, defining implication according to categorical
harmony is not conservative over the original system L, since the bi-directional rules
for A and Vv only never imply the distributive law. Note that sequent calculus for A
and V allows us to derive the distributive law without any use of implication; yet the
bi-directional rules alone do not imply it.

Although proponents of Belnap’s harmony would regard this as a strange (and per-
haps unacceptable) feature, nevertheless, this sort of non-conservativity is necessary
and natural from a category-theoretical point of view. Furthermore, conservativity
may be contested in some way or other. One way would be to advocate categorical
harmony against Belnap’s on the ground of the Quinean holistic theory of meaning,
which implies that the meaning of a single logical constant in a system, in principle,
can only be determined by reference to the global relationships with all the other log-
ical constants in the whole system. If the meaning of a logical constant depends on
the whole system, then adding a new logical constant may well change the meaning
of old ones. Non-conservativity on logical constants is arguably a consequence of
a form of holism on meaning, even though it violates Belnap’s harmony condition.
Anyway, we may at least say that the principle of categorical harmony, or Lawvere’s
idea of logical constants as adjoints, is in sharp conflict with Belnap’s notion of
harmony, in terms of the conservativity issue.

Another distinctive characteristic of adjoint functors is that any of a right adjoint
and a left adjoint of a functor is uniquely determined (up to isomorphism). By this
very fact, we are justified to define a concept via an adjunction. This actually implies
that Belnap’s uniqueness condition automatically holds if we define a logical constant
according to the principle of categorical harmony. Thus, uniqueness is not something
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postulated in the first place; rather, it is just a compelling consequence of categorical
harmony. However, it is not very obvious whether this is really a good feature or
not. As a matter of fact, for example, exponentials (!, ?) in linear logic do not enjoy
the uniqueness property (as noted in Pitts [16]; it is essentially because there can be
different (co)monad structures on a single category). At the same time, however, we
could doubt that exponentials are genuine logical constants. Indeed, it is sometimes
said that they were introduced by Girard himself not as proper logical constants
but as a kind of device to analyse structural rules. The rdle of exponentials is to
have control on resources in inference, and not to perform inference per se on their
own. It would thus be a possible view that exponentials are a sort of “computational
constants” discriminated from ordinary logical constants. This is an issue common
to both categorical harmony and Belnap’s harmony.

There are even more subtleties on uniqueness in categorical harmony, which in-
volve a tension between cartesian and monoidal structures in category theory. When
formulating the categorical procedure to introduce logical constants in the last sec-
tion, it was remarked that we may replace the language of (plain) category theory
with that of monoidal category theory if we want to treat substructural logics as well.
In such a case, we first have a monoidal product & in our primitive language, and then
require, for example, a right adjoint of ®, which functions as multiplicative impli-
cation. Since any adjoint is unique, there appears to be no room for non-uniqueness.
Howeyver, the starting point @ may not be unique if it cannot be characterised as an
adjoint functor, and you can indeed find many such cases in practice. The point is
that, in general, monoidal structures can only be given from “outside” categories, i.e.,
the same one category can have different monoidal structures on it. If we have both
® and the corresponding implication —, then ® is a left adjoint of —. However, if
we do not have implication, then ® may not be characterised as an adjoint, and thus
may not be unique. This is the only room for non-uniqueness in categorical harmony,
since any other logical constant must be introduced as an adjoint in the first place.

From a proof-theoretic point of view, having a monoidal structure on a category
amounts to having the comma “,” as a punctuation mark in the meta-language of
sequent calculus. In sequent calculus, we are allowed to put sequents in parallel
(otherwise we could not express quite some rules of inference), and at the same time,
we are allowed to put formulae in parallel inside a sequent by means of commas. The
former capacity corresponds to the categorical capacity to have cartesian products,
and the latter corresponds to the capacity to have monoidal products. This seems
relevant to the following question. Why can monoidal structures ® be allowed in
category theory in spite of the fact that in general they cannot be defined via universal
mapping properties? To put it in terms of categorical harmony, why can monoidal
structures ® be allowed as primitive vocabularies to generate logical constants? (And
why are others not allowed as primitive vocabularies?) This is a difficult question, and
there would be different possible accounts of it. One answer is that there is no such
reason, and @ ought not to be accepted as primitive vocabularies in the principle of
categorical harmony. Yet I would like to seek some conceptual reasons for permitting
® as primitive vocabularies in the following.
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For one thing, ® is presumably grounded upon a sort of our epistemic capacity to
put symbols in parallel (inside and outside sequents) as discussed above. The epis-
temic capacity may be so fundamental that it plays fundamental réles in symbolic
reasoning as well as many other cognitive practices; this will lead to a sort of epis-
temic account of admissibility of ® in the principle of categorical harmony. Another
“informational” account of it seems possible as well. There are three fundamental
questions: What propositions hold? Why do they hold? How do they hold? The first
one is about truth and falsity, the second one about proofs, and the last one about the
mechanisms of proofs. An answer to the last question must presumably include an
account of the way how resources or assumptions for inference are used in proofs, or
how relevant inferential information is used in proofs. And ® may be seen as a means
to address that particular part of the third question. This is the informational account,
which has some affinities with the view of linear logic as the logic of resources.

Yet another “physical” account may be came up with. In recent developments of
categorical quantum mechanics by Abramsky and Coecke (see Abramsky [1] and
references therein), the capacities to put things in parallel as well as in sequence
play vital roles in their so-called graphical calculus for quantum mechanics and
computation, where parallel composition represents the composition of quantum
systems (resp. processes), i.e., the tensor product of Hilbert spaces (resp. morphisms),
which is crucial in quantum phenomena involving entanglement, such as the Einstein-
Podolsky-Rosen paradox and the violation of the Bell inequality. In general, ® lacks
diagonals and projections, unlike cartesian x, and this corresponds to the No-Cloning
and No-Deleting theorems in quantum computation stating that quantum information
can neither be copied nor deleted (note that diagonals A : X — X & X copy
information X, and projections p : X ® ¥ — X delete information Y). On the
other hand, classical information can be copied and deleted as you like. So, the
monoidal feature of ® witnesses a crucial border between classical and quantum
information. To account for such quantum features of the microscopic world, we
do need ® in the logic of quantum mechanics, and this would justify to add ® to
primitive vocabularies.

The physical account seems relevant to the well-known question “Is logic em-
pirical?”’, which was originally posed in the context of quantum logic, and has been
discussed by Quine, Putnam, Dummett, and actually Kripke (see Stairs [24]). The
need of multiplicative ® in the “true” logic of quantum mechanics is quite a recent
issue which has not been addressed in the philosophy community yet, and this may
have some consequences to both the traditional question “Is logic empirical ?”” and the
present question “Why are substructural logical constants are so special?”, as partly
argued above. A more detailed analysis of these issues will be given somewhere else.

Sambin et al. [19] present a novel method to introduce logical constants by what
they call the reflection principle and definitional equalities, some of which are as
follows:

e VY Eiffol£andy &

e U FEIffo® Y E.
e 'Fo— Viff ' (¢ - ¥).
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As these cases show, definitional equalities are quite similar to adjointness con-
ditions in categorical harmony (when they are formulated as bi-directional rules),
even though Sambin et al. do not mention category theory at all. Especially, in the
case of additive connectives, their definitional equivalences are exactly the same as
the bi-directional rules induced by the corresponding adjunctions. There are crucial
differences, however. Among them, the following fact should be emphasised:

e Definitional equalities do not always imply adjointness, partly due to what they
call the “visibility” condition, which requires us to restrict context formulae in
sequent-style rules of inference (categorically, this amounts to restricting so-called
Frobenius reciprocity conditions).

— For example, implication is not necessarily a right adjoint of conjunction in the
system of “basic logic” derived via their guiding principles.

This deviation from adjointness actually seems to be inevitable for Sambin et al.,
because they want to include Birkhoff-von Neumann’s quantum logic with some
concept of implication as a structural extension of their basic logic; however, quan-
tum implication (if any) cannot be a right adjoint of conjunction, due to the non-
distributive nature of it, which is essential in Birkhoff-von Neumann’s quantum
logic to account for superposition states in quantum systems.

In contrast, categorical harmony cannot allow for any sort of non-adjoint impli-
cation. Is this a good feature or not? It depends on whether such implication counts
as genuine implication, and so on our very conception of logical constants. The
categorical logician’s answer would be no: for example, Abramsky [1] asserts that
Birkhoff-von Neumann’s quantum logic is considered to be “non-logic” because it
does not have any adequate concept of implication (on the other hand, categorical
quantum logic is said to be “hyper-logic”).

Finally, it should be noted that Schroeder-Heister [21] compares the framework of
Sambin et al. [19] with his framework of definitional reflection, and that Bonnay and
Simmenauer [4] proposes to exploit the idea of Sambin et al. [19] in order to remedy
the aforementioned defect (the “blonk™ problem) of Dosen’s double-line approach
in [8, 9].

4 Degrees of Paradoxicality of Logical Constants

In this section, we first discuss whether tonk is an adjoint functor or not, or whether
tonk counts as a genuine logical constant according to categorical harmony, and we
finally lead to the concept of intensional degrees of paradoxicality.

Let L be a (non-trivial) logical system with a deductive relation 7 admitting
identity and cut. And suppose L contains truth constants L and T, which are specified
by adjunction-inducedrules L. - ¢ and ¢ - T, respectively. The first straightforward
observation is that, if L has tonk, then tonk has both left and right adjoints, and thus
tonk is the left and right adjoint of two functors. Recall that the inferential role of
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tonk is given by:
Eo & - ptonk
& ptonk ERY (20)

which are equivalent to the following simpler rules in the presence of identity and
cut:

@ F @ tonk ptonk y - 21

We can see tonk as a functor from L x L to L. Now, define a “truth diagonal” functor
AT:L— L x Lby
At(p) == (T,T) (22)

and also define a “falsity diagonal” functor A} : L — L x L by
Ai(p) = (L, 1). (23)

We can then prove that A is a left adjoint of tonk, and that A is a right adjoint of
tonk. In other words, tonk is a right adjoint of A and a left adjoint of A~; therefore,
tonk is an adjoint functor in two senses (if L is already endowed with tonk).

At the same time, however, this does not mean that the principle of categorical
harmony cannot exclude tonk, a pathological connective we ought not to have in a
logical system. Indeed, it is a problem in the other way around: in order to define
tonk in a logical system, the principle of categorical harmony requires us to add it
as a right or left adjoint of some functor, or equivalently, via an adjunction-induced
bi-directional rule. Thus, when one attempts to define tonk in a logical system L
according to categorical harmony, the task is the following:

1. Specify a functor F : L — L x L that has a (right or left) adjoint.

2. Prove that tonk is a (left or right) adjoint of F, or that the rules for tonk are
derivable in the system L extended with the bi-directional rule that corresponds
to the adjunction.

As a matter of fact, however, this turns out to be impossible.

Let us give a brief proof. Suppose for contradiction that it is possible. Then we
have a functor F : L — L x L, and its right or left adjoint is tonk. Assume that tonk
is aleft adjoint of F', which means that F is right adjoint to tonk. It then follows that F
must be truth diagonal At as defined above. The bi-directional rule that corresponds
to the adjunction tonk - F is actually equivalent to the following (by the property
of A1):

prtonk @ Fp ¥ (24)

But this condition is not sufficient to make the rules for tonk derivable, thus the right
adjoint of F' cannot be tonk, and hence a contradiction. Next, assume that tonk is a
right adjoint of F, i.e., F is a left adjoint of tonk. Then, F must be falsity diagonal
A, and the rule of the adjunction F — tonk is equivalent to the following:
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@ = Y1 tonk Y (25)

This is not enough to derive the rules for tonk, and hence a contradiction. This
completes the proof.
It has thus been shown that:

e Tonk cannot be defined as an adjoint functor (of some functor) in a logical system
without tonk, even though tonk is an adjoint functor in a logical system that is
already equipped with tonk.

— This is a subtle phenomenon, and we have to be careful of what exactly the
question “Is tonk an adjoint functor?”” means. Due to this, naively formulating
categorical harmony as “logical constants = adjoint functors” does not work.

e Consequently, tonk cannot be introduced in any way according to the principle of
categorical harmony.

We may then conclude that tonk is a pseudo-logical constant, and the rules for tonk are
not meaning-conferring, not because it is non-conservative (i.e., Belnap’s harmony
fails for tonk), but because it violates the principle of categorical harmony (which is
able to allow for non-conservativity as discussed above). Still, it is immediate to see
the following:

e Tonk can actually be defined as being right adjoint to falsity diagonal A , and left
adjoint to truth diagonal At at once. We may say that tonk is a “doubly adjoint”
functor.

e In categorical harmony, therefore, it is essential to allow for a single adjunction
only rather than multiple adjunctions, which are harmful in certain cases.

We again emphasise that tonk cannot be defined in a system without tonk by a single
adjunction (i.e., there is no functor F such that an adjoint of F is tonk); nevertheless
tonk can be defined by two adjunctions: A; — tonk - A, i.e., A is left adjoint
to tonk, and tonk is left adjoint to At. Note that double adjointness itself is not
necessarily paradoxical.

Whatis then the conceptual meaning of all this? After all, what is wrong with tonk?
The right adjoint ¢ of falsity diagonal A may be called the binary truth constant (the
ordinary truth constant T is nullary), because the double-line rule of this adjunction
boils down to ¢ 1 v tyn, which means that v t i, is implied by any formula
@ (for any 1, ¥). Likewise, the left adjoint s of truth diagonal AT may be called
the “binary falsity constant”, because the double-line rule of this adjunction boils
down to Y1 s ¥ 1 @, which means that ¥ s v, implies any ¢. Now, the réle of
tonk is to make the two (binary) truth and falsity constants (¢ and s) collapse into the
same one constant, thus leading the logical system to inconsistency (or triviality);
obviously, truth and falsity cannot be the same. This confusion of truth and falsity is
the problem of tonk.

To putit differently, aright adjoint of A and aleft adjoint of A+ mustbe different,
nevertheless tonk requires the two adjoints to be the same; the one functor that are
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the two adjoints at once is tonk. The problem of tonk, therefore, lies in confusing two
essentially different adjoints as if they represented the same one logical constant. We
may thus conclude as follows:

e The problem of tonk is the problem of equivocation. The binary truth constant and
the binary falsity constant are clearly different logical constants, yet tonk mixes
them up, to be absurd.

This confusion of essentially different adjoints is at the root of the paradoxicality of
tonk. There is no problem at all if we add to a logical system the right adjoint of A |
and the left adjoint of At separately, any of which is completely harmless. Unpleasant
phenomena only emerge if we add the two adjoints as just a single connective, that
is, we make the fallacy of equivocation.

Let us think of a slightly different sort of equivocation. As explained above, A
is right adjoint to diagonal A, and V is left adjoint to it. What if we confuse these
two adjoints? By way of experiment, let us define “disconjunction” as the functor
that is right adjoint to diagonal, and left adjoint to it at the same time. Of course, a
logical system with disconjunction leads to inconsistency (or triviality). Needless to
say, the problem of disconjunction is the problem of equivocation: conjunction and
disjunction are different, yet disconjunction mixes them up.

Then, is the problem of disconjunction precisely the same as the problem of tonk?
This would be extensionally true, yet intensionally false. It is true in the sense that
both pseudo-logical constants fall into the fallacy of equivocation. Nonetheless, it is
false in the sense that the double adjointness condition of disconjunction is stronger
than the double adjointness condition of tonk.

What precisely makes the difference between tonk and disconjunction? Tonk is
a right adjoint of one functor, and at the same time a left adjoint of another functor.
In contrast to this, disconjunction is a right and left adjoint of just a single functor.
Disconjunction is, so to say, a uniformly doubly adjoint functor, as opposed to the
fact that tonk is merely a doubly adjoint functor. The difference between tonk and
disconjunction thus lies in uniformity. Hence:

e On the ground that uniform double adjointness is in general stronger than dou-
ble adjointness, we could say that disconjunction is more paradoxical than tonk,
endorsing a stronger sort of equivocation.

e We thereby lead to the concept of intensional degrees of paradoxicality of logical
constants. Degrees concerned here are degrees of uniformity of double adjointness
or equivocation.

What is then the strongest degree of paradoxicality in terms of adjointness? It is
self-adjointness, and it is at the source of Russell-type paradoxical constants. A self-
adjoint functor is a functor that is right and left adjoint to itself. This is the strongest
form of double adjointness. Now, let us think of a nullary paradoxical connective R
defined by the following double-line rule (this sort of paradoxical connectives has
been discussed in Schroeder-Heister [20, 22]):
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F =R
F R

Reformulating this, we obtain the following:

R

FR

We may consider R as a unary constant connective R : L — L defined by R(p) = R.
Then, the double-line rule above shows that R is right and left adjoint to R, and
therefore the Russell-type paradoxical constant R is a self-adjoint functor.

In order to express double adjointness, we need two functors (i.e., A and A7)
in the case of tonk, one functor (i.e., A) in the case of disconjunction, and no func-
tor at all in the case of paradox R. These exhibit differences in the uniformity of
double adjointness. Tonk exemplifies the most general case of double adjointness
and exhibits the lowest degree of uniformity. On the other hand, paradox instanti-
ates the strongest double adjointness, and exhibits the highest degree of uniformity.
Disconjunction exemplifies the only possibility in between the two.

We have thus led to three intensional degrees of paradoxicality (double adjointness
< uniform double adjointness < self-adjointness):

Right adjointto  Left adjoint to

Genuine paradox R Itself R Itself R
Disconjunction Diagonal A Diagonal A
Tonk Truth diagonal A+ Falsity diagonal A

The last two are caused by equivocation according to the categorical account of
logical constants. In contrast, paradox R is not so for the reason that self-adjointness
can be given by a single adjunction: if a functor is right (resp. left) adjoint to itself,
it is left (resp. right) adjoint to itself. This is the reason why we call it “genuine
paradox” in the table above. More conceptually speaking:

e Pseudo-paradoxes due to equivocation can be resolved by giving different names
to right and left adjoints, respectively, which are indeed different logical constants,
and it is natural to do so.

— The paradoxicality of such pseudo-paradoxes is just in mixing up actually dif-
ferent logical constants which are harmless on their own.

e On the other hand, we cannot resolve genuine paradox in such a way: there are
no multiple meanings hidden in the Russell-type paradoxical constant, and there
is nothing to be decomposed in genuine paradox.

— Genuine paradox is a truly single constant, and the paradoxicality of genuine
paradox is not caused by equivocation, unlike tonk or disconjunction.
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If we admit any sort of adjoint functors as logical constants, then we cannot
really ban genuine paradox, which is surely an adjoint functor. A naive formulation
of Lawvere’s idea of logical constants as adjoint functors, like “logical constants
= adjoint functors”, does not work here again (recall that we encountered another
case of this in the analysis of tonk). This is the reason why we have adopted the
iterative conception of logic in our formulation of categorical harmony. In that view,
logical constants must be constructed step by step, from old to new ones, via ad-
junctions. Since genuine paradox emerges via self-adjointness, however, there is no
“old” operation that is able to give rise to genuine paradox via adjunction. In this
way, categorical harmony based upon the iterative conception of logic allows us to
avoid genuine paradox.

5 Concluding Remarks: From Semantic Dualism to Duality

Let us finally address further potential implications of categorical logic to the theory
of meaning. The dualism between the referentialist and inferentialist conceptions
of meaning may be called the semantic dualism. Categorical logic may (hopefully)
yield a new insight into the semantic dualism, as argued in the following.

From a categorical point of view, “duality” may be discriminated from “dualism”.
Dualism is a sort of dichotomy between two concepts. Duality goes beyond dualism,
showing that the two concepts involved are actually two sides of the same coin, just as
two categories turn out to be equivalent by taking the mirror image of each other in the
theory of categorical dualities. Duality in this general sense seems to witness universal
features of category theory. Indeed, the classic dualism between geometry and algebra
breaks down in category theory. For example, the categorical concept of algebras of
monads encompasses topological spaces in addition to algebraic structures. Category
theory may be algebraic at first sight (indeed, categories are many-sorted algebras),
yet it is now used to formulate geometric concepts in broad fields of geometry,
ranging from algebraic and arithmetic geometry to knot theory and low-dimensional
topology. It is also a vital method in representation theory and mathematical physics.
Technically, there are a great number of categorical dualities between algebraic and
geometric structures (e.g., the Gelfand duality and the Stone duality). It may thus be
said that the concept of categories somehow captures both algebraic and geometric
facets of mathematics at a deeper level, and so there is duality, rather than dualism,
between algebra and geometry.

Just as in this sense category theory questions the dualism between algebra and
geometry, categorical logic opaques the generally received, orthodox distinction be-
tween model theory and proof theory, and presumably even the semantic dualism
above, suggesting that they are merely instances of the one concept of categori-
cal logic. For example, the Tarski semantics and the Kripke semantics, which are
two major instances of set-theoretic semantics, amount to interpreting logic in the
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category of sets and the category of (pre)sheaves, respectively (from a fibrational,
or in Lawvere’s terms hyperdoctrinal, point of view, we conceive of topos-induced
subobject fibrations rather than toposes themselves). On the other hand, proof sys-
tems or type theories give rise to what are called syntactic categories, and their
proof-theoretic properties are encapsulated in those syntactic categories. For exam-
ple, cartesian biclosed categories and x-autonomous categories give fully complete
semantics of intuitionistic logic and classical linear logic, respectively, in the sense
that the identity of proofs exactly corresponds to the identity of morphisms (note also
that the possibility of proof normalisation is implicitly built-in to categorical seman-
tics; if normalisation is not well behaved, syntactic categories are not well defined).
There is thus no dualism between model-theoretic and proof-theoretic semantics in
categorical semantics. That is, there is just the one concept of categorical semantics
that can transform into either of the two semantics by choosing a suitable category
(fibration, hyperdoctrine) for interpretation. Put another way, we can make a proof
system out of a given structured category (which is called the internal logic of the
category; some conditions are of course required to guarantee desirable properties
of the proof system), and at the same time, we can also model-theoretically interpret
logic in that category. This feature of categorical logic allows us to incorporate both
model-theoretic and proof-theoretic aspects of logic into the one concept. In a nut-
shell, categorical semantics has both proof-theoretic and model-theoretic semantics
inherent in it, and from this perspective, there is no dualism, but duality between
proof-theoretic and model-theoretic semantics, which may be called the semantic
duality.

We must, however, be careful of whether this sort of unification makes sense philo-
sophically as well as mathematically. There may indeed be some conceptual reasons
for arguing that we ought to keep model-theoretic and proof-theoretic semantics sep-
arate as usual. Yet we may at least say that categorical logic exposes some common
features of the two ways of accounting for the meaning of logical constants; at a
level of abstraction, model-theoretic and proof-theoretic semantics become united as
particular instances of the one categorical semantics. The philosophical significance
of that level of abstraction is yet to be elucidated.
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The Paradox of Knowability
from an Intuitionistic Standpoint

Gabriele Usberti

Abstract An intuitionistic solution to the Paradox of Knowability is given. It
consists (i) in accepting « — K, the ordinary formalization of the principle of
Radical Anti-Realism (RAR) that “Every truth is known”, since, intuitionistically
understood, it means that proofs are epistemically transparent; and (ii) in accepting
(RAR) itself, on the basis of the fact that knowledge is an intuitionistic internal truth
notion. Some neo-verificationist approaches are criticized. Finally the problem of
how to frame a rational discussion between Classicism and Intuitionism is briefly
discussed.

Keywords Intuitionism - Knowability paradox - Anti-realistic theory of meaning -
Truth notions + BHK-interpretation

1 Introduction

The Paradox of Knowability! is an argument that from the principle of Knowability
(K) Every truth is knowable,

accepted by anti-realists of all sorts, derives the principle of Radical Anti-Realism
(RAR) Every truth is known,

which, on the contrary, virtually no anti-realist would be prepared to accept. Contra-
posing, if one does not want to accept (RAR), one must reject (K) as well.”

I'The paradox is usually ascribed to F. Fitch, but is due in fact to A. Church. For its history see
[18].

20f course, an intuitionist might also accept the negation of (K) without accepting that there
are unknowable truths.
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In a nutshell, the argument has the following structure. I shall use the symbols
&, +, D, =, —, I1, X for the classical logical constants; and A, V, —, <>, =, V, 3
for the intuitionistic ones. First, (K) and (RAR) are formalized by the two following
schemas, respectively:3

)] aDOKa
(2) aD>Ka.

Then replace « in (1) with the proposition “g & — K ¢”’; you obtain the following
instance:

3 (g & —Kq) D 0K(g & —Kq),

from which it is not difficult to derive, by means of intuitively acceptable principles,
the unacceptable (2). The principles are the following:

(a) OK(a@ & B) D (Ka&Kp)
(b) OKaDa)
(c) O & —a) D 1)
() —(a & —B)D(aDp),
and this is the derivation:*
lq & —Kq]'
by (3
OK(g & —Kq) gy((;)
OKqg&K-Kgq) by (b)
OKq & —-Kq) by (c)
o) -0
T DE
“G&-Kp !
Wby (d

The paradox is usually viewed as an argument against anti-realism, when this is
conceived, according to a famous proposal by Michael Dummett, as a doctrine con-
cerning meaning rather than ontology. Dummett writes:

Realism I characterise as the belief that statements of [a certain] class possess an objective
truth-value, independently of our means of knowing it: they are true or false in virtue of
a reality existing independently of us. The anti-realist opposes to this the view that the
statements of [that] class are to be understood only by reference to the sort of thing which
we count as evidence for a statement of that class.’

3«K” should be read as “It is known that”.
4Qbserve that this last step, and principle (d), are not intuitionistically valid.
SReference [2], p. 146.
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The fundamental opposition between realism and anti-realism concerns therefore,
according to Dummett, the key notion of the theory of meaning, i.e. the notion in terms
of which the meaning of the statements of the given class is to be explained: truth
according to the realist, evidence according to the anti-realist. However, since Dum-
mett holds that meaning is to be explained in any case in terms of truth-conditions,
and that for the anti-realist truth can consist only in the existence of evidence, the
realism/anti-realism opposition, in the final version he offers, concerns the notion of
truth to be used in explaining meaning: the bivalent notion according to the realist,
some non-bivalent notion according to the anti-realist. The criterion of realism is
therefore, in Dummett’s opinion, the acceptance/refusal of the bivalence principle
concerning truth.

Notice that this raises immediately a question: if we are ready to oppose the
realistic, bivalent, notion of truth with other, non-bivalent, notions, we must ask at
which conditions a notion can be considered as a notion of fruth. I shall return to this
question later. For the time being let me observe that the story of the semantic char-
acterization of the realism/anti-realism debate is not finished. After Dummett it has
been observed that all the anti-realistic notions of truth on the market (truth as assert-
ibility, truth as existence of a verification, and so on) share a general characteristic:
that truth is an epistemic notion, and therefore is essentially knowable. Knowability
has therefore been identified as the essential property of truth, and anti-realism has
been characterized as the view that every truth is knowable. It is precisely this feature
of anti-realistic truth that the paradox is intended to hit.

In this paper I shall first argue that an intuitionistic solution to the paradox is avail-
able; then I shall examine the position of neo-verificationism concerning the paradox;
finally I shall briefly consider the general question of how a rational discussion of
alternative logics is possible at all.

2 An Intuitionistic Solution

The first step towards an intuitionistic solution is the remark that the formalizations
of (K) and (RAR) by (1) and (2), respectively, acquire a meaning very different
from the intuitive one if the logical constants occurring in them are understood
according to the BHK-explanation, i.e. the explanation of their intuitionistic meaning
given by Brouwer, Heyting and Kolmogorov, and that the intuitionistic formulas
corresponding to (1) and (2), namely

(1 a— OKa
2" a— Ko,

6 As it will become evident below, the argument stated in this paper in no way relies on Dummett’s
opinion (for which see for instance [4], p. XXII) that also an anti-realist should explain meaning in
terms of truth-conditions.



118 G. Usberti

are valid, independently from there being a Church-Fitch argument (whose last step
is not intuitionistically valid).

2.1 (2') is intuitionistically valid

Intuitionists do not agree with Dummett and other neo-verificationists that meaning
is to be explained in any case in terms of truth-conditions. According to them, «The
notion of truth makes no sense [ ...] in intuitionistic mathematics»’; the key notion of
the theory of meaning is the notion of proof, and understanding « (knowing its mean-
ing) is to be explained as being capable to recognize the proofs of «. The content of
a mathematical statement « (what Frege would have called the thought expressed by
«) is characterized by Heyting as the expectation of a proof of «. What a proof of « is,
is explained by recursion on the logical complexity of «, under the assumption that
we have an intuitive understanding of what is a proof of an atomic statement. This is
the BHK-explanation. I think a revision of this explanation is necessary concerning
disjunction and existential quantification.® According to Heyting, a proof of o Vv f8
is either a proof of « or a proof of 8; however, even the intuitionists consider, for
instance, “Prime(n) vV — Prime(n)”, where n is some very large number, as assertible
even if neither “Prime(n)” nor “—Prime(n)” is; I propose therefore to revise the
BHK-explanation in the following way: A proof of & V § is a procedure such that
its execution yields,” after a finite time, either a proof of « or a proof of 8.1 An
analogous modification of the clause for 3x« can be similarly motivated.

Summing up, the revised version of the BHK-explanation I will make reference
to is the following:

TReference [12], p. 279. It should be stressed that Heyting is speaking of the realist, platonic, notion
of truth. His assertion cannot therefore be understood as excluding that, within an intuitionistic
framework, it is possible to define some notion that, on the one hand, can plausibly be proposed as a
notion of truth, and, on the other hand, is reducible to others already present within that framework.
I shall come back to this point in Sect.2.2.

8For a more detailed motivation of this revision see [22], p. 42. The possibility of such a revision
is explicitly envisaged, but discarded, in [3], p. 20.

9Yields” is to be understood as equivalent to “is known to yield”.

10For instance, a proof of “Prime(n) vV — Prime(n)” is a primality test for n, i.e. an algorithm
for determining whether n is prime. Such a test should not be confused with a general method
consisting in applying to every number x a test for the primality of x (this general method is a proof
of “Vx(Prime(x) vV — Prime(x))”).
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Definition 1

A proof of is

aAnB a pair (1, mp), where 7y is a proof of « and 3 is a proof of B

aVvp a procedure p whose execution yields, after a finite time, either a proof of « or a
proof of B

a— B a constructive function® f such that, for every proof = of ¢, f () is a proof of B

o a constructive function f such that, for every proof 7 of «, f (;r) is contradiction

Vxa© a constructive function f such that, for every ¢ € D, f(c) is a proof of a(e)?

Ixal a procedure p whose execution yields, after a finite time, a pair (c, ), where

¢ € D and r is a proof of a(c)t
T where x varies on D
¥ cis aname of ¢
“Heyting speaks of “general method”; I shall use throughout “constructive function” (or briefly
“function”) with the same meaning.

In order to arrive at defining the meaning of (2"), we must ask how to define a proof
of K. There is no official intuitionistic answer, and there are several possibilities,
according to the intended intuitive reading of K: “« is presently known by someone”,
“a is known by someone at some time”, “« is presently known by the one who is
considering «””, and so on. I shall choose the last reading because, on the one hand,
it seems to be the most congenial to intuitionistic ideas and, on the other hand, it is

equivalent to the other readings for my present purposes. Here is my proposal:

Definition 2 Whenever one is presented with a proof of o, a proof of K« is the
observation that what one is presented with is a proof of «.

In the light of Definitions 1 and 2, (2') expresses the expectation, for any proposition
«, of a function f associating to every proof 7 of « the observation that 7 is a proof
of a.

Now, a fundamental characteristic of proofs, as the intuitionists conceive them,
is that «for them, esse est concipi», to quote Dummett’s illuminating formulation.'!
In other words, a proof of « is essentially what is recognized as such by an idealized
knowing subject: there is no point of view from which something can be judged to
be a proof of « in spite of the fact that an idealized subject who is presented with it
does not judge it as a proof of «, or from which something can be judged not to be a
proof of « in spite of the fact that an idealized subject who is presented with it does
judge it as a proof of «. I shall call this characteristic of intuitionistic proofs their
epistemic transparency; it can be expressed in the following way:

(4) A proof of « is epistemically transparent if and only if a subject who is
presented with it is in a position to know that it is a proof of «.

11«[M]athematical objects [...] are mental constructions [...] in the sense that, for them, esse est
concipi.» [3, p. 7].
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Alittle!? reflection shows that, if proofs are transparent, the function f whose expec-
tation is expressed by (2') does exist: by (4), for any proof 7 of «, if one is presented
with 77, one is in a position to know that 7 is a proof of «; so one can associate to
the observation that 7 is a proof of «; and this, by Definition 2, is the proof of K «
required by the definition of f. Conversely, if a subject s knows, i.e. can compute, a
function f associating to every proof 7 of « the observation that 7 is a proof of «,
then s, when presented with a proof of «, is in a position to know that it is a proof
of a. In conclusion (2'), far from saying that every intuitive truth is known, says
that proofs are epistemically transparent, and is therefore obviously true; moreover,
it remains true if K is read as “is known by someone at some time”, since, if « is
presently known by me, then « is known by someone at some time.

Williamson [25], pp. 430—1, raises the following objection to the validity of (2).
He first argues that a proof of @ — B should be conceived by intuitionists as a
function f from proof-tokens to proof-tokens «that is unitype in the sense that if p
and g are proof-tokens of the same type then so are f(p) and f(q).» Then, under
the assumption that

a proof of « — Ko is a unitype function that evidently takes any proof-token of « to a
proof-token, for some time ¢, of the proposition that « is proved at 7,

he shows that, if & has not yet been decided, the function f that associates to every
proof-token of « a proof-token of the proposition that « is proved at ¢ is not unitype:
if the proof-token p is carried out at #; and the proof-token ¢ is carried out at #, where
1 # t, then f(p) # f(q), since the proposition that « is proved at #; is different
from the proposition that « is proved at #,. However, the quoted assumption is by no
means conceptually necessary, nor is it a consequence of the general conception of
proofs of conditionals as unitype functions. If we assume that a proof of « — K « is
a unitype function that takes any proof-token of « to a proof-token of the proposition
that « is proved (with no mention of the time at which it is proved), f is unitype.

Let us now consider (17). It is more difficult to suggest an intuitionistic reading for
it, since it is not easy to devise a clear intuitionistic sense for the possibility operator.
Here is one plausible candidate:

Definition 3 A proof of O« is a procedure such that its execution yields,'? after a
finite time, a proof of «.

According to this explanation, (1”) expresses the expectation, for any proposition «,
of a function g associating, to every proof 7 of o, a procedure p whose execution
yields, after a finite time, the observation that what one is presented with is a proof
of . Now, if we remember that the function f whose expectation is expressed by
(2') does exist, and that f associates, to every proof 7 of «, directly the empirical
observation that 7 is a proof of o, we see that also the function g exists: the procedure

12(To be in a position to know p, it is neither necessary to know p nor sufficient to be physically
and psychologically capable of knowing p. No obstacle must block one’s path to knowing p. If one
is in a position to know p, and one has done what one is in a position to do to decide whether p is
true, then one does know p. [...] Thus being in a position to know [...] is factive.» [27, p. 95].

13«Yields” is to be understood as equivalent to “is known to yield”.
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consists precisely in effecting the empirical observation. In conclusion, also between
the content of (1’) and the intuitive content of (K) there is a substantial difference.

2.2 Truth Notions

The second step towards a solution consists in looking for a plausible intuitive sense
of (K) and (RAR), according to which not only (K), but also (RAR), becomes accept-
able. Of course, there is a sense in which (RAR) is not acceptable; my question is
whether there is a sense in which it is. A first component of such a sense has already
been made explicit: it consists in giving the logical constants their (revised) BHK-
sense. The second component is of course the concept of truth, which (K) and (RAR)
explicitly refer to. It is at this point that a problem mentioned above becomes relevant:
at which conditions is a notion a notion of truth?

First, let me explain why, exactly, the question is crucial. If we read a formula
of the language of classical propositional logic (CPL), it is natural and correct to
read an occurrence in it of a propositional letter, say p, as “p is true”; for example,
the intuitive reading of an instance of the schema o + —a would be, “Either p is
true or —p is true” (which, given the definition of “p is false” as “—p is true”, is
equivalent to “Either p is true or p is false”). This is correct because the key notion
of the realistic explanation of the meaning of the logical constants is the realistic (i.e.
bivalent) notion of truth; but it is no longer legitimate when we consider a formula of
the language of IPL, since the key notion of the BHK-explanation is not the (bivalent)
notion of truth. As a consequence, the simple occurrence of p will not be sufficient
to make reference to the truth of p: in order to make reference to the truth of p it
will be necessary to use a truth-predicate, or a truth-operator. Notoriously, the choice
between expressing truth with a predicate or an operator has an impact on many other
things, in particular on the possibility of expressing semantic paradoxes; since the
questions discussed in this paper are independent of such a possibility, I shall choose
the simpler alternative of expressing truth with an operator. The question arises at
this point: what makes an operator a truth operator?

A plausible answer to this question is offered by Tarski’s Convention T, in the
case truth is expressed by a predicate. Tarski has proposed to consider a definition
of truth as materially adequate if it entails every sentence of the form

(®)] N is true if and only if t,

where N is the name of a sentence of the object language, and ¢ is a translation of
that sentence into the metalanguage. Since “materially adequate” means faithful to
our intuitions about the notion of truth, we can take the validity of (5) as a criterion
for a formally defined predicate to be a truth-predicate, i.e. a predicate defining a
notion we are intuitively prepared to consider a notion of truth.'* From this we may

14If T understand it correctly, [15], p. 148, makes essentially the same point.
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easily extract an analogous condition for an operator: an operator O can be seen as a
truth-operator if it is defined in such a way that it entails every sentence of the form

(6) O« if and only if t,

where « is a sentence of the object language and ¢ is a translation of that sentence
into the metalanguage. Finally, if we make the further simplifying assumption that
the metalanguage is an extension of the object language, (6) is equivalent to

@) O« if and only if «,

which is the usual version of what I shall call “The (T) Schema”.

So, my proposal is that an operator is to be considered as a truth operator if its
meaning is defined in such a way as to satisfy the (T) Schema. Before going on, let
me examine an objection to this proposal raised by Dummett. In The Logical Basis
of Metaphysics he writes:

It is sometimes alleged that what makes a given notion a notion of truth is that it satisfies
all instances of the (T) schema. This is wrong [...]. If a constructivist proposes that the only
intelligible notion of truth we can have for mathematical statements is that under which they
are true just in case we presently possess a proof of them, he is offering a characterisation
of truth for which the (T) schema fails, since truth, so understood, does not commute with
negation.

Let me try to make the argument explicit. Dummett is envisaging the case of a
constructivist who equates the truth of a (mathematical) statement « with the actual
possession of a proof of «. The intuitionist may be seen as a case in point, and in a
moment [ myself shall explicitly endorse this view. At this point Dummett, assuming
that a consequence of the (T) schema is that the following principle is valid:

®) T —¢ if and only if = T «,

remarks that (8) is invalid when truth is equated to the actual possession of a proof
(since from the fact that one does not possess a proof of T « it does not follow that
one possesses a proof of T —«), and concludes, by contraposing, that the (T) schema
is not valid. Here is the derivation of (8) from the (T) schema:

® 1) T-oiff —a [from (7), replacing o« with — «]
(i) —aiff " Ta [from (7), by contraposition]
(i) Toaiff " Ta [from (i) and (ii), by transitivity].

It seems to me that Dummett’s remark that (8) is invalid is not correct: = T o does
not mean that one does not possess a proof of T «, but that one possesses a method
to transform every proof of T« into a contradiction. When one possesses such a

5Reference [5], p. 166.
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method, one has a proof of —«; owing to the epistemic transparency of intuitionistic
proofs, one can effect the (empirical) observation that what one has is a proof of —«,
and this observation is a proof of K —«, i.e. of T —« under the present identification
of truth with the actual possession of a proof. In conclusion, when the truth of a
(mathematical) statement « is equated with the actual possession of a proof of «,
truth does commute with intuitionistic negation.'®

2.3 Internal and Intuitive Truth

The next question to consider is whether the validity of the (T) Schema picks out
a unique notion of truth. Tarski seems to hold that it does. In [21] he expresses the
conviction that the material adequacy condition imposed onto the definition of truth,
is capable to select the classical Aristotelian notion of truth as correspondence. The
conviction is not explicitly stated, but it can be inferred from the following facts:
(i) In section 1.3 Tarski expresses an intention:

We should like our definition to do justice to the intuitions which adhere to the classical
Aristotelian conception of truth [...] we could perhaps express this conception by means of
the familiar formula:

The truth of a sentence is its agreement with (or correspondence to) reality.)

(i1) In section 1.4 the same intention is made precise by requiring that the definition
satisfies the material adequacy condition. Hence, the material adequacy condition
‘does justice’ to the intuitive notion of truth as correspondence. The question whether
the intuitive notion of truth as correspondence is bivalent is not explicitly addressed
by Tarski; an affirmative answer from him is suggested by the fact that in [20]
he derives the principle of bivalence from the (materially adequate) definition of

16Notice that truth commutes with intuitionistic disjunction as well, since the principle
*) K(a v ) — KaVvKp)

is valid. A proof of (x) is a function f transforming every proof of K(« V f) into a proof of K & VK B;
a proof  of K(«a Vv B) is the observation that what one is presented with is a procedure p; such
that its execution yields, after a finite time, either a proof of « or a proof of 8. Define the following
procedure pj:

e apply p1;

e if the outcome is a proof of «, perform the observation that what one is presented with is a proof
of «, getting a proof of K «;

e if the outcome is a proof of B, perform the observation that what one is presented with is a proof
of B, getting a proof of K 8.

Of course p; is a procedure such that its execution yields, after a finite time, either a proof of K «
or a proof of K ; we can therefore take py as f ().

17Reference [21], pp. 342-3.
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truth.'® However, the derivation crucially uses Excluded Middle, as is made clear by
the following steps:

(10) 1) o+ —« [the law of Excluded Middle]
() Ta=« [the (T) Schemal]
(i) Ta+T—«a [from (i) and (ii) by Replacement].

So, Tarski’s conviction is correct only under the premiss that the metalanguage is
associated to a metatheory whose semantics validates Excluded Middle. If this princi-
ple is not valid in the metatheory, it is possible to exhibit counterexamples to Tarski’s
conviction, namely it is possible to define a non-bivalent notion of truth satisfying
the (T) Schema. I shall now show how.!?

Let us adopt a metatheory in which the logical constants are read according to
the (revised) BHK-explanation (which, of course, does not validate the Excluded
Middle). We are looking for a materially adequate definition, i.e. such that all the
equivalences

Y Ta <«

are logical consequences of it (where T is the intended truth operator). The definition
I suggest is the following?’:

Definition 4 Ta =g Ko,

where the meaning of K is defined by Definition 2. Definition 4 is materially adequate:
(2") is valid for the reasons explained above; and the converse

(12) Ka—a

is valid as well: it expresses the expectation of a function / associating, to every
observation o that what one is presented with is a proof of «, a proof h(0) of «,
and h is warranted to exist by the factivity of proof observation.?! In conclusion, the
knowledge operator K is a truth operator, and of course this operator does not satisfy
the principle of bivalence.

Concluding, it is true both (i) that the validity of the (T) schema expresses our
essential intuition about the notion of truth, and (ii) that our most common intuitive
notion of truth is realistic; but the reason why (ii) holds is bivalence, not the (T)
schema: the validity of the (T) schema is neutral among different intuitive notions of
truth. It is therefore possible, and necessary, to introduce a clear distinction between

18Reference [20], pp. 197-8. The principle of bivalence is called by Tarski “The principle of excluded
middle”.

19 Another example is the notion of truth defined in [14].
20Remember that the definition is intended to apply to mathematical statements.

21 The factivity is warranted by the assumption that proof observation can plausibly be conceived
as a computational process.
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the condition at which an operator is a truth operator and the condition at which an
operator reflects our realistic intuitions about the notion of truth; the former consists
in the validity of the (T) schema,?? the latter may be epitomized into the slogan of
truth as correspondence and consequently into the validity of the law of bivalence.
A notion satisfying the former condition is capable to play (at least some of) the
roles of the notion of truth; truth as correspondence constitutes our predominant
common-sense notion of truth. Between these two extremes there is a variety of truth
notions, of which knowability and existence of a verification are two instances. I
shall call “internal” these theoretical notions of truth, to stress the fact that each of
them is capable to play the, or at least some of the, conceptual roles of the notion
of truth within the framework of the related theory of meaning and of the formal
semantics that adopts it. In this terminology we can say that bivalent truth is both the
predominant intuitive notion of truth and the internal notion of classical logic; and
that, besides it, there are several other internal notions of truth.

At this point it should be clear that an intuitive sense of the principle (RAR),
according to which it becomes acceptable, does exist: for, if the logical constants are
understood according to the BHK-explanation, and truth is understood according to
Definition 4, then (RAR) is a tautology, saying that every known statement is known.
The intuitionistic solution of the paradox consists therefore in accepting (RAR) as
obvious when the logical constants are understood intuitionistically and truth as
internal.

Is the idea of equating truth to knowledge consistent? There is an argument—
called by [16] “The Standard Argument”—that purports to show that it is not.>3 It
consists in the following derivation of o (o A — K &) from the assumptions p VvV —p
and =K p A—=K=-p:

(13)
2 [p A=KpP [-p A=K=p]*
(pA=Kp)V(=pA—-K=p) Ja(ax A " Ka) Ja(x A~ Ka)
3,4
Ja(a A —~Ka)
where Z is:
[p! -Kp [~p)? —K-p
pA—Kp —pA—K-p
pV—p (p A=Kp)V(=pA—-K=-p) (pA=Kp)V(=pA—-K=-p) 12

(pA=Kp)V(=pA—=K-p)

22The claim that an operator O is a truth operator iff it satisfies the schema (7) should not be
confounded with the minimalist claim that (7) is a good definition of the meaning of O. The former
claim is perfectly compatible with the idea, embraced above, that the validity of (7) is not the
definition, but the material adequacy condition of the definition, of O.

23See [16], p. 275.
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Now, if we observe that there are statements p that the intuitionist acknowledges as
being decidable (i.e. such that p v —p is assertible), and that, as a matter of fact, are
unknown (i.e., such that =K p A =K —p is true),?* we obtain that 3o (¢ A = K a)
is assertible.

My answer consists in observing that the argument is valid but unsound, since
—K p A =K —p is intuitionistically inconsistent. Assume that =K p A =K —p is
assertible, and reason in the following way:

[-KpA=K-pl'  [pP  [=Kpar=K-pl'  [=pP
—Kp Kp —K-=p K=p
(14) L, 1
—-p ——p
1
—(—=KpA—=K-p)

The formula 3o (@ A — K o) may therefore be false. In order to show that it is actually
false, let us wonder whether there could be a proof of it, i.e. a procedure p whose
execution yields, after a finite time, a pair (c, ), where c is a proposition and 7 is
a proof of ¢ A =K c. A proof of ¢ A =K is a pair (7, m2), where 7| is a proof
of ¢ and m; is a proof of =K ¢; such a pair cannot exist, on pain of contradiction:
being presented with 1, one can effect the observation that what one is presented
with is a proof of ¢, thereby obtaining a proof 73 of K ¢; coupling 73 with 7, we
obtain a proof of K ¢ A— K c¢: a contradiction; p cannot therefore exist. In conclusion,
the intuitionist cannot assert Jo (o A — K «), and the idea of statements that, being
unknown, are not yet true nor false is not inconsistent.

The intuitionistic inconsistency of = K p A— K —p may sound unacceptable from
the intuitive standpoint, since it seems to conflict with the idea, which also an intu-
itionist should accept, that there are undecided, hence unknown, statements. Here
it is important, again, to pay attention to the intuitionistic meaning of the logical
constants, in particular of negation. The assertibility of =(— K« A =K —«) means
that a method is known to transform every proof of =K« A =K — into a contra-
diction, hence that a logical obstacle is known to the possibility that there is a proof
of =K a A =K —a; it does not exclude the fact that neither o nor —¢ are known. We
will see in a moment whether the existence of such a fact can be acknowledged within
the intuitionistic conceptual framework. Before, I want to comment upon the exis-
tence of a logical obstacle to the possibility that there is a proof of =Ko A =K —c.
This is neither unacceptable nor unexpected if we keep present that the operator K
is, in intuitionistic logic, a truth-operator; for it is a principle valid in general, i.e.
for every internal notion of truth, that the formula expressing the proposition “p is
neither true nor false” is inconsistent. Take for instance the formula — Tao & — T —a,
expressing the same proposition within classical logic, and reason exactly in the same
way as in (14), simply replacing — with —, and A with &. The crucial step is the

24 An example is “Prime(n)”, where n is some very large number.
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inference of T o from «; in other terms, the inconsistency of the formula expressing
the proposition “« is neither true nor false” depends on the validity of the principle
a — Ta (together with propositional laws that are common to classical and intu-
itionistic logic). We have seen that the reason why that principle is intuitionistically
valid is the assumption that proofs are epistemically transparent; of course this very
assumption may be questioned,? but the issue of its truth or falsity is utterly differ-
ent from the question whether there are intuitive truths that, as a matter of fact, are
unknown.

2.4 Unknown Statements

I'have said that the assertibility of —=(— K o A = K =) does not exclude the existence
of the fact that neither o nor —« are known. Can the intuitionist assert the existence
of such a fact? I think not, and in this section I shall try to motivate this opinion.
Let me observe first that “K «”, in all its possible readings, clearly is an empirical
statement, not a mathematical one. I have argued elsewhere that the negation of many
empirical statements, and in particular of K-statements, cannot be plausibly equated
to intuitionistic negation —, and I have proposed that it be equated to Nelson’s strong
negation ~.2¢ So, if we add ~ to the language Zpx of Intuitionistic Propositional
Logic plus the operator K, and we assume for simplicity that all the empirical sen-
tences of D%PLN,K have pI‘OOfS,27 we must add, to the Definition 2 of the notion of
proof of K «, a definition of the notion of proof of ~ K «. Here is my proposal:

Definition 5 Whenever one is presented with something that is not a proof of «, a
proof of ~ K « is the observation that what one is presented with is not a proof of «.

It should be noticed that Dummett’s remark—that intuitionistic truth, when it is
equated with the actual possession of a proof, does not commute with negation—is
certainly correct when it is understood as referring to strong negation. For example,
the observation that what one is presented with is not a proof that it is raining is
not the same thing as the observation that what one is presented with is a proof
that it is not raining. As a consequence, Dummett’s objection to the validity of the
(T) schema as a criterion for being a truth operator seems to cause trouble in this
case. However, in this case the argument (9) is no longer valid: the second step is an
application of contraposition, but contraposition is not valid for strong negation. As
a consequence, the fact that strong negation does not commute with truth does not
entail the invalidity of the (T) schema. We can therefore conclude that, even when
we add to intuitionism strong negation, the knowledge operator K is a truth operator.

25 A discussion of this assumption is beyond the limits of this paper.
26Reference [24].
27n general empirical sentences have (non-conclusive) justifications. A definition of the notion

of justification for the sentences of .Zjp ~x presupposes a solution of Gettier problems. I have
suggested such a definition in [23].
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It seems to me that, if the existence of undecided statements can be expressed at
all in an intuitionistic language, it should be expressible in .Zjp; ~k . Take for instance
g, Goldbach’s Conjecture: for the statement

(15) Goldbach’s conjecture is undecided (unknown)
the following formula seems to be a plausible formalization in Zp; ~:
(16) ~KgA~K-g.

Williamson argues against this formalization:

if ~ is to count intuitionistically as any sort of negation at all, ~A should at least be incon-
sistent with A in the ordinary intuitionistic sense.”8

In other words, the schema
(17) ~o — -,

should be valid; then, from (16) one could derive =K g A =K —g, which, by (2)
and (13), is equivalent to =g A ——g: a contradiction. However, the assumption that
(17) is valid for all a of Zjp; ~x seems to be a sort of petitio principii, since, on
the one hand, it almost amounts to assuming what one wants to conclude, i.e. that
(16) is inconsistent, and, on the other hand, the motivation for it seems insufficient.
Notice that (17) is valid for all & belonging to Zpy ~ ,29 50, according to Williamson’s
criterion, ~ does count intuitionistically as a sort of negation; the possible invalidity
of (17) when « contains occurrences of K can therefore be imputed to the interplay
between the meanings of K and ~. On the other hand, (17) is clearly invalid when «
contains occurrences of K. Consider the instance

(18) ~Ka——-Ka:

it asserts the existence of a function f associating to every proof of the antecedent a
proof of the consequent. A proof of the antecedent is the observation that what one is
presented with is not a proof of «; this observation is true in two cases: when one is
presented with a proof of ~«, and when one is presented with some x that is neither
a proof of ~« nor a proof of «. In the second case f should associate to x a function
S’ associating to every proof of K p a contradiction; but f’ cannot exist: as x is not
a proof of ~«, the existence of a y that is a proof of @ cannot be ruled out, and if one
observes that y is a proof of «, that observation is a proof of K .

However, if we look at the interplay between intuitionistic logical constants,
strong negation and K from the standpoint of Kripke semantics, the assertibility
of (18) seems to be out of the question. A Kripke model for Lpy ~ is a quadruple

28Reference [26], p- 139.
29Reference [9)].
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M = (W,>, D, V), where W is a non-empty set (of nodes), > is a reflexive partial
order on W, and V is a partial function from atomic formulas and nodes to {0, 1}
satisfying the following conditions:

o If V(p, w) = 0 and wRw’, then Val(p, w’) = 0;

if V(p, w) =1 and wRw’, then Val(p, w’) = 1 (stability).
e Foreveryw € W, V(L,w) =0.

Foreveryw e W, V(~L,w) = 1.

The notion F,, o (« is true at w) is defined by induction on « as follows:

Fo piff V(p,w) =1

Fw~piff V(p,w) =0

w~L

waABiff Ey, aand F, B

w ~(a A B)iff Fy ~a or Fy ~B

waVpiff Fy, o or Fy B

w ~(a Vv p)iff F, ~a and F,, ~pB

w o — B iff, forevery w' > w, if F, o then F, B
w ~(a— p)iff F, « and F,, ~B.

L L L L L A L I |

Now, if we add the operator K to .Zjpr ~, the only definition I can see that is faithful
to Definition 5 is the following:

19) Fuw Ko iff Fy o

Fu ~ Ka iff, for some w’ > w, F, ~a.

Call any Kripke model for .#jp; ~ in which these clauses hold a model for .Zjp; ~x.
Consider now the following model .# of .#}p; ~x, where V (g, w) is undefined,
V(g,w;) =0and V(g, wp) = 1:

w1 w7
w
A falsifies at w all the following formulas:

~Kg—>—Kg
~Kg—~g
~Kg——g
~K—-g— ——g.

On the other hand, F,, ~K g A ~K —g; but the constraint of monotonicity is not
met: not =, ~K g and not =, ~K —g.
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3 Neo- Verificationist Approaches

Does the paradox of knowability threaten the neo-verificationist, who normally
equates truth with knowability rather than with knowledge?

Let us observe, first of all, that, even within the intuitionistic conceptual frame-
work, it would be possible to suggest a definition of truth different from the one given
above:

Definition 6 TR o =g.r. Jo (proves(o, a)).

Of course, if this definition is proposed within the intuitionistic conceptual frame-
work, the metalinguistic existential quantifier is to be understood intuitionistically:
a proof of Jo (proves(o, «)) is a procedure p whose execution yields, after a finite
time, a pair (o, ), where o is a construction®? and 7 is a proof of “o proves o”.

It is easy to see that Definition 6 is materially adequate. Define the following
function f: if o is a proof of «, f (o) is the following procedure p: (i) take o; (ii)
effect the observation 7 that o proves «; (iii) construct the pair (o, ). Since proofs
are epistemically transparent, the observation s terminates after a finite time, and the
pair (o, ) is therefore a proof of Jo (proves(o, o)), i.e. of TR «. Conversely, define
the following function g: if p is a procedure whose execution yields, after a finite
time, a pair (o, ), where o is a construction and 7 is a proof of “o proves «”, then
g(p) is o; since proof observation is factive, o is a proof of «.

Definitions 4 and 6 are not extensionally equivalent. Consider the sentence
“Prime(n)”, where n is some very large natural number, and suppose that the primal-
ity test has never been applied to n. Then one of the two statements “Prime(n)” and
“—=Prime(n)” is true, according to Definition 6, since (i) we know the primality test,
which is a procedure with the required properties, and (ii) we know that the primality
test, if it were applied, would answer either that n is prime or that n is not prime.
When truth is defined according to Definition 6, the truth of « is not a cognitive
state, but empirical accessibility to a cognitive state which is a proof of . On the
other hand, neither “Prime(n) nor “—Prime(n)” is true, according to Definition 4,
since we have a proof of neither statement, owing to the fact that the primality test
has not been applied to n. Hence, according to Definition 6 there are statements
that are true although they are not known now, and possibly not even in the future;
while according to Definition 4 there are no statements of this kind: there are only
unknown statements waiting to be made true (i.e. known) by our activity of proving
mathematical statements or coming to know empirical statements.

The essential point to notice in this connection is that the following formula is
intuitionistically valid:

(20) Jdo (proves(o, o)) < Ka,

30Throughout the present paper I adhere to the intuitionistic idea that proofs (of mathematical
statements) belong to a domain of mental constructions. As a matter of fact, I find it much more
appropriate to conceive proofs as belonging to the category of cognitive states; on this point see
[24], §2.
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since both subformulas are equivalent to the same formula «v. How is this possible?
The validity of (20) puts dramatically into evidence a peculiarity of intuitionistic
logic which deserves being stressed. Suppose that the procedure p described above,
were it applied, would give as a result that n is prime. According to Definition 6, what
determines the truth of “Prime(n)” before the execution of p is a mere fact (if itis a
fact): the fact that the execution of p will give as a result a proof of “Prime(n)”. Now,
the essential characteristic of intuitionistic logic, as Heyting conceives it, is its being
a logique du savoir, opposed to classical logic as a logique de [’étre'; this entails that
the intuitionistic meaning of the logical constants, implication in particular, must be
explained in terms of cognitive states instead of facts and relations between facts.3?
Hence, the mere fact that “Prime(#n)” is true before the execution of p plays no role in
determining the assertibility or the non-assertibility of any formula of intuitionistic
logic; in particular, it does not conflict with the validity of (20).

As a consequence, if one wanted to define a notion of intuitionistic truth by means
of Definition 6 instead of 4, one would face a dilemma: either to accept (20), whose
validity follows from the fact that the biconditional is read intuitionistically, giving
up the possibility of expressing the fact that there are true but unknown statements;
or to insist that there are intuitionistically true but unknown statements, giving up the
intuitionistic reading of the logical constants occurring in the semantic metalanguage.

The moral drawn from this dilemma by the realist is clear: there are statements
that are intuitionistically true but unknown; hence, as shown by the paradox, there
are also statements that are intuitionistically true but unknowable; therefore (K)
must be rejected. Equally clear is the moral drawn by the intuitionist: both linguistic
and metalinguistic logical constants must be read intuitionistically, hence (20) is
valid, and the notion of truth defined by Definition 6 either is to be rejected, or has
intuitive consequences that cannot be expressed in an intuitionistic language. There
is, however, a third answer that can be, and has been, proposed—an answer I should
call “hybrid”: it consists in defining truth by Definition 6, in insisting that there are
intuitionistically true but unknown statements, in giving up the intuitionistic reading
of the metalinguistic logical constants, adopting for them a classical reading, and in
accepting (K). This position is instantiated by whoever accepts (K) rejecting at the
same time (RAR); for the reason why (RAR) is judged unacceptable can be only that
it is understood as expressing the thought that every « is either false or known, i.e.
is understood on the basis of the classical reading of the implication occurring in its
formalization.

31 «Heyting [10] has opposed intuitionistic logic as the logic of knowledge (logique du savoir) to
classical logic of existence (logique de I’étre).» ([11], p. 107).

32This is the content of what Heyting calls principle of positivity: «Every mathematical or logical
theorem must express the result of a mathematical construction» ([11], p. 108. See also [10], p. 231).
In the case of implication, in particular, Heyting holds that within classical logic «il n’y a pas de
place pour une implication proprement dite, car chaque proposition est vraie ou fausse, et on ne
congoit pas comment sa vérité pourrait dépendre de celle d’autres propositions.» [10, p. 226] On the
contrary, «il est tout naturel que la démonstration d’une proposition dépende de la démonstration
d’une autre proposition.» (p. 233).
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Among the supporters of the hybrid position there are many neo-verificationists,
in my opinion. Be it as it may, it seems to me that this position incurs a paradox
strictly analogous to the paradox of knowability. Assume

(21) g A —Kg;

then, by Definition 6, there is a proof of g A =K g; let’s call such proof o ; then

(22) proves(o, (g A =K q));
by the definition of proof of a conjunction,?
23) o = (01, 02), where (proves(oy, q) & proves(oz, =K ¢q)).

Since o7 proves g, and proofs are epistemically transparent, it is possible to
perform the observation o3 that o proves ¢, and this observation is a proof of K p;
then
(24) proves(a3, K ¢);

if we now construct the pair 6’ = {03, 03), we have that

(25) proves(a’, (Kg A ~Kgq)),
hence
(26) Yo (proves(o, 1));

on the other hand, the meaning of L is characterized by saying that there is no proof
of L, hence the formula

27 —Yo (proves(o, 1))

is assertible: a contradiction. Therefore,

(28) —(gA—Kgq),
from which
29) q O Kg.

33 Cesare Cozzo argues, in [1], p. 76, that the existence of o1 and o7 is not a contradiction because
the existence of o, does not imply that there is a not proof of ¢. This may be conceded, but it does
not solve the paradox, as the next steps show.
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A possible way out consists in giving up the intuitionistic idea that proofs are
epistemically transparent; in this way the step from (23) to (24) is blocked. But the
price to pay is very high: as proof, or more generally verification, is the key-notion of
a neo-verificationist theory of meaning, the non-transparency of proofs/verifications
would create the same difficulties the neo-verificationists impute to the realist the-
ory of meaning because of the non-transparency of truth-conditions (essentially,
the non-satisfiability of the manifestability requirement imposed onto knowledge of
meaning).

Another way out has been proposed by Dummett. As a matter of fact, Dummett
has tackled the paradox in two papers,>* suggesting two different answers; since
the former has been explicitly withdrawn by him,?> T will consider only the latter.
Dummett’s solution consists in accepting

(30) o — —Ka,

rejecting at the same time (2). This is legitimated, firstly, by the fact that only (30),
not (2), follows intuitionistically from (1); secondly, by the fact that, if one reads
negation intuitionistically,

‘==K’ means ‘There is an obstacle in principle to our being able to deny that & will ever

be known’, in other words ‘The possibility that o will come to be known always remains
236

open

—which is precisely what the verificationist believes to hold good for every true .
Dummett does not explain why (2) should be rejected; he only remarks that what
(2) says is «contrary to our strong intuition» (p. 51). As I remarked at the beginning,
what (2) says is not contrary to our intuition if (2) is read intuitionistically; on the
contrary, it certainly is contrary to our intuition if what it says is that either the fact
that o does not obtain, or the fact that « is (or will ever be) known obtains; but this is
precisely the classical reading of the implication occurring in (2). Hence, Dummett
is reading classically the implication in (30), intuitionistically the double negation.
Such a hybrid reading is not justified; as a consequence, Dummett’s solution seems
quite ad hoc.

4 How Is a Rational Discussion Possible?

One essential ingredient of the solution I have proposed is the remark that, when the
logical constants are understood intuitionistically, the formalization (2") of (RAR)
becomes perfectly acceptable. On the other hand, when the logical constants are

34References [6, 8].

35 I do not stand by the resolution of this paradox I proposed in “Victor’s Error”, a piece I wrote in
a mood of irritation with the paradox of knowability.» [7, p. 348].

36Reference [8], p. 52.
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understood classically, (2) is utterly unacceptable. This situation is far from sur-
prising; on the contrary, it illustrates a general truth reminded above: the classical
meaning of the logical constants is deeply different from their intuitionistic meaning.
Consider for instance the schema “o or not «”’: classically understood (i.e., formalized
as o + —a) it expresses the intuitively true principle that every proposition is either
true or false, (intuitively true because our common-sense or pre-theoretic intuitions
about the world are predominantly realistic) whereas intuitionistically understood
(i.e. formalized as @ VvV —a) it expresses the intuitively false principle that every
proposition is decidable in the sense that there is either a proof or a refutation of it.

However, this situation generates a serious problem: the problem whether a ratio-
nal discussion between a supporter of classical logic and a supporter of intuitionistic
logic is possible at all. How is it possible that there is real disagreement or real agree-
ment between them, given that both disagreement and agreement about a principle
presuppose that the same meaning is assigned to it by both parties, while, as we
have just seen, the meaning of one and the same formula drastically changes across
classical and intuitionistic readings?

It seems to me that there are at least two alternative strategies to tackle the prob-
lem. The first consists in placing the discussion between the two parties before the
formalization of the intuitive notions (as the logical constants, the notion of truth,
and so on) into a formal language. The discussion, in this case, concerns questions
like the following:

(i) Which intuitive notions should be formalized? For instance: inclusive or exclusive
disjunction? Which notion of implication? Which notion of truth?

(i1) Which intuitive notion should be chosen as the key-notion of the theory of mean-
ing, i.e. as the notion in terms of which the meaning of the expressions of the formal
language (in particular of the logical constants) is to be characterized? For instance:
(bivalent) truth (as the realist claims), or knowability/existence of a proof (as the
neo-verificationist claims), or knowledge/actual proof (as the intuitionist claims)?

In this case the problem can be solved, provided that each party accepts the intel-
ligibility of the key-notion adopted by the other party; for only in this case a rational
discussion is possible: the same intuitive notions are accessible to both parties, and the
disagreement concerns the legitimacy, the adequacy, the fruitfulness, etc. of adopting
one notion or another as the key-notion. From this standpoint, Brouwer’s idea that
such classical notions as bivalent truth or actual infinity are unintelligible is to be
abandoned, in favor of a slightly different claim: that those classical notions, pre-
cisely because they are intelligible, turn out to be incapable to play the foundational
role the classicist gives them. Of course, such a claim should be motivated by a
rational argument; which means that a rational discussion would be possible.

The second strategy consists in placing the discussion between the two parties
after the formalization of the intuitive notions. In this case the problem of course
arises, owing to the fact that the choice of different key-notions for the theory of
meaning induces differences in the meaning of the logical constants. However, there
may be tactics to solve it.
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I'hold the first alternative is better, but I have not an a priori argument; I will argue
for my thesis by considering what seems a very plausible tactics and explaining why,
in my opinion, it is not viable.

The tactics is based on the idea of translating one logic into the other, analogously
to the case of the translation of a language into another. As a matter of fact, there are
several so-called ‘translations’, both of classical logic/mathematics into intuitionis-
tic logic/mathematics—the so-called negative translations (by Kolmogorov, Godel,
Gentzen, Kuroda and others); and of intuitionistic logic/mathematics into extensions
of classical logic/mathematics (Shapiro, Horsten, Artemov). I shall not enter here
into a detailed discussion of this tactics. I want only to stress an obvious fact: that
the so-called ‘translations’ are not translations at all. A translation, in general, must
be correct, and it is correct if it is meaning-preserving, i.e. if, for every expression
E of .Z (the language to be translated), its translation Tr(E) into .’ has the same
meaning as E (whatever meaning is). But there is no reason to believe that the ‘trans-
lations’ mentioned above are meaning-preserving. Consider for instance the BHK
clause for implication; Shapiro himself admits that the notion of “transformations of
proofs” cannot be captured in the language of Epistemic Arithmetic, and Smoryniski
has observed that the ‘translation’ of intuitionistic logic into epistemic logic «does
not capture the full flavor of talk about methods» (p. 1497).37 To make another exam-
ple, Kuroda’s negative translation is based on a simple idea: that intuitionistic double
negation is a sort of ‘equivalent’ of classical truth; this is surely true if one aims at
a faithful ‘immersion’ of classical logic into intuitionistic logic (i.e. at a representa-
tion preserving theoremhood), but not if one aims at a genuine translation, for the
classical truth of ¢, expressed by its occurrence within any formula, is something
very different from the existence of an obstacle in principle to our being able to deny
that «, expressed by ——a. Moreover, there seems to be a conceptual reason for the
impossibility of a genuine translation of one logic into another: on the one hand, a
translation is correct only if it is meaning-preserving; on the other hand, classical
logic explains the meaning of the logical constants in terms of a notion (bivalent
truth) the intuitionist considers unintelligible or illegitimate, and also the converse
is true (the classicist finds mysterious the intuitionistic notion of general method or
effective function): so it seems unlikely that one of them finds in his own language
an expression with the same meaning of an expression of the other’s language.

5 Conclusion

The Paradox of Knowability is a paradox if the logical constants occurring in its
formalization are understood according to the realist explanation of their meaning;
but in a discussion between realists and anti-realists one cannot assume that anti-
realists understand them in this way, for the paradox is intended to be an argument
by which the former try to convince the latter to abandon their views on the meaning

3Reference [13], p-9.
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of the logical constants, and such an argument cannot be convincing if, in order to be
formulated, it requires anti-realists to give up preventively their views. Vice versa,
the paradox completely vanishes when the logical constants occurring in its formal-
ization are understood according to the BHK explanation, since it is now necessary
to distinguish two notions of truth: internal intuitionistic truth, which coincides with
knowledge, and intuitive truth, essentially consisting in correspondence to external
reality; in the former sense it is obvious that every truth is known, in the latter it is
equally obvious—also for the anti-realist—that not every truth is known, and also
that not every truth is knowable. From this point of view, the view of the paradox as
an argument against anti-realism is the result of a wrong way of conceiving the rules
of a rational discussion between classicist/realist and intuitionist/anti-realist.

In conclusion, the Paradox of Knowability leaves the debate between realists and
anti-realists at the same point it was before its discovery. The crucial point of the
debate is which notion between truth and evidence should be adopted as the key
notion of the theory of meaning, or—if we accept the (in my opinion misleading)
idea that meaning is to be explained in any case in terms of truth-conditions—which
notion of truth, between bivalent and non-bivalent truth, the theory of meaning should
be built on; in this case, the criterion for distinguishing realism from anti-realism
cannot be the acceptance or refusal of the intuitive principle (K), but the acceptance
or refusal of the principle of bivalence, according to Dummett’s original suggestion.
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Explicit Composition and Its Application
in Proofs of Normalization

Jan von Plato

Abstract The class of derivations in a system of logic has an inductive definition.
One would thus expect that crucial properties of derivations, such as normalization in
natural deduction or cut elimination in sequent calculus or consistency in arithmetic
be proved by induction on the last rule applied. So far it has not been possible to
implement this simple requirement uniformly. It is suggested that such proofs can
be carried through by a ‘Hilfssatz’ methodology that is hidden in Gentzen’s original
unpublished proof of the consistency of arithmetic: to prove that a suitably chosen
property of derivations is maintained under the composition of two derivations. As
examples, new proofs by induction on the last rule in a derivation are given for
normalization and strong normalization in natural deduction.

Keywords Natural deduction + Strong normalization - Explicit composition -
Bar induction

1 Introduction

The rules of inference of a logical system define an inductive class of formal deriva-
tions. The most natural way to prove properties for the class is by induction on the
construction of derivations, i.e., by induction on the last rule applied. It is often a
crucial component in such proofs to show that the property in question is maintained
under the composition of two derivations, even if this aspect is regularly ignored and
the composability of derivations taken for granted. Results that show composition
to maintain properties of derivations were called Hilfssditze in work of Gentzen that
remained unpublished in its time. His original proof of the consistency of arithmetic
of 1935 contained a Hilfssatz by which the ‘reducibility of sequents’ is maintained
under composition. After he changed this proof into one that used transfinite induc-
tion, all traces of the Hilfssatz disappeared (see von Plato 2015 [8] for details).
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A formal implementation of the Hilfssatz methodology requires that composition
be made into an explicit rule that is added to the logical rules of a calculus. The
following results are shown as illustrations of the use of such an explicit composition
rule: (1) A proof of normalization by a Hilfssatz for intuitionistic natural deduction.
(2) A proof of strong normalization by bar induction.

2 Notation for Natural Derivations

The rules of natural deduction are production rules by which the class of formal
derivations is defined inductively. Whenever there is such a definition, the most
natural way to prove properties of the corresponding class is by induction on the last
rule applied. This is so also in proof theory; a proof of normalization for intuitionistic
natural deduction is given as a first example.

For a uniform treatment, we use natural deduction with general elimination rules
and the related notion of normal derivability in which the condition is that the major
premisses of elimination rules have to be assumptions. The modified rules are, with
the multiplicity n, m > 0 of closed formulas indicated by exponents as in A", B™
(Table 1).

The normalizability result to be presented can be worked out also for the standard
rules that can be seen as special cases of the general ones (Table 2).

It will be convenient in this situation to leave out the degenerate derivations of
the minor premisses, to have exactly the Gentzenian rules.

In the standard tree notation for natural derivations, as above, the composition of
two derivations can be indicated schematically, as in:

r
r D A D A
D and c compose into c
Table 1 General E-rules for &, D,V
11 1 1
A", B™ B A([/x)n
A&B C&E‘1 ADB A CDE‘1 VxA CVE’1
C C C
Table 2 Gentzen’s E-rules as special cases of general E-rules.
1 1 1 1
VxA A(t
A&B A A&B B | ADB A B_, x x .

A B B ' A(t/x)
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Composition has the condition that the eigenvariables and discharge labels of the
two derivations be distinct, if not, they can be changed.

No trace is left of the composition in the rightmost derivation. As the calculus is
defined by its logical rules, composition in natural deduction is usually left implicit.
To represent the composition of two derivations formally and to reason about its
properties in a convenient form, we write the logical rules and the additional rule of
composition in sequent calculus style, with the open assumptions of each formula D
in a derivation written out as a multiset I” in a sequent I — D.

More formally, we define a root-first translation into sequent calculus style. If the
last rule is & I, we have:

I A
A B > A A—> B

A&BY - T Asa&B Y

V1 is similar, and DT is:

AT
B SIL1 M I
A>DB~ " ~ I' > ADB "

The translation continues from the premisses until assumptions are reached. The
logical rules of the calculus NLI are obtained by translating the rest of the logical rules
into sequent notation. The nomenclature NLI was used in some early manuscripts
of Gentzen to denote a “natural-logistic intuitionistic calculus” (Table 3).

Table 3 Calculus NLI

I' - A&B A”,Bm,A—>C&E r—A A_)B&l
I A—C I',A—A&B
I —-AvVvB A" A—C B’",@HCVE r—A r-B
A0 —=C I - AVB ' T —AVB "
I~ASB A—A B"©—-C AT —B
A0 —C > T =A>B"
I = VxA(x) A()",A—C ' — A®y)
rA—-c v T — VxA(x)
I'— 3IxA(x) A(y)",A—C I — A1) .
rA—C " I — 3A®)

Natural deduction in sequent style
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The calculus is completed by adding initial sequents of the form A — A, with A
an arbitrary formula, and the zero-premiss rule L E by which 1 — C can begin a
derivation branch.

We say that the closing of an assumption formula in E-rules and in rule D/ is
vacuous if n = 0 or m = 0. Similarly, the closing of an assumption is multiple if
n>lorm > 1. Withn = 1 or m = 1, the closing of an assumption is simple.
Vacuous and multiple closing of assumptions is seen in:

1 1
r AAT
B B
.1
A->B"" A->8""

The former case corresponds to the situation in sequent calculus in which a formula
active in a logical rule stems from a step of weakening, the latter to a situation in
which it stems from a step of contraction, as shown in von Plato (2001) [5].

The composition of two derivations is an essential step in the normalization of
derivations. It can now be written quite generally in the form:

I'—- D D,A—>C
I''A—C

Comp

Iterated compositions appear as so many successive instances of rule Comp.

In a permutative conversion, the height of derivation of a major premiss derived
by VE or 3E, i.e., number of successive steps of inference, is diminished. The effect
of the general rules is that such conversions work for all derived major premisses of
elimination rules:

Definition 1 A derivation in natural deduction with general elimination rules is
normal if all major premisses of E-rules are assumptions.

As a first step towards normalization, we need to show that derivations in natural
deduction can be composed:

Lemma 1 (Closure of derivations with respect to composition) If given derivations
of the sequents I' — D and D, A — C in NLI are composed by rule Comp to
conclude the sequent I'y A — C, the instance of Comp can be eliminated.

Proof We show by induction on the height of derivation of the right premiss of Comp
that it can be eliminated.
1. Base case. The second premiss of Comp is an initial sequent, as in:

I'—-> D D— D
I' - D

Comp

The conclusion of Comp is identical to its first premiss, so that Comp can be deleted.
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If the second premiss is of the form L — D, the first premiss is I" — _L. It has

not been derived by aright rule, so that Comp can be permuted up in the first premiss.
In the end, a topsequent I'” — _L is found as the left premiss of Comp, by which L
isin I'’, so that the conclusion of Comp is an initial sequent.
2. Inductive case with the second premiss of Comp derived by an I-rule. There are
two subcases, a one-premiss rule and a two-premiss rule. In the former case, Comp is
permuted up to the premiss, with a lesser height of derivation as a result. In the latter
case, we use the notation (D) to indicate a possible occurrence of D in a premiss:

(D), A = C' (D), A" = C"
I - D D A, A= C
L A, A - C

Rule

Comp

Rule Comp is permuted to any premiss that has an occurrence of D, say the first one,
with the result:

I' - D D, A = C(C
U / Camp 1 Vi
I''A"— C A= C
A, A= C

Rule

3. Inductive case with the second premiss of Comp derived by an E-rule, as in:

(D),A—> A&B (D),A”,B’”,@—>C&
I - D D, AG—C
I''A,e—=C

E

Comp

As in case 2, Comp is permuted up, to whichever premiss has an occurrence of the
composition formula D, with a lesser height of derivation as a result. The other cases
of E-rules are entirely similar. QED.

In the case of a multiple discharge, a detour conversion will lead to several com-
positions, with a multiplication of the contexts as in the example

I'— A A—>B&I
I''A—> A&B A,A,B,@—)C&E
A, e6®—>C

The conversion is into

I'—> A A,A,B,@—)CC
r—> A A,B,I'® —- C
A—> B B, I''l",&® — C
I'lryA,e - cC

omp

Comp

Comp
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Such multiplication does not affect the normalization process. Note well that nor-
malization depends on the admissibility of composition which latter has to be proved
before normalization.

3 Normalization by Hilfssatz

In normalization, derived major premisses of E-rules are converted step by step into
assumptions. There are two situations, depending on whether the major premiss was
derived by an E-rule or an /-rule:

Definition 2 (Normalizability) A derivation in NLI is normalizable if there is a
sequence of conversions that transform it into normal form.

The idea of our proof of the normalization theorem is to show by induction on
the last rule applied in a derivation that logical rules maintain normalizability.

The cut elimination theorem is often called Gentzen’s Hauptsatz, main theorem.
He used the word Hilfssatz, auxiliary theorem or lemma, for an analogous result
by which composition of derivable sequents maintains the reducibility of sequents,
a property defined in his original proof of the consistency of arithmetic (Gentzen
1935 [2, p. 106]). Henceforth any result in proof theory in which it is shown that a
property of sequents or derivations is maintained under composition shall be called
a Hilfssatz. Normalizability will be the first such property to be proved.

Theorem 1 (Normalizability for intuitionistic natural deduction) Derivations in
NLI convert to normal form.

Proof Consider the last rule applied. The base case is an assumption that is a normal
derivation. In the inductive case, if an /-rule is applied to premisses the derivations
of which are normalizable, the result is a normalizable derivation. The same holds if
a normal instance of an E-rule is applied. The remaining case it that a non-normal
instance of an E rule is applied. The major premiss of the rule is then derived either
by another E-rule or an /-rule, so we have two main cases with subcases according
to the specific rule in each. Derivations are so transformed that normalizability can be
concluded either because the last rule instance resolves into possible non-normalities
with shorter conversion formulas, or because the height of derivation of its premisses
is diminished.

1. E-rules: Let the rule be & E followed by another instance of & E, as in:

I' > A&B A",B", A — C&D&E
'A— C&D Ck,D’,@—>E&E
IA,® > E
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By the inductive hypothesis, the derivations of the premisses of the last rule are
normalizable. The second instance of & E is permuted above the first:

A" B" A— C&D Ck D', O —> E&E
I' - A&B A”,B’",A,@—)E&E
I''A,®—> FE

The height of derivation of the major premiss of the last rule instance in the upper
derivation has diminished by 1, so the subderivation down to that rule instance is
normalizable. The height of the major premiss of the other rule instance has remained
intact and therefore normalizability follows.

All other cases of permutative convertibility go through in the same way.
2. I-rules: The second situation of convertibility is that the major premiss has been
derived by an I-rule, and there are five cases:

2.1. Detour convertibility on &:

I —- A A—)B&I
I''A— A&B A”,B”’,@—)C&E
I''A,e—=C

Let us assume for the time being that n = m = 1. The detour conversion is given by:

I' > A A,B,®—>C
A— B B, I'® —> C
I''A©—C

Comp

Comp

The resultis not a derivation in NLI. We proved in Lemma 1 that Comp is eliminable.
The next step is to show that Comp maintains normalizability. This will be done in the
Hilfssatz to be proved separately. By the Hilfssatz, the conclusion of the upper Comp
is normalizable, and again by the Hilfssatz, also the conclusion of the lower Comp.
Ifn > 1orm > 1, Comp is applied repeatedly, the admissibility of an uppermost
Comp giving the admissibility of the following ones. If n = 0, the instance of
Comp with the left premiss I" — A falls out of the derivation, and similarly with
m = 0. If n = m = 0, the right premiss of rule & E before conversion is ® — C,
and it is taken in place of the original conclusion I, A, ® — C. This situation is
called a ‘simplification convertibility’ in Prawitz (1965) [3]. In all cases, the result
of conversion is uniquely defined.
2.2. Detour convertibility on V. There are two cases, as in:

_Ir-4A
I'>AVvB A" A= C B.O—>C
I A0 —C v

E
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_I'=8B
I'>AVvB A" A= C B.O—>C
A6 C v

E

Asin 2.1, assume for the time being that n = m = 1. The detour conversion is given

by:

I'—> A A,A—>C I' > B B,®—~>C
Comp Comp
r''A—C re—>C

The multiplicities are treated as in 2.1, except for the case of m = 0 or n = 0. Then
the given derivation has a simplification convertibility, say whenm = n = 0:

_I'=A
I’ - AV B A— C (*9—>Cv
I''A,e—=C

E

There is a conversion, but it is not uniquely defined: Either one of the original minor
premisses of V E can be taken. Similarly, if sayn > Oandm = 0, either acomposition
with composition formula A can be made, or a simplification conversion.

2.3. Detour convertibility on DI

AT —>B
FeADf)AeABW@eCE
I A0 C >

In the conversion, multiple discharge of assumptions is again resolved into iterated
compositions, so we may assume n = m = 1 and have the conversion:

If m = 0, there is a simplification convertibility with the uniquely defined result
® — C.
2.4. Detour convertibility on V:

r— A
FAWMU[MMAACV
A= C E
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As before, assume for the time being that n = 1. The eigenvariable y in the derivation
of I' — A(y) is replaced by the term ¢ and the detour conversion given by:

I'=> A(t) At),A— C

Comp
raA—-C
The multiplicities are treated as before.
2.5. Detour convertibility on 3:
I - AQ) o
I' - dxA(x) A"(y),A—> C
rA>C *F

As before, assume for the time being that n = 1. The eigenvariable y in the derivation
of A(y), A — C is replaced by the term ¢, and the detour conversion is:

I' > A(t) Alt),A—> C
I''A—C

Comp

Multiplicities are treated as before. QED.
It remains to give a proof of the Hilfssatz:

Hilfssatz 1 (Closure of normalizability under composition) If the premisses of rule
Comp are normalizable, also the conclusion is.

Proof The proof is by induction on the length of the composition formula D with a
subinduction on the sum of the heights of derivation of the two premisses.
1. D = P. With an atomic formula P, we have

I'—- P P A—>C
I''A—C

Comp

P is never principal in the right premiss, so that Comp can be permuted up with a
lesser sum of heights of derivation as a result. There are two cases, a one-premiss
rule and a two-premiss rule. For the latter, we use again the notation (P) to indicate
a possible occurrence of P in a premiss:

(P), A= C' (P),A" > C"
I'— P P, A A - C
raA, A —-C

Rule

Comp
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Rule Comp is permuted to the premiss that has an occurrence of P, say the first one,
with the result:

P.A = C A" = "
ra,A = C

In the end, the second premiss of Comp is an initial sequent, as in:

I'-P P> P
r—p

Comp

The conclusion of Comp is identical to its first premiss, so that Comp can be deleted.
2. D = 1. Because L is never principal in the left premiss, Comp is permuted up as
in the proof of admissibility of composition.
3. D = A& B.If A& B is not principal in the right premiss, Comp can be permuted
asin 1.

If A& B is principal, there has to be a normal rule instance in the right premiss,

as in:
A&B — A&B A", B", A—> C

I'—> A&B A&B,A— C “F
Comp
r,A—-C
Comp is permuted up to the first premiss:
I' > A&B A&B— A&BCOmp
I' > A&B A”,Bm,A—>C&E
r'A—C

Comp is now deleted and a generally non-normal instance of rule & E created. If
the major premiss is concluded by an E-rule, a permutative conversion is done and
no instance of Comp created. If the last rule is &1, a detour convertibility with the
conversion formula A & B is created. A detour conversion will lead to new instances
of Comp, but on strictly shorter formulas.

The other cases of composition formulas are treated in a similar way. QED.

Lemma 1, closure of derivations with respect to composition, merely shows that
a derivation in natural deduction can be got from two composable derivations. The
Hilfssatz adds the property of preservation of normalizability. It is even important
to give the details for the composition of derivations as in the proof of Lemma 1,
for the algorithm of normalization depends crucially on the steps needed for the
admissibility of composition. Even so, one searches in vain for more than a mere
indication of this proof in the logical literature.
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4 Strong Normalization by Bar Induction

Derivations are denoted by dy, d1, da, ..., and let N(d) express that d is a normal
derivation, i.e., that all major premisses of E-rules are initial sequents. This prop-
erty can be decided by an inspection of the derivation. The choice sequences in
normalization are defined as follows:

Definition 3 (Conversion choice sequence for a derivation) Given a derivation d,
a conversion choice sequence for d is a succession of conversions on d with the
restriction that whenever d has a permutative convertibility, it has to be chosen.

The restriction is in fact not necessary, but it will make the proof go through
smoothly. It is not met if disjunction and existence are left out of the language and
the standard elimination rules used, so there is sense in calling the result of this
Section a strong normalization theorem.

We shall indicate by PF(d) that a derivation d is free of permutative conversions.

The notation o, (d) = d, stands for the derivation that is obtained from a given
derivation d after n steps of conversion «,,. The notation « (o, (d)) = @1 (d,,) stands
for the result of a one-step continuation of the sequence of conversions «,.

Definition 4 (Normalizing and strongly normalizing derivations)

i. A derivation d is normalizing whenever Ja3x N (ox (d)).
ii. A derivation d is strongly normalizing whenever Ya3x N (¢x (d)).

We write WN(d) for the former and SN(d) for the latter.

We shall use the standard formulation of bar induction in the proof of strong
normalization, with the two predicates PF(d) and SN(d). It has to be established that:
(1) The base case predicate PF'(d) is decidable. (2) Every conversion choice sequence
of a given derivation d has an initial segment such that a permutation-free derivation
is obtained. (3) Permutation-free derivations are strongly normalizing. (4) If every
one-step continuation of conversions of a derivation d is strongly normalizing, also
d is strongly normalizing.

Theorem 2 (Strong normalization for intuitionistic natural deduction) Derivations
in NLI are strongly normalizing.

Proof We show in turn that the four conditions of bar induction are satisfied by the
predicates PF(d) and SN(d). Let dy be the given derivation that we assume to be
non-normal.

1. Decidability: PF(d) is decidable as noted above.

2. Termination of permutative conversions: Let a derivation d have permutative
convertibilities. As seen in the proof of normalization, each such conversion
diminishes the height of derivation of the major premiss in question by 1 and
leaves the other heights unaltered. Therefore permutative conversions terminate
in a bounded number n of steps in a derivation d,, such that PF(d,,).
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3. If PF(d), then SN(d): The proof is by induction on the last rule in d and we can
assume d not to be normal and the derivations of the premisses to be strongly
normalizing. By PF(d), all non-normalities are detour convertibilities. Any con-
version chosen resolves into compositions, and a Hilfssatz needs to be proved by
which composition of derivations maintains strong normalizability. This is done
below.

4. If Ya1SN(«1(dy)), then SN(d,,): Each one-step continuation of the conversion
of d,, is by assumption strongly normalizing, therefore the derivation d,, is by
definition strongly normalizing.

By 1-4, SN(dp). QED.

It remains to add a proof of the Hilfssatz used in condition 3:

Hilfssatz 2 (Closure of strong normalizability under composition) Given strong-
ly normalizing derivations of I' — D and D, A — C, their composition into a
derivation of I'y A — C is strongly normalizing.

Proof As before, the proof is by induction on the length of the composition for-
mula D, with a subinduction on the sum of heights of derivation of the premisses of
rule Comp, and goes through virtually identically to the proof of Hilfssatz 1. QED.

5 Concluding Remarks and Further Applications

Looking at the single detour conversion schemes in the proof of Theorem 1, we notice
that simplification convertibility with disjunction in case 2.2 leaves two possible
results of conversion. For the rest of detour conversions, the local transformations
produce unique converted derivations, and that property is sufficient for the overall
result: Bar induction is a principle by which such local control of a suitably chosen
property is turned into global structure, one could put it.

There is at each stage of strong normalization a finite number of non-normalities
from which to choose the conversion to be made. Therefore strong normalization
is a consequence of the variety of bar induction known as the fan theorem. The
consistency of arithmetic was originally proved by bar induction by Gentzen and soon
replaced by a proof through transfinite induction (see von Plato 2015 [8], and Siders
and von Plato (2015) [4] for an explicit formulation of Gentzen’s bar induction).
As with Gentzen’s proof, also the present proof could be carried through by the use
of transfinite ordinals. What the least ordinal needed is, is at present not known,
but because the fan theorem suffices for the result, Gentzen’s g gives a strict upper
bound.

The proofs of normalization and strong normalization through Hilfssctze should
work without problems for classical natural deduction with the rule of indirect proof
and the same definition of normality as above, as in von Plato and Siders (2012) [9].
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The proofs can obviously be worked through also for standard natural deduction,
along the lines of my paper (von Plato 2011 [6]).

Two more applications of explicit composition can be noted here:

1. The interpretation of arbitrary cuts in natural deduction: A comparison of
natural deduction in sequent calculus style with sequent calculus proper shows that a
non-normal instance of an E-rule corresponds exactly to the case of a cut in which the
right premiss of cut has been derived by a corresponding left rule. In the translation
from sequent derivations with cuts to natural deduction, such cuts turn into non-
normalities. The rest of the cuts are translated as explicit delayed compositions.
What corresponds to cut elimination is seen from the admissibility of composition
in natural deduction: An uppermost instance of Comp is permuted up until it either
reaches an assumption and vanishes or hits a normal instance of an E-rule and gets
turned into a non-normality. After the delayed compositions have been eliminated,
there remain the proper non-normalitites and these can be eliminated in any order
whatsoever. When in the normal derivation the major premisses are left unwritten, a
sequent derivation is obtained. The overall procedure gives strong cut elimination in
precisely the same sense in which there is strong normalization in natural deduction.
Details are found in Sect. 13.4 of von Plato (2013) [7].

2. Normalization and strong normalization of A-terms: Any proof of normal-
ization and strong normalization can be turned into a corresponding proof for typed
A-terms. The term structure is particularly transparent with general elimination rules,
for the selector terms have now, with implication elimination as an example, the fol-
lowing structure (von Plato 2001 [5, p. 566]):

[x : B]

c:ADB a:A d:C
gap(c,a, (x)d): C

A selector term is normal if its first argument is a variable, in particular, for the above
“generalized application” as it is called in von Plato 2001 [5], the nested “tower” of
applications, met with the standard application function, does not occur for normal
terms. Permutative conversions reduce a suitably defined notion of depth of selector
terms, and detour conversions reduce to substitutions. A Hilfssatz is used to prove
that strong normalizability of A-terms is maintained under such substitution.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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Towards a Proof-Theoretic Semantics
of Equalities

Reinhard Kahle

Abstract We have a fresh look on Frege’s mode of presentation, taking into account
proofs of equalities as a key concept. Revisiting the classical example of Morning
star and Evening star the account leads to a proposal for a proof-theoretic semantics
of equalities.

Keywords Frege + Mode of presentation - Sinn und Bedeutung - Proof-theoretic
semantics *+ Equality

1 Frege’s Question

Gottlob Frege opened his seminal paper Sinn und Bedeutung [3] by asking what the
epistemic difference is between the equations ¢ = a and a = b.! His proposal to
distinguish between sense and denotation (or reference) of a term turned out to be
one of the most fruitful conceptual advances in the history of philosophical logic.

Modern Possible Worlds Semantics draws on this distinction: the sense of a term
refers to the full variety of possible worlds (in the way that we have to consider the
denotation of a term in every possible world), while the (Fregean) denotation has to
take into account only the actual world.

As appealing as this view might be, there are (at least) two problems with it.
First, it comes with a concept of rigid designators. Second, it is not applicable to
mathematics, because mathematical equations hold equally in every possible world.

While many approaches try to attack the problem from a semantic perspective, here
we would like to provide a syntactic account, which takes up Frege’s original question

'In fact, he doesn’t put this directly as a question, but rather states that “a = a holds a priori
and, according to Kant, is to be labeled analytic, while statements of the form a = b often
contain very valuable extensions of our knowledge and cannot always be established a priori.”
[S, p. 157].
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of the (epistemicz) difference of a = a and @ = b. With restriction to singular terms,
we will propose a fresh understanding of Frege’s mode of presentation. It is motivated
by the question how we actually prove a particular equation, and it can be considered
as a proof-theoretic semantics of equalities.

2 Equality Versus Identity

To set the stage for the further discussion we would like to assume that we always use
a first-order language for which we may have some non-logical axioms, and a fixed
structure with universe 2 in which this language is interpreted® by an interpretation
function (-)™. Let us use Latin characters for terms of the language, and German
(Gothic) ones for elements of the structure. Equality is understood as the relation
t = s on the syntactical level between terms of the first-order language*; identity
stands for the (trivial) relation a = a on the semantic level, which holds only between
an object in the structure and itself.> The fact that identity is not entirely trivial
comes from its use for terms in combination with the interpretation in the form
(M = (5)M0

In this setting we can recast Frege’s first observation that “if we were to regard
equality as a relation between that which the names ‘a’ and ‘b’ designate, it would
seem that a = b could not differ from a = a (i.e. provided a = b is true). A relation
would thereby be expressed of a thing to itself, and indeed one in which each thing
stands to itself but to no other thing.” [5, p. 157]. In our terminology we may say
that we are not concerned with the semantical identity relation a = a, but with the
syntactical equality relation = s.

It is standard to axiomatize equality in first-order logic as a universal congruence
relation, i.e., an equivalence relation compatible with all operations (functions and
relations). As such, it mimics on the syntactic level just the properties which identity
exhibits on the semantic level. But the domain of identity is simply 21 x 2(, and
the elements of 2 are unique in the sense that a = a, but a % b for two elements
a, b € 2. On the syntactic side, however, the equality relation is defined for terms,
and, clearly, two terms, though being interpreted by the same object a, may well be
different.

2In this paper, we restrict ourselves to an epistemic perspective, and we will not go into metaphysical
issues. This seems also to be Frege’s position, as he speaks explicitly about “our knowledge” (see
the citation in the previous footnote).

3Here, the notion of structure includes the possibility that its universe is taken from the “real world”.

4We make here a slight abuse of the word “relation”; strictly speaking, a relation is a semantic concept
and “syntactic relation” cannot be anything more than a formula formed by use of a relation symbol.

SFor a recent philosophical discussion of the concept of identity see also [14].

This distinction of equality and identity may help to unravel Frege’s initial footnote in Sense and
Denotation explaining that he uses equality “in the sense of identity and understand ‘@ = b’ in the

sense of ‘a is the same as b’ or ‘a and b coincide’.” [5, p. 157, slightly changed translation]; of
course, Frege didn’t have the modern distinction of syntax and semantics at hand.
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Frege introduced the sense of a sign as its mode of presentation. Generally, this
is taken as some kind of illustration rather than a definition. It is our aim to provide
a more formal explication of mode of presentation by drawing on the difference of
equality and identity.

3 The Mode of Presentation

Frege did not define the notion of mode of presentation, but he did give two quite
illustrating examples of it.

The first one is taken from geometry: a particular point may be presented as
intersection of two lines a and b or as intersection of the lines b and c¢. Though the
intersections take place at the very same point, we would say that the two modes of
presentation differ: one refers to the lines a and b, the other to the lines b and c.

Assuming a suitable axiom system for geometry, this system will provide terms
which serve as definitions for the intersections expressed by, say, Intsec(a, b) and
Intsec(b, ¢). Assuming that both terms refer to the same point p of the plane, it
requires some reasoning in the given axiomatic framework to derive the equality
Intsec(a, b) = Intsec(b, c). This equality is epistemically different from a simple
reflexive equality, like Intsec(a, b) = Intsec(a, b).

We propose to use Intsec(a, b) to obtain a mode of presentation of p, and
Intsec(b, c) to obtain another mode of presentation of the same point.” We may
say that a term ¢ of our formal language expresses (to use Frege’s wording) a mode
of presentation if it may be used as a mathematical expression to define a newly
introduced constant A. We do not say that the term is the mode of presentation,
as—with Frege—the latter is surely not a syntactic object (this would be the mode
of designation, [5, p. 157]). The way the mode of presentation should be located
between the purely syntactical level and the semantical level will be discussed in
more detail below. But let us note, that our mode of presentation is clearly different
from any form of reference in model-theoretic terms.

Letus now turn to the more prominent example given by Frege. By “morning star”,
Venus is presented as the star® visible in the morning, by “evening star” as visible
in the evening. Thus, the sense of “morning star” differs from that of “evening star”,
although both refer to the same object. We may use “the star visible in the morning”
and “the star visible in the evening” as the expressions which give us the mode of

TThis view is even better illustrated in the example Frege gives in his Begriffsschrift in the paragraph
on identity of content, [4, p. 20f]. This paragraph could be used as further support of our account
here, yet, Frege, by the time of the Begriffsschrift, didn’t bring forward the notions of sense or mode
of presentation.

8In the discussion of this example, “star” is, of course, to be understood as a folk term.
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presentation, using the same argument as above: these expressions may serve as
terms ¢ defining a constant A (“morning star”, “evening star”, or even “Venus”).?
Thus, we may extend our working definition of mode of presentation given above
for mathematical terms to terms in general, saying that a term ¢ may express a mode
of presentation if it can be used as definiens in a clause like “Let A be ¢.” Later we

shall see how proofs enter.

4 Morning Star Versus Evening Star Revisited

Frege’s example of difference of senses in “morning star”” and “evening star”” became
a classic. It is intuitively clear that there are two different senses, although there is
only one reference.

Possible worlds semantics does not cope well with this example. Taking Kripke’s
[9] famous distinction of rigid and non-rigid (use of) terms into account, one can
consider “morning star” and “evening star” as definite descriptions'® which should
be non-rigid. But “Venus”, as a proper name, is supposed to be rigid. Now, however,
in the worlds in which “morning star” and “evening star’ are supposed to be different,
we would have “two copies” of Venus, let’s call them Venusy, and Venusg. Leaving
aside the question which of them should be the Venus, the problem is that for these two
Veneres the astronomical laws have to fail—otherwise they would coincide again.!!
Is it really the case that—to understand the difference of the sense of morning star
and evening star—we would have to consider worlds with different astronomical
laws? In our view, the difference in the sense of morning star and evening star should
not depend on the astronomical laws at all—it depends, to go back to Frege, only in
the mode of their presentation.

In our account, we would take (appropriate) terms #y; and ¢ representing “morn-
ing star” and “evening star” in a sufficiently formalized astronomical theory as defi-
nite descriptions which both could serve as defining a planet. It is now a new task to
prove the equality 7); = tg by use of astronomical laws (together with the empirical
astronomical observations which are formalized as statements involving #); and 7).
We may say that the fact that the denotations of 7y, and g are equal follows from

90f course, Venus should be defined by only one of these expressions—unless it is already known
that they coincide (though, it would look quite odd to give two different definitions of one and the
same object).

10K ripke treats the terms “Phosphorus” and “Hespherus” as proper names; we take here “morning
star” and “evening star” as elliptic definite descriptions extendable to “the brightest non-lunar object
in the morning/evening sky”. For more on rigid designators, see [10].

" Consider an alternative world where the astronomical observations of Venus; coincide with the
observations of Venus in the real world. If this alternative world have the same astronomical laws
as the real world, Venus, has to appear at the same position as Venus in our world, i.e., at the place
of Venusg, i.e., Venusy; and Venusg have to be identical.
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the identity of ()™ = (tg)™ = Venus in the real world, while the equality of the
modes of description t); = tg follows from the proof in our astronomical theory. The
need of performing this proof explains the epistemic difference between identities
and equalities.'?

5 Equality

We here consider only equalities between terms, which may refer to mathematical
objects or to objects of our real world.

As said, in first-order logic, equality is axiomatized as a universal congruence
relation, thus directly linked to extensionality (the congruence axioms include the
compatibility with all functions and relations).

Working in an epistemic context, however, one may note that not all (true) equal-
ities might be known by an agent'? 7. Thus, the equalities known by .« may not
be complete with respect to the identities which hold in the intended model of .&7’s
knowledge. This incompleteness has to be understood with respect to the combi-
nation of interpretation and identity as described in Sect.2: for two terms ¢ and s,
M= ()M may hold, but <7 doesn’t know ¢ = s.

The incompleteness can arise from two different sources. On the one hand, an
agent may have an “underaxiomatized” representation of the world. On the other
hand, agents are not supposed to be logically omniscient, and will miss (fail to
know) those equations which they haven’t yet proved.

The first case may apply in the morning star/evening star example, when the agent
does not know the astronomical laws to derive the fact that both terms refer to the
same object. !

The second case may apply to the geometric example, if the agent didn’t perform
the mathematical proof of the equality of the two intersections.

In both cases, the equalities the agent knows are incomplete with respect to the
identities which hold in the appropriate model. Now, the equality relation = of &/
(considered as the set of equalities known by 27) may serve to express some inten-
sionality with respect to the outer extensionality, given by = (or all true equalities).

12We leave here aside the fact that essentially nobody actually performs this proof, but learns the
equality #)y = g in school and, thus, adds it somehow as an axiom to the belief set. But as it should
be with everything we learn in school, it should be possible, in principle, to replace our “learned
axioms” by actual proofs, if we would study the respective topic in sufficient detail.

13The term agent is heavily burdened by its use in Artificial Intelligence. However, because of a
lack of alternatives, we use “agent” here in the way as it became recently fashionable in philosophy
to designate “something having knowledge”.

1470 satisfy our remark of footnote 12 we may stipulate that this agent also didn’t learn this equality
in school or elsewhere.
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If we analyze <7’s knowledge we should allow the substitution of two terms only
if o7’s knowledge comprises the corresponding equality—the underlying identity
in the model is irrelevant. With only these identities in mind, we may observe the
intensional phenomena in .<7’s knowledge.

6 Equality of Senses

One of the fundamental challenges for every theory of senses is the notion of equality
of senses.

In our setting the notion of sense is naturally relativized to (the knowledge of) an
agent .o/. A very naive attempt would be to introduce a notion of equality of senses
relativized to an agent .7, identifying the sense expressed by two terms if and only
if @7 can prove the equality = s. This would allow to separate the denotation from
the senses of two terms denoting the same object in cases where <7 does not have
the proof of the corresponding equality at hand. But it would compromise Frege’s
original idea, as the senses of “morning star’” and “evening star” should clearly stay
different even if somebody knows that both denote Venus.

Still, we may obtain an interesting notion of equality of senses if we allow for the
closure of the mode of presentation under some equalities. This can be illustrated best
by use of the geometric example: we said that Intsec(a, b) and Intsec(b, ¢) should be
considered as different modes of presentation of the point p. It seems to be, however,
that Intsec(a, b) and Intsec(b, a) do not give us different modes of presentation of
the same point. In technical terms, this means that the mode of presentation is not
changed when we invoke the symmetry of the relation Intsec.

It is not our aim to specify concrete criteria concerning which (type of) equations
should be taken into account for the equality of senses. In contrast, we think that
equality of senses should not only be relativized to an agent (or an agent’s knowledge)
but that it could also be graduated and that it depends on the chosen axiomatic context.

The role of the axiomatic context can be exemplified by the natural numbers: if they
are introduced as a commutative semigroup, commutativity is, of course, “build in”
and ¢t + s should not have a sense different from that of s + 7. If, however, the natural
numbers are introduced by use of the Peano Axioms, the commutativity of addition
requires a rather non-trivial proof by induction, and, in this context, one might say
that the sense of 7 + s differs from the one of s + ¢, as the required recursion over
(only) one of the summands to calculate the value may lead to substantially different
computations.

This last example shows that, for our notion of mode of presentation, the under-
lying axiomatic setting forms an integral part of the sense of a term. !>

3To elaborate this approach one could take into account, for instance, background knowledge
as constitutive for senses. We may also invoke definitional knowledge obtained by definitional
reflection, [12, Sect.2.3.2].
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7 Proof-Theoretic Semantics

So far, we gave some kind of answer to what we called Frege’s questions stressing
the epistemic character of a possibly incomplete set of proven equalities of an agent,
in contrast to identity in a model. We will now turn to the idea of proof-theoretic
semantics.

According to ([8], p. 503),

[plroof-theoretic semantics [assigns] proofs or deductions an autonomous semantic role
from the very onset, rather than explaining this role in terms of truth transmission. In proof-
theoretic semantics, proofs are not merely treated as syntactic objects [...], but as entities in
terms of which meaning and logical consequence can be explained.

This approach is already quite successfully pursued for the usual logical operations
(see [7, 12] and this volume). It is our aim to extend it to some further concepts, like
equalities here or necessity in [6].

In the case of equality a proof-theoretic semantics requires that, from the very
onset, one would have to dispense with any (model-theoretic) notion of identity.
From a technical point of view, one could say that the proof-theoretic semantics
of the equality relation is given by the axioms involving this relation. But what
would be the proof-theoretic semantics of a particular equation? The terms in such
an equation have now, where any model-theoretic interpretation is gone, of course,
an autonomous status.

From a proof-theoretic perspective, “morning star” and “evening star” should,
of course, be different. Their mode of presentation is given by the way the axioms
introduce them as terms. This includes implicitly the full axiomatic framework which
now makes part of the mode of presentation.

Whatever the concrete axioms might be, they should state that the “morning star”
is visible (on some days) in the morning, and the “evening star” in the evening,
respectively. As discussed above, the equality between them needs a proof. For the
proof-theoretic semantics of the terms it should not even be relevant whether such a
proof is performed or not—its sheer need gives rise to consider the proof-theoretic
semantics as different for the two terms, determined only by the axioms governing
them. Only in the case of “immediate” (“trivial” or maybe “elementary”’) equalities—
like in the case of the symmetry of Intsec—a term might be manipulated without
changing its sense.

As related approaches we would like to mention here Tichy’s Transparent Inten-
sional Logic (TIL), [1, 13] and Moschovakis’s Sense and Denotation as Algorithm
and Value, [11].

TIL does not dispense with possible worlds, but assigns them a secondary rdle
in the analysis of senses. These are introduced as abstract procedures, called con-
structions, which are applied to an object, in dependence of a possible world, to
decide whether this object (for instance, Venus) fulfills the intension (e.g., being the
morning star). With respect to our approach one can ask whether, and if so, in which
way the abstract procedures can be related to the proofs we take as a basis.
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Such a relation would be given, at least partly, by the Curry—Howard corre-
spondence for Moschovakis’s approach. He introduces senses as algorithms which
compute (denotational) values. Based on the well-known correspondence of algo-
rithms and proofs, we could adapt Moschovakis’s slogan by describing our (broader)
approach to intensionality as Sense and Denotation as Proof and Truth. Conversely,
Moschovakis’s account could also be dubbed a recursion-theoretic semantics.
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On the Proof-Theoretic Foundations
of Set Theory

Lars Hallnis

Abstract In this paper we discuss a proof-theoretic foundation of set theory that
focusses on set definitions in an open type free framework. The idea to make Cantor’s
informal definition of the notion of a set more precise by saying that any given
property defines a set seems to be in conflict with ordinary modes of reasoning.
There is to some extent a confusion here between extensional perspectives (sets as
collections of objects) and intensional perspectives (set theoretic definitions) that the
central paradoxes build on. The solutions offered by Zermelo-Fraenkel set theories,
von Neumann-Bernays set-class theories and type theories follow the strategy of
retirement behind more or less safe boundaries. What if we revisit the original idea
without making strong assumptions on closure properties of the theoretical notion
of a set? That is, take the basic definitions for what they are without confusing the
borders between intensional and extensional perspectives.

Keywords Set theory + Foundations - Proof theory - Definitional reflection - Partial
inductive definitions + Functional closure

1 Introduction

Foundations of set theory relates to answers of the following two main questions:

(A) What is a set?
(B) What does it mean to reason with sets?

With respect to (A) Cantor’s informal definition of the notion of a set seems
perfectly intuitive.

By an “aggregate” (Menge) we understand any collection into a whole (Zusammenfassung
zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. [2,
p- 85]
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Itis natural to think of collection into a whole as an act of abstraction. The question
is how to understand this. In view of the paradoxes by Russell and others, the idea
to make this more precise by saying that any given property defines a set seemed to
be in conflict with intended natural modes of reasoning. What was wrong with this
idea?

It might be an issue of confusing extensional and intensional perspectives. The
idea of a set as a gathering of given objects into a whole paints a picture of sets as
collections (a, b, ...). We have given objects and we collect them into a whole by
so to speak bracketing them. This extensional view of sets has a clear expression in
the cumulative hierarchy. Abstracting with respect to a given property introduces a
more intensional perspective, i.e., the way in which we actually define a set with the
intention to capture a collection of objects.

Russell’s antinomy came as a veritable shock to those few thinkers who occupied themselves
with foundational problems at the turn of the century. [4, p. 2]

There is something strange about this reaction. Why do we expect that such
a, very general, more intensional characterisation will capture just sets as collec-
tions of objects in an intuitive extensional sense, i.e., as bracketing a given collec-
tion of objects? There is no reason to think that these two notions and perspectives
should coincide, i.e., that the intensional characterisation would produce just nice
sets, namely collections of given objects. It is in this respect of interest to note that
the definition, i.e., the defining property x ¢ x of the Russell set R is a very ele-
mentary one. Its proof-theoretic behaviour can, for example, be observed already in
intuitionistic propositional logic [3].

So if we accept the idea of abstraction with respect to any given defining property,
i.e., full comprehension, as a foundation for set theory, we have an answer to question
(A), that is, what a set is. But how should we then understand the paradoxes? The
Russell paradox for instance seems to show that something is wrong with respect to
question (B). The paradoxical argument builds on several basic assumptions, where
one of the most important ones is the assumption that ‘R is a set’ is a well-defined
notion with respect to intended intuitive logical reasoning, which is a very strong
assumption with respect to the given definition. So this is one way to view Russell’s
paradox; too strong assumptions on basic theoretical notions.

The solutions offered by Zermelo-Fraenkel set theories, von Neumann-Bernays
set-class theories and type theories follow the strategy of retirement behind more
or less safe boundaries (see [4]). There are several ideas about proof-theoretically
founded restrictions on the comprehension scheme [5], [9]. Compare further the
set theory of Fitch (see [4], [9]), the notion of a Frege structure [1] and notions of
structural rules in relation to paradoxes [14].

Now what if we revisit the original idea without making strong assumptions on
closure properties of the theoretical notion of a set? That is, take the basic definitions
for what they are without confounding intensional and extensional perspectives.
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2 Defining Sets

If we think of set definitions as abstractions 1 X, saying that a property, or functional
expression, X defines a set, we may derive the following definitions of membership
and equality for sets:

e A e AXiff X(A),

e A=Biff(x € A <= x € B) forall sets x
(i, (A=AX&B =LY = AX =1Y) << (X(x) < Y(x)) forall
sets x).

In the same manner the axiomatic approach, Z F and other similar set theories,
introduce axioms stating the existence of sets for certain specific safe defining prop-
erties, such as for example the subset property

x € P(A) iff x is a subset of A

but also other types of axioms such as axioms introducing measurable cardinals and
other large cardinals.

Although the axioms of power set and replacement, together with axioms of infin-
ity (large cardinals starting with R), provide for strong means to build sets following
the cumulative hierarchy intuition of the universe of sets, they still represent a theory
marked by withdrawal from foundational disasters to more favourable positions. It
is not only matters of a first order formalization of safe axioms, but also from a
more general intensional perspective a lack of elementary foundational principles.
There is a very elementary and suggestive extensional picture through the cumulative
hierarchy, but this is lacking with respect to definitional issues.

Why is (x = x), for example, not an admissible set defining condition?

1. It contradicts the idea of sets as collections of given objects, i.e., A(x = x) is a
member of A(x = x).

2. We cannot comprehend the given objects we are supposed to collect into a whole
by abstraction.

In both cases we say that (x = x) does not define a set in the sense of a fotal
object that behaves nicely with respect to the intended reading of logical constants
and the notion of membership. But this does not really answer the question. It just
says that whatever A(x = x) may define it is not a set in the extensional sense as a
collection of given objects.

The problem here is an example of what we in many cases meet as we try to define
a notion where it is difficult to map out the exact borders by elementary means, the
notion of a total computable function being a canonical example. From a foundational
and theoretical point of view it would be nice if it were possible to make sense in
some way of the initial, and very elementary, ideas of Frege and others [4].
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Let us look at a very naive and simplistic attempt to define sets based on the idea
of sets as introduced by abstraction of defining properties. In defining sets this way
it is natural to make a distinction between set expressions, i.e., sets, terms etc., and
propositional expressions, i.e., propositions, formulas etc. But if we accept more
open definitions this does not seem necessary, and for reasons of simplicity we will
just make a distinction between sets (A) and set theoretical reasoning (B) in what
follows. This would also be in line with reading Ockham’s razor as saying that basic
classifications and distinctions are matters of proofs and not foundational definitions.
The definition of sets is:

e T and F are sets,

e A— B, Ae B, A= B aresetsif A and B are sets,

e S(f),A(f) and V(f) are sets if the world of sets is closed under the given func-
tion f.

This would answer question (A). To answer question (B) we add the following derived
definition:

e T istrue,

A — Bistrueif (Ais true — B s true),

A € S(f)istrueif f(A) is true,

A = Bistrueif (x € Aistrue <= x € Bis true) for all sets x,
A(f) is true if f(x) is true for some set x,

V(f) is true if f(x) is true for all sets x.

Russell’s paradox tells us of course directly that there are no such definitions
satisfying the intended closure properties we have written down above. But from an
intensional, i.e., definitional, point of view, we actually intend to define something
by writing down these clauses. The question is just what that is, in what ways we
can interpret these acts of defining?

3 Functional Closure, Local Logic and the Notion
of Absoluteness

There are three major issues to observe in the definitions given above in Sect. 2:

1. We introduce functional constructions, S(f), 3(f) and Y(f), by a defining con-
dition asking for the notion we define to be closed under a given function.

2. We introduce a conditional construction A — B by a defining condition asking
B to follow from A.

3. What we actually state in the ‘definitions’ are closure conditions for notions we
hope to be able to define in one way or another.
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3.1 The Functional Closure

The idea of function closure (in the realm of monotone inductive definitions) is that
we have some things a, b, . . . given and also some functions f, g, . ... We then define
a notion X by saying that

e a,b,...isan X,
e if x isan X, then f(x), g(x),...isan X.

Implicitly this means that X is defined by these clauses and nothing else. From an
intensional and foundational point of view in ‘generating’ X the things that f, g, ...
acton in X are not given, besides the initial things a, b, . . ., they are introduced as we
build X. Once defined, X is then the smallest collection of things including a, b, . . .
and being closed under f, g, .. ..

Similarly the idea of a functional closure is that we have some things a, b, . ..
and functions f, g, ... given and also functionals F, G, .... Analogously, from an
intensional and foundational point of view, the functions ‘in’ X that F, G, ... acton,
i.e., functions that X is closed under, are not given, but introduced as we build X.
In both cases we take for granted certain things as primitive notions. In the first
case some given objects and functions and in the second case some given objects
(not necessary in all cases), some functions and functionals. In both cases what we
rely on is, so to speak, inscribed in fundamental circles of reasoning. The objects we
generate in building up the function closure are of course given in an abstract manner
of speaking. The same thing holds for the functions we generate in building up the
functional closure:

e a,b,...isan X,
e if x isan X, then f(x), g(x),...isan X,
e if X is closed under f, then F(f), G(f),...isan X.

In non-foundational and mathematically precise definitions we assume there is
given a universe of objects, a function space and some functions and functionals
defined on this universe/function space.

3.2 Local Logic

When defining A — B is true in terms of if A is true, then B is true it is really
an issue what we mean by if A is true, then B is true as a defining condition. A
reasonable interpretation of this is that what we mean to say is that B follows from A
on the basis of information provided by the given definition, i.e., that we can prove B
to follow from A in the local logic that the given definition implicitly defines. With
respect to set theory this means that the sets we introduce, or to be more precise the
set definitions we introduce, open up for reasoning relative to a local set theoretic
context. What this could mean will be explained below.
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3.3 Absoluteness

It is one thing to use if A is true, then B is true as a defining condition in a definition
and quite another thing to state if A is true, then B is true as a closure condition for a
given definition. In view of an analogy between models of set theoretical axioms and
definitions of set theoretical concepts we might introduce the notion of absoluteness
(cf. [8]) also in this definitional context. Whereas in the first case we compare how
a set theoretical notion (formula) behaves in a model in relation to its behavior in
another model, which intuitively means outside the model if the second model is
the true cumulative hierarchy V, in the latter case we compare how a definitional
notion/condition behaves inside the definition, in the local logic of the definition,
with how it behaves outside the definition in the world of intended interpretation of
defining conditions.

A set theory S is a pair of definitions S® and T S@, following the ideas discussed
above in Sect.?2, for a given collection of functions @. A defining condition A is
(left) absolute (with respect to §), if for all defining conditions B

B follows from A in TS® iff (Aistrue in TS® — Bistruein TSP).

What this means is that deriving something from A in 7 S® is the same as impli-
cation. One closure condition that is generally self-evident is the following one

a istrue by definition D iff there is a defining condition A in D of a true by D.

This is the basic axiom of definitional theory.

Take the Russell set S(A(x € x — F)) (let us call it r) and let R be a set theory
that includes this set. The set  is not (left) absolute in R. » — F istruein R, thatis F
follows from r in R. But whereas r is true in R, F is obviously not since it is not even
defined in R. The argument follows from the basic definitional axiom together with
an assumption that the local logic of the definition has a reasonable behavior with
respect to the intended interpretation of involved logical constants. This argument
demonstrates that negation is not an absolute notion, which from a proof-theoretic
point of view would be a reasonable way to interpret the Russell paradox, i.e., falsity
is an absolute notion, while negation is not.

This notion of absoluteness can further be specialized as follows:

A defining condition A is

1. (right) absolute (with respect to S) if
Afollows from BinTS® <= (BistrueinTS® — Aistruein TSP),
2. upward absolute if

B follows from AinTS® — (Aistruein7S® —> BistrueinTSP),
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3. downward absolute if
AistrueinTS® — (Bistruein7S® — B follows fromAinTSP),

4. etc.

To say that a defining condition, or a set, is (left/right) absolute means that the
condition, or set, with respect to local reasoning has the same meaning inside the
local logic as outside it.

4 A Proof-Theoretic Interpretation

Even if we note that there are no definitions having the closure properties stated in
Sect. 2 above, there is still the possibility to read these definitions from a more strict
intensional point of view. We then look at the closure conditions as clauses in two
partial inductive definitions ([6, 7, 13]). The idea is basically to look at if .. ., then
... and is closed under in terms of the notion of logical consequence that defines the
local logic of the definitions in question, i.e., that if A, then B is read as B follows
from A by the given definition.

As amathematical object a (partial inductive) definition D consists of a collection
of equations

a=A

for a € U for some given universe of discourse and where A is a defining condition
built up from elements in U, T and L using constructions /\; and =. Let D(a) be
the collection of conditions defining @ in D if there are any and {_L} otherwise. The
local logic of D, |- p, is then given by the following elementary (monotone) inductive
definition

I'abFpa
I'kp T rL+pC
I'kp A; (iel I'A;j+p C Gel
FI—D/\IA,' F,/\IAH—DC
I'A+-p B 'kp A I'BEC
''p A= B NNA=BrpC
I'kp A I'Akp C AeD
DA A< D@ D (A € D(a))

I'ktpa I'atp C
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The function closure with respect to X C U and functions f] ... f, with arities
k1 ...k, over U, is then formally defined by the following definition

a=T (aeX)
filxroooxg) =(er..oxg) (@< n)
Def(D(X, f1...fn)) is then the smallest set containing X and being closed under
the functions fi ... f;.

Similarly the functional closure with respect to X C U, functions f] ... f, with
arities k1 ...k, over U, a functional F : [U — U] — U andaset ® C [U — U],
is given by a definition D(X, fi ... fu, F, ®@):

a=T (aeX)
fitxt.ooxg) =(x1...x,) (@ <n)

F(fy=Ny(x= f(x) (f €P)
Now we might rewrite the definitions S@ and 7' S® in the following way:

T=T
F=T
A—>B=/\(A,B)

AeB=/\(A,B)

<o A=B=/\(A,B)
SN = N\&= )
So
I =N\ = fx)
S®
Vi) = A\ = fx)
So
T=T

A€ S(f)=f(A)

rse¢] A=B=/\(xeA=xeB) (xeB=xecA)
So

) =) (5D)
V(i) = A\
So
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Reading them as foundational definitions we have to accept certain notions as
primitive notions; the conditions 7 and F, the function —, the functionals S, 3 and
V, the notion of a function and indexing families over the sets we define. In principle
what amounts to understanding the functional closure as a primitive foundational
notion. The resulting formal systems, defining the local logics of the definitions, are
consequently formal systems in an informal sense. They define what a proof is as
a foundational notion, providing a proof-theoretic foundation of set theory, that is,
using proof-theoretical notions in an abstract and open manner (cf. the notion of a
general proof theory in [10-12]).

5 Sets

From an extensional perspective viewing sets as collections of given sets, the notion
of an elementary set connects to hierarchies of what we somehow can visualize, i.e.,
low levels of the cumulative hierarchy. From an intensional point of view, where
the act of abstraction with respect to a given defining property/function is in focus, a
natural notion of an elementary set must build on characteristics of the definition. The
Levy hierarchy [8] of course shows strong connections between both perspectives
for Z F, but the situation here is a bit different as we look at set definitions in much
more open set theories. It is for instance clear that a set such as S(A(x = x)) isa
very elementary set with respect to its defining function.
Let us say that a set

e S(f)isa ®-serif S is closed under f,i.e., that f(x) follows from x in S@ for
all sets x in S@,
e S(f) is elementary if it is a ®@-set for all @.

Both S(A(x = x)) and S(A(x ¢ x)) are elementary sets. A simple example of a
non-elementary set is S(A(x = S(A(y = a)))).

6 Foundational Issues

It is clear that consistency is not an explicit issue in the present context. Falsity (i.e.,
F) is by definition something that is not defined and can thus never be proved in a set
theory S@. But consistency of course relates to issues of cut elimination for sequent
calculi, which relates to upward absoluteness. So assume we have a set theory S
where all basic defining conditions are absolute, or at least upward absolute. From
the point of view of set theoretic reasoning the sets definable in these theories are
somehow ‘nice’ sets.

Stating that there are functions @ with certain properties is what here corresponds
to axioms of set theory, and proving or believing that the theory S@ is absolute in
some sense corresponds to defining a model for the axioms. But while the true
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cumulative hierarchy V is the universe in which these models live, a general set
theory S£2 with no restrictions on functions is the context in which these definitional
theories S@ live. The big difference is that V is an extensional context, i.e., the true
world of pure sets, whereas S§2 is an intensional context based on a very general
notion of set definitions not presupposing a rationale of welldefinedness. What set
theories S@ reflect is not inner models, but the locality of proof logics.

The idea of reduction is somehow inherent in the notion of foundations, i.e., that
we build on elementary foundations. Although we evidently just walk around in
ontological circles, this idea of reduction is not meaningless. A very clear and con-
ceptually elementary model provides a reduction in the sense that we see clearly why
given axioms make sense. The argument that the idea of a reduction is an illusion
since the construction of the model involves all the power of the axioms themselves
does not make for a strong case. It is the suggestive simplicity and clearness of the
picture the model paints that is important, i.e., that we really can see the construction.
Simplicity with respect to definitional principles builds another type of foundations;
the local logic of given definitions. The foundational construction here is the func-
tional closure interpreted as a partial inductive definition. What is important is then
that we can ‘see’ the proofs that build the sets and the set theoretical arguments in a
very elementary sense. A typical example making the difference clear is the power
set P(A) = S(PA) where PAx is Yz(z € x — z € A). To envision P(A) as a
collection of given objects involves very abstract acts of visualising for large sets A.
Can we see the set, can we trust the axiom? It is of course clear that S(PA) as a set
theoretical definition opens up for logical complexity in reasoning, but in this case
it is a matter of visualising proofs with respect to a given definition. Can we see the
proofs, can we trust the definition?

The definition itself is in some sense elementary, the proofs defining reasoning
in theories S@ are also elementary in some sense. Thus there is a reduction in
foundations in some sense. But in actual set theoretical practice we need to trust
certain closure conditions on the definitions allowing for nice forms of reasoning for
what we believe to be nice theories S@. The major challenge here is to develop set
theory within the framework of theories S@ and explore the meaning of classical set
theoretical issues in this context.

Since S£2 is closed, in the sense that each definable function f is reflected in a
set S(f), we have the following

Theorem V (modulo large cardinals beyond RXq) has a definable reflection in SS2.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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A Strongly Differing Opinion
on Proof-Theoretic Semantics?

Wilfrid Hodges

Abstract Responding to an invitation from Peter Schroeder-Heister, the paper reacts
to some criticisms of ‘model theory’ voiced among proof theorists interested in proof-
theoretic semantics. It argues that the criticisms are poorly targeted: they conflate
model theory with model-theoretic semantics and with the model-theoretic definition
of logical consequence, which are three largely unrelated areas of study. On defining
the meanings of logical constants, and of natural language expressions in general, the
paper lays out some methodological requirements that any satisfactory definitions
would need to meet, for example about generalisability from one context of use to
other contexts. On defining logical consequence, the paper argues that some points
made recently by Schroeder-Heister and Kosta DoSen are largely sound and probably
uncontroversial if clearly stated, but their impact is blurred by some question-begging
formulations.

Keywords Proof-theoretic semantics - Model-theoretic semantics - Definition of
logical consequence *+ Tarski

It was very kind of Peter Schroeder-Heister to invite me to contribute to this meaty
conference. He said:

... you would fit very well into this meeting, even though (or perhaps
because) you have opinions that strongly differ from [those] of the majority
of people at the conference. Perhaps you can give a talk in defence of model
theory, as far as the foundations of logic are concerned.

(D

That’s a fantastic invitation, and I went to the meeting resolved to disagree with as
many people as possible.

In the event it was not so easy. Partly there was serious research being done in
proof theory, and I am not a proof theorist. Partly there were a good number of
entirely sensible and friendly people. But also I often found it hard to see what the
issues were. I think this was not entirely my fault. Straw men were being set up and
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knocked down. I could see this most clearly when the straw men were described as
model theorists, because I do know something about model theory, and some of the
views being attributed to model theorists were not ones I recognised. This impression
was strengthened when I read a recent paper of Peter’s in Synthese [14].

So I had plenty to disagree with, but not in a very satisfactory way. It’s more
edifying to discuss substantive issues than to clear away misunderstandings. But the
clearance work has to be done first. I will try to keep it both brief and profitable.

I thank Peter Schroeder-Heister and Kosta DoSen for some valuable discussions.

1 Straw Model Theory

A good place to start will be an elegant paper of Dag Prawitz [11] from 1974. There
is a lot that I agree with in the paper, but I was pulled up sharp when he said:

In model theory, one concentrates on questions like what sentences are
logically valid and what sentences follow logically from other sentences (2)
[11, p. 66].

I can say with absolute confidence that I never met a model theorist who ‘concen-
trates on questions like what sentences are logically valid and what sentences follow
logically from other sentences’. On his next page Prawitz discusses Alfred Tarski’s
proposal for defining logical consequence, from his paper of 1936 [17]. So it seems
likely that Prawitz reached the view stated in (2) by assuming that Tarski’s 1936
paper is of interest to model theorists. This is not in fact the case. Nothing in the
paper is of any interest to model theorists, except perhaps those with an interest in
the prehistory of their subject.

Peter Schroeder-Heister adds another ingredient to the mix in his recent paper [14],
namely model-theoretic semantics. This is a discipline concerned with describing
meanings, so Peter rightly connects it with questions about how one should describe
the meanings of logical constants. But its origins are quite different from those of the
model-theoretic truth definition, and it belongs to a different research community.
Model theorists don’t do model-theoretic semantics either. I do know one person
who contributes to model-theoretic semantics using techniques of model theory,
namely Dag Westerstahl; but there are not many of him. In short, the three areas of
research—model theory, the definition of logical consequence and model-theoretic
semantics—are quite different and they have hardly anything in common beyond a
connection with models in the sense associated with Alfred Tarski.

So now let me unpick the historical relations between these areas. (All the com-
ments on Tarski below draw out material from my [10].)

There are some other research areas that connect with Tarski’s notion of models
but not with each other. One is mental model theory as pursued by the cognitive
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scientist Ruth Byrne [2], and another is the model-theoretic syntax advocated by the
linguists Geoffrey Pullum and Barbara Scholz [12].

1.1 Tarski’s Definition of Logical Consequence

During the years 1929-1933 Tarski put together a definition of the concept ‘¢ is a true
sentence of the language L’ [16], which has become known as ‘Tarski’s definition
of truth’. Tarski stated some very strict conditions that his definition had to meet.
All symbols of the language L (apart from punctuation—we ignore this below) must
be fully meaningful. The definition is written in the formalised metalanguage of L,
but justified in the informal meta-metalanguage. It must use only higher-order logic,
concepts expressible in the language L itself, and some syntactic notions. It must
be extensionally correct: the objects satisfying it must be exactly the objects that
we count intuitively as true sentences of L. The extensional correctness must be
informally provable in the meta-metatheory of L. This is not the place to go into
further details. The paper became well known through a German translation in 1935.
It makes no reference to models, and model theorists don’t cite it.

In 1935 Tarski was persuaded to attend the International Congress of Philoso-
phers in Paris. Worrying about what he could say to impress the philosophers, he
formed the idea of presenting the truth definition as a vehicle for giving formal defi-
nitions of various notions from logical metatheory, among them the notion of logical
consequence. The result was a pair of papers, [17] presenting the definition of logi-
cal consequence, and [18] discussing the general idea of defining semantic notions
[, pp. 95f1f].

The paper [17] on logical consequence answered a methodological question, not
a question of conceptual analysis. You can’t do conceptual analysis until you have a
concept to analyse. But when Tarski wrote, there was no agreed concept of logical
consequence to be analysed. (One should look first at what was available in the litera-
ture of his time. For example Hilbert and Ackermann [8, p. 1] have a proof-theoretic
notion of Logische Folgerung, while Carnap [3, p. 10] speaks of one proposition
being a Grund for another, without any clear definition. Tarski may also have fac-
tored in earlier ideas, like Bolzano’s Ableitbarkeit and various medieval notions of
consequentia.) Tarski makes exactly this point in his opening paragraph, noting that
‘every precise definition of this concept will show arbitrary features to a greater or
[lesser] degree’ [19, p. 409]. In fact the term ‘logical consequence’ itself seems to
have become common in philosophical logic only as a result of Tarski’s paper.

To see what the methodological question was, we need to put the paper in context.
Godel had recently shown that there is no maximal proof calculus for pure logic of
second or higher order. Ramsey [13] had discussed languages with infinite conjunc-
tions, and both Bernays [1, pp. 86ff.] and Tarski himself [19, p. 288] had considered
proof rules with infinitely many premises. So some very general questions about
proof calculi were in the air, and some robust and well-motivated definitions were
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needed for handling them. Tarski seems to have clarified the central question in his
own mind along the following lines:

What are the weakest constraints that we can put on a rule for deriving proposi-
tions from sets of propositions in a formal language, which make it reasonable
to count any rule satisfying these constraints as an inference rule?

He proposed to label these constraints as saying that the conclusion of the rule is a
‘logical consequence’ of its premises.

Now for Tarski in 1935 there were two kinds of formal language. In the first kind,
which we can call ‘pure’ languages, all symbols are logical. In the second kind,
which we can call ‘applied’, there are also nonlogical symbols, but these symbols
are all required to be fully meaningful. For pure languages, Tarski adopted just the
constraint that whenever the premises are true the conclusion must be true too. This
constraint looks trivial, but in Paris in 1935 it served the purpose of advertising his
recent formal definition of ‘true’.

For applied languages Tarski had to decide what to do about analytical rela-
tions between the meanings of the nonlogical constants. For example Hilbert in his
Gottingen lectures around 1920 (which formed the basis of his book with Acker-
mann) had observed that “Tony Blair is a parent’ entails ‘Tony Blair has a child’ (my
adaptation of Hilbert’s more traditional example). Would it be appropriate to allow
an inference rule that takes one from the first sentence to the second? Tarski decided
no. An inference rule should be invariant under systematic changes of the meanings
of the nonlogical symbols; but if we swap the meanings of ‘has a child’ and ‘has
bright red hair’, then the proposed inference rule would take a true premise to a false
conclusion.

It’s noticeable that Tarski’s own text says almost nothing about relations between
the meanings of the nonlogical constants (there is a brief parenthetical remark in the
middle of P. 415 in [19]), but has at least a page on the importance of the difference
between (i) changing a symbol to one with a different meaning and (ii) replacing
the symbol by a variable that arbitrary objects can be assigned to. That tells me that
Tarski in 1935 was really more interested in fine-tuning the notion of satisfaction
than in accommodating the philosophers in Paris.

The paper does use the word ‘model’, though not in the modern sense. The name
‘model-theoretic definition of logical consequence’ is not Tarski’s, and I think it
came into use only after the later developments that we turn to next.

1.2 Model Theory

During the 1930s and 1940s Tarski maintained a strict distinction between mathe-
matics and metamathematics. Because of this, he was still in 1938 reluctant to accept
that a set of formal axioms could serve to define the class of structures which satisfy
them—as for example the class of rings consists of the structures that satisfy the
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axioms of ring theory. But mathematical developments put him under pressure to
change his mind. By 1950 he was ready to embrace what we now know as model
theory, and he devoted the early 1950s to setting up the basics of the theory.

In the course of this work, Tarski rejigged his old truth definition, so that instead of
defining ‘¢ is a true sentence of the language L’ it defined ‘¢ is a sentence true in the
structure M for the language L’, where now L is a formal language whose nonlogical
symbols have no meaning and the structure M is used to assign meanings to these
symbols. This new truth definition is known as the ‘model-theoretic truth definition’.
You can find it in standard textbooks of model theory. But in practice model theorists
mostly use just the separate recursive clauses of the definition, for example that a
satisfies Vy¢(x, y) in M if and only if for every element b of M, ab satisfies ¢(x, y)
in M. These clauses are all older than Tarski’s work. The definition as a whole
does guarantee that the relation ‘¢ is true in the structure M’ is set-theoretically
definable, though today most logicians would reckon that this is intuitively obvious.
Occasionally it’s useful to know that the definition can be written as a set-theoretic
formula of a particular form.

The model-theoretic truth definition uses an adaptation of the idea of satisfac-
tion that Tarski introduced in his 1933 truth definition and exploited in the 1936
paper. If you apply that model-theoretic adaptation to the 1936 definition of logical
consequence, you get

¢ is a logical consequence of T if and only if every model of 7 is a model 3)

of ¢

where now ¢ is a sentence and 7 a set of sentences, in a language whose nonlogical
symbols are meaningless. It happens that the righthand clause of (3) is a relation that
appears very often in model theory, so it would be useful to have a name for it. On the
basis of the facts above, Tarski in 1953 [20, p. 8] proposed reading the relation as ‘¢
is a logical consequence of 7. Model theorists have tended to follow Tarski’s lead
and pronounce the relation as ‘7T entails ¢’ or ‘¢ is a consequence of 7. The use of
the name has nothing to do with any interest in the concept of logical consequence
itself.

Tarski’s 1953 essay [20] seems to have had some unintended consequences among
philosophers. A number of people conflated the 1936 definition with the 1953 one,
and called both of them the ‘model-theoretic definition of logical consequence’. I
think the conflation is unfortunate, because the question we discussed in 1.1.1 above,
about analytical relations between meanings, is one of the most important questions
addressed in the 1936 definition, but it is meaningless for the languages of first-order
model theory. Later, during the 1980s, the ‘model-theoretic definition of logical
consequence’ attracted the attention of some philosophers who reassessed it as a
contribution to conceptual analysis.

Peter in his invitation to me (1) referred to a ‘defence of model theory, as far as
the foundations of logic are concerned’. I think I’ll give this a miss. To me, model
theory is a way of addressing certain kinds of question in mathematics, chiefly but not
exclusively in geometry, algebra and number theory. The main link to foundations
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of logic is that some techniques of model theory made their way into axiomatic set
theory around 1960 and continue to have an influence in large cardinal theory.

1.3 Model-Theoretic Semantics

So far, nothing that I’ve mentioned is directly to do with semantics, i.e. the study of
meanings. Tarski called his truth definition the ‘semantic definition of truth’, most
probably because of a formal similarity with what Kotarbiniski had called ‘semantic
definitions’. In his truth paper [19, p. 193f.] he listed some notions that he called
‘semantic’: denotation, definability, truth. The notion ‘meaning’ was not in his list,
and this is certainly not an accident.

During the 1960s a number of papers appeared that were about extending model
theory from non-modal formal languages to modal ones. Some people described
this as giving ‘model-theoretic semantics’ for modal logics. I suppose that originally
‘giving a semantics’ meant giving a model theory that would allow one to talk in
a concrete and precise way about truth and satisfaction of modal formulas. But a
subtle shift started to take place. In a standard model for modal logic, each relation
symbol has an ‘intension’, which is a function taking each possible world to a set
that is the extension of the relation symbol in that world. You can think of extensions
as references, and intensions as meanings—though a lot of people have criticised
these analogies. So you can think of a model for the modal logic as assigning to each
meaningful expression of the language an intension that represents the ‘meaning’
of that expression. Around 1970 Richard Montague adapted all these notions to
the study of fragments of natural languages, building on earlier work of Rudolf
Carnap. From that date onwards it became common to refer to Montague-style model
theories of natural language as ‘model-theoretic semantics’. (Though Barbara Partee,
a pioneer in this area, describes her field as ‘formal semantics’.) From the mid
1970s onwards, the people who did model-theoretic semantics were mostly linguists
or philosophers of language. The earlier model-theoretic semantics had been done
mostly by philosophical logicians, and almost never by model theorists.

Model-theoretic semantics is useless for lexicography—you learn nothing about
the meaning of the Greek noun skindapsos by being told that its intension maps
every possible world to the set of all the things in that world that fit the description
skindapsos. But it comes into its own for describing how the meaning of a compound
phrase depends on the meanings of its constituents. Earlier we illustrated how the
clauses of Tarski’s truth definition tell us what things satisfy a compound formula,
in terms of what things satisfy its immediate subformulas. Tarski had one clause for
each logical operator: the logical operators —, —, V etc., are all of them expressions
whose meaning is explained by saying how the meaning of a compound formed by
means of them depends on the meanings of the constituent expressions. In modal logic
and its variants we add to those logical constants other expressions like ‘necessarily’,
‘believes’, ‘until’. Formal semanticists push the boat out and apply similar machinery
to ‘himself’, ‘hardly ever’ and ‘so much as’ (for example).
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Model-theoretic semantics and the model-theoretic definition of logical conse-
quence were always completely separate. You might reckon that there is a link,
because both of them are involved with giving meanings. But there are major differ-
ences. First, in studying logical consequence we are only concerned with the meaning
of one expression; model-theoretic semantics aims to get a purchase on language as
a whole. Second, Tarski always assumed that the expression ‘logical consequence
of” was not in the formal language L; it was an expression of the metatheory. Of
course one can put it into the object language, but Tarski himself avoided doing this,
because he had proved that languages containing enough of their own metatheory
generate contradictions. So a person who wants to add ‘logical consequence of” to
the object language has the extra task of proving that the resulting language is still
consistent. And third, the aim with logical consequence was to give a definition of
it, under suitable constraints. Model-theoretic semantics doesn’t give definitions, it
gives truth-conditions.

Soit was curious to read the introduction to Peter Schroeder-Heister’s [14] and find
him claiming that ‘classical model-theoretic semantics’ makes various assumptions
about how logical consequence should be defined. I assumed at first that he was using
‘model-theoretic semantics’ as a name for the model-theoretic definition of logical
consequence. But then almost at once he talks about model-theoretic treatment of
the logical operators, and that really is in the realm of model-theoretic semantics.
Well, it’s not good history but it’s an intriguing question all the same. Could there
be a theory that helpfully combines definition of metatheoretic notions with the
techniques of model-theoretic semantics? What problems would it run into? What
constraints should it aim to observe? What kinds of new result could we expect from
combining the two things? I think it’s clear that Peter himself doesn’t want to go
down this road, but somebody else might. (Maybe somebody already has, in which
case I give them my apologies and best wishes.)

2 Defining Meanings in General

We can separate out two strands in the aims of proof-theoretic semantics. One is to use
proof theory to specify the meanings of logical constants. This can be generalised to
specifying the meanings of other expressions too. (Peter tells me he would welcome
faster progress in this direction, for example using more advanced proof-theoretic
tools like those used to handle inductive definitions.) The other is to give a good
description of logical consequence from the point of view of proof theory. I assume
Peter’s invitation was to comment on both of these aims. In this section I tackle
meanings in general, and in the next section I turn to logical consequence.
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2.1 Defining Meanings: Specialise Then Generalise

In the introduction to his Stanford Encyclopedia entry on ‘Proof-Theoretic Seman-
tics’ [15] Peter says:

... the meaning of a term should be explained by reference to the way it is used
in our language.

That’s a very reasonable starting-point. I wasn’t clear whether Peter takes ‘our
language’ to be English (or German), or a formal language used in logic, but I'1l
assume the former. Paraphrasing Peter’s statement a little, the meaning of an expres-
sion E in a language L is what you need to know in order to use E in L. But we
should exclude purely grammatical information about E, so a safer statement is

The meaning of an expression E in a language L is the further information that
you need in order to use E in L, if you already know the grammatical facts
about E.

There is more to be said on this, but not here.

Straight away we hit a problem. Life is open-ended, and so is language. The
same expression can be used in indefinitely many different situations, and a priori
there is no reason to think we can write down the rules for using the expression in
a manageable description that covers all cases. This certainly applies to the logical
constants ‘and’, ‘every’ and so on, which occur throughout the language and not just
in contexts of logical argument.

So in practice we do what linguists have to do constantly in their studies. We
narrow down to a set of contexts that we can handle, and we give rules for using the
expression in those contexts. Then we rely on general facts about life and language
to determine how the expression would be used in other contexts. I will call the
narrow set of contexts the primary applications, and I will call the arguments used
for generalising from the primary applications to the whole language the transfer
arguments.

The ‘Frege-Geach problem’ illustrates these notions. In 1965 Peter Geach wrote a
paper [7] in which—among other things—he attacked the view that you can explain
the meaning of the sentence

He hit her. “4)

by saying that it ascribes a certain kind of action to ‘him’. Geach argues that this
explanation won’t carry over to contexts where (4) is used but not asserted, for
example when it follows the word ‘If’. In contexts where (4) is not asserted, it
doesn’t ascribe anything. But, says Geach, the explanation needs to be carried over
to these contexts, because we can apply modus ponens and argue

He hit her. If he hit her then ¢g. Therefore ¢.
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Moreover the two occurrences of the sentence, ‘by itself and in the “if” clause, must
have the same sense if the modus ponens is not to be vitiated by equivocation’ [7,
p. 462f].

I used to think that Geach’s argument was a very clever way of refuting all sorts
of plausible theories. I still think it’s clever, but now it seems to me to prove almost
nothing. When we explain how an expression is used in certain contexts, transfer
arguments will always be needed to infer how it is used in other contexts. In fact
looking again at Geach’s paper, I see that this agrees with his conclusion:

... itis up to [the person giving this kind of explanation] to give an account of
the role of “p” that will allow of its standing as a premise. This task is pretty
consistently shirked. [7, p. 463]

The key point that Geach contributes is that the validity of the modus ponens argument
is a constraint on possible transfer arguments.
We must ask: Who has the responsibility for handling the transfer arguments?
To illustrate with ‘and’: a person who is explaining ‘the way it is used in our
language’ will need to explain its use not just between propositions in deductions,
but also such uses as

formally correct and materially adequate; black and white. 5)

There are subtleties here: a formally correct and materially adequate definition is a
formally correct definition that is also materially adequate, but a black and white cat
is not a black cat that is also white. How did we know this?

You might argue that this property of ‘black and white’ is something for the
linguists to worry about, and not a thing that proof theorists could be expected to
have views on. But on the other hand linguists can’t make bricks without straw: if
the proof theorists expect the linguists to explain how the proof-theoretic meaning of
‘and’ transfers to uses like those in (5), then they must be prepared for the linguists
to complain that the proof-theoretic meaning just isn’t enough to generalise from.
Somebody has to take responsibility for the join-up.

The point is very general. For example an explanation of the meaning of ‘He hit
her’ in terms of truth conditions raises the question how we can infer what it means
to say

Last Friday Zayd hit Amr very hard, to teach him a lesson.

Obviously if you specified the meaning of ‘hit’ as the set of ordered pairs (a, b) such
that a hit b, then you are going to have serious problems answering this question. (I
stole this example from the great 11th century semanticist Abd al-Qahir al-Jurjani.
Today people working on the semantics of tree-adjoining grammars wrestle with the
same problem.)
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2.2 Representing the Meaning

When we describe the meaning of an expression, we always do it in some format:
maybe a picture, or a diagram, or a formal definition in words, or a physical demon-
stration, or an abstract set, or . . . In other words, the information about the expression
always has to be packaged up as an object—I will call the object the semantic value
of the expression—in some form of representation. This places on us the burden on
making sure that both we and the people we are speaking to can read the represen-
tation, i.e. that we can understand what information the semantic value is supposed
to convey.

There is a great temptation for logicians just to throw symbols on the page and hope
that they are self-explanatory. For example we might write, as a partial explanation

of ‘and’:
(pand )
o}

But what does this diagram mean? Does it mean for example one of the following?

(6)

(a) If we are entitled to assert (¢ and 1)) then this fact entitles us to assert ¢.

(b) If we have already asserted (¢ and 1) then we are entitled to assert ¢.

(c) If we are committed to defending (¢ and ) then we are committed to defending
@.

(d) If (¢ A 2) is true then so is ¢.

(e) In any situation S, if (¢ A ?) is true in S then ¢ is true in S.

Some of these statements are deducible from others by general principles. Let me
straight away generalise the notion of transfer arguments to include the arguments
that justify these deductions. These arguments generalise not from one context of
use to another, but from one kind of statement about use to another kind of statement
about use.

Note that if we use reading (e), then there is a very plausible argument to show
that the natural deduction rules for A and the standard truth table for A give exactly
the same information about A, so that in this case the difference between a proof-
theoretic semantics and a model-theoretic one becomes purely one of notation. But
in any case a person who wants to compare model-theoretic semantics with proof-
theoretic semantics for logical operators will need to answer the question above for
(6), and similar ones for the other natural deduction diagrams and for truth tables.
This applies to intuitionist logical operators just as much as to classical ones.

There seem to be more ways of reading a formal derivation than there are of
reading a truth table. Derivations, particularly in Hilbert-style or natural deduction
formalisms, look a bit like formalised natural language arguments. But usually they
are missing the explanatory tags that we put all over the place in natural language
arguments: ‘Then’, ‘But’, ‘Suppose’, ‘I grant that’, ‘I think I can show that’, ‘I claim
that” etc. etc.

To illustrate the possibilities, let me sketch how Ibn Sina thought we should read
arguments in which an assumption is made and then discharged [9]. He observed
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that when we introduce an assumption ¢ by saying ‘If ¢’, we don’t always repeat
the ‘If ¢* whenever we state a proposition that depends on the assumption. (That’s
certainly so if ¢ is introduced with ‘Let’ or ‘Suppose’. But Ibn Sina is right; one can
find enough examples where it’s true with ‘If” too.) So, he argued, we must intend
that ‘If ¢ then’ should be understood at the beginning of all relevant propositions
down to the point where the assumption is discharged. So we should understand

o 0—0) ¥
v as meaning v
7)( —
@ —x) (=2 (7)

In the ‘understood but not stated’ derivation on the right, the formula (¢ — ¢)
at the top is an axiom, and the discharging step that derives (¢ — x) from x falls
away. A general metarule asserts that for every step A, a + (3 we have a step
A, (p— @) F (¢ — (). (This analysis is extraordinarily close to Frege’s explanation
of making and discharging assumptions, though it was given over 800 years before
Frege. But as Peter noted at the meeting, Ibn Stna and Frege had different motivations.
In fact Ibn Stna wanted to understand the real intentions of the person giving the proof,
whereas Frege aimed through Begriffsschrift to display the true ‘logical weaving’ of
informal proofs that begin ‘Let ... [6, pp. 379ff].)

Ibn Sina’s position is in effect a claim about what kind of contentful argument is
expressed by the natural deduction rules. So it’s directly relevant to how we can read
the proof rule of —-introduction as carrying information about the meaning of —.

The discussion so far has used only natural deduction proof rules. It would be
possible to give a semantics using - as a primitive notion, so that for example we
define A by

@AP)Ed, @A EY, oY (PAY). ()

(There are well-known variants of this definition.) The difficulty with taking F as
primitive is that until we have a definition of I, there is going to be no purchase
for transfer arguments. In particular we won’t be able even to raise the question
whether (8) gives the same information as a truth table for A, frankly because until
I is explained, we don’t know what information (8) is giving us.

One last point: some kinds of semantics refer to the semantic value of an expression
as the ‘denotation’ of the expression. This is just a name, no more. It certainly doesn’t
entail that the semantics treats expressions as proper names of their semantic values.
To single out some kinds of semantics as ‘denotational’ is like singling out the
semantics that are written in Turkish; the classification is pointless.



184 W. Hodges

3 Defining Logical Consequence

In both his truth definition and his definition of logical consequence, Tarski set new
standards of carefulness about the requirements he was imposing on the definitions:
what concepts could be used in the definitions, and what assumptions could be
used in the justifications of the definitions. You can attack his definitions either by
showing that they failed to meet the requirements, or by arguing that the requirements
were inappropriate for his purposes. Or of course you can propose some different
requirements that suit a different agenda. This third option wouldn’t be an attack on
Tarski; it would be an alternative venture.

Here is an example of an alternative venture. Suppose you want the definition of
logical consequence to have the following property:

For any propositions ¢ and 1), if the definition of ‘1 is a logical consequence
of ¢’ isthat I'(¢, 1), then the statement I (¢, 1)) states criteria that can be used
for convincing ourselves that 1 is (or is not) a logical consequence of ¢.

To make this realistic, maybe we should add ‘at least in simple or straightforward
cases’. Also if you were a cognitive scientist, you might want to strengthen to ‘the
criteria that we would in fact use for convincing ourselves ...’; then the definition
would express a theory about how we think.

It’s not hard to show that Tarski’s definition doesn’t have this property. For Tarski
the statement I (¢, 1) takes the form

For every interpretation or model M, if M makes ¢ true then M makes 1 true.

Because of the quantifier over all M, in practice the only way of showing that I" (¢, 1)
holds will normally be to show the stronger statement

For every interpretation or model M, ‘M makes v true’ is a logical consequence
of ‘M makes ¢ true’.

But this is just a more complicated variant of ‘1) is a logical consequence of ¢’, so it
can’t provide the criteria we asked for.

Prawitz presents this argument very clearly [11, p. 67f.]. But the basic point is
older. It goes back at least to Ibn Stna, who used it to argue that you can’t use
the notion ‘true in situation S’ as a device for making the validity of an inference
intuitively clear. (This appears in his Qiyas iii.2, unfortunately still available only
in Arabic.) Several people including me have suggested that the argument poses at
least a theoretical difficulty for those mental model theorists who maintain that we
do in fact reason by making the kind of move that Ibn Sina criticised. So I don’t think
that proof-theoretic semanticists who present the argument should assume they are
in any way swimming against the tide.

Looking around the literature in proof-theoretic semantics, I don’t in fact see
anything that I would regard as a criticism of Tarski’s definition. Things that are
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phrased as attacks on the definition are usually pleas for a different agenda. Nothing
compels us to stick to the agendas of eighty years ago.

A striking pair of papers by Peter Schroeder-Heister [14] and Kosta DoSen [4]
raise a number of questions about the nature of definitions, and about what can be
defined in terms of what. I very much welcome the questions—the general theory
of definition has had a very patchy treatment by logicians in the last century—and I
agree with most of the positive points that Peter and Kosta make. But some of their
claims about the views of other people seem to me mighty strange.

At the heart of their arguments against ‘model-theoretic semantics’ is the question
what can be defined in terms of what. This was a question of constant interest to the
traditional Aristotelian logicians, and a large part of what they said about it strikes
me as codswallop. Ouch—on general principle one shouldn’t say that sort of thing
about the logic of a distant culture. But what else can you say about people who insist
that the only correct definition of ‘human’ is ‘mortal rational animal’, and give only
circular arguments in support of this view?

There are still people who operate a broadly Aristotelian notion of the hierarchy
of concepts. One notable example is the linguist Anna Wierzbicka [21, cf. p. 10].
She seems to operate by a kind of introspection of concepts. The main difficulty
of introspection is that you can never be sure what is the source of the information
that it serves up. I think in fact there are two main kinds of reason for regarding
concept C as prior to concept D in the hierarchy of definitions. Both these reasons
can in principle be lifted out of introspection and made objective, which is always
an improvement.

The first kind of reason is that because of the way our minds work, we wouldn’t
be able to understand D unless we already understood C. For example could you
understand what it is to be vengeful if you didn’t already understand what it is to be
angry? Could you understand what it is to be infectious if you didn’t understand what
it is to be ill1? Or closer to home, could you come to have a concept of satisfaction
if you didn’t already have a concept of truth? In theory at least, questions of these
kinds can be answered by seeing what you can teach to children, or whether there are
natural languages in which there is a word for D but no word for C. There are surely
important cognitive facts to be discovered here, but I for one would rather leave it to
the experts.

The second kind of reason is not cognitive but semantic. An example is that you
can define ‘x is a mother’ in terms of ‘x is the mother of y’ by quantifying out the
v, but there is no logical operation that goes in the opposite direction. To handle
examples like this, it’s almost essential to put in the variables, because the whole
point is that ‘mother of” has an extra argument that is missing in ‘mother’—it has an
extra degree of freedom. In fact Tarski and his teacher Le$niewski seem to have been
the first logicians who insisted on putting variables where they are needed, though
Frege had already raised the point.

Kosta’s paper does draw attention to one place where variables are needed. He
points out (in his §4) that a notation for derivations which only allows us to put a
variable for the conclusion is much less useful than a notation that allows us to a
variable for a hypothesis as well. This is clearly correct, and I can say so with an easy
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conscience because I have already (in (7) above) used a notation that does precisely
have variables for the hypotheses. My notation is very standard, but in fact it’s not
the one that Kosta himself recommends. In effect Kosta, working in a categorial
framework, calls for a notation that sets out the variables in the concept

f is a derivation of B from A. 9)

My notation doesn’t show the f, but if needed one could write an f in the middle
of the triangle. Also Kosta’s notation can be written in a line; this is an advantage
in text, but possibly a hindrance for writing out pictures of complex derivations.
On the other hand my notation has the advantage that it allows one to write several
hypotheses, whereas Kosta’s arrow notation allows just one source for the arrow; for
my application in (7) above, that would have been a fatal flaw. As all this illustrates,
there are some quite subtle relationships between notation and concept, and they are
very sensitive to the purpose that the notation will be put to, and the mathematical
context in which it will be used.
But elsewhere Kosta forgets the variables. For example he asks [4, §5]:

Can inferences be reduced to consequence relations? So that having an

inference from A to B means just that B is a consequence of A. (10)

where should the variables go? I suggest that the concept of an inference needs three
variables, essentially as in Kosta’s notation (9) for derivations:

X is an inference from y to z. (11)
The notion of consequence carries just two variables:
X is a consequence of y. (12)

Kosta’s question (10) asks whether (11) is definable from (12), and he expects the
answer No.

Clearly Kosta is right: (11) is not definable from (12) (and a fortiori not ‘reducible
to’ (12)) for the glaring semantic reason that (11) carries an extra argument. This is
not just an accident of Kosta’s formulation. It’s an essential part of the notion of z
being inferable from y that people can perform an act called making an inference
from y to z, but it is certainly not part of the notion of consequence that people can
make a consequence. And I agree with Kosta that this is a point worth making. I also
agree with him that for purposes of the foundations of logic, a psychological analysis
of ‘making an inference’ is not the right way to go.

But then why does Kosta add this comment?

This reduction of inference to implication, which squares well with the sec-
ond dogma of semantics, is indeed the point of view of practically all of the
philosophy of logic and language in the twentieth century.
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(He explains that ‘implication’ serves for ‘consequence’ here, so it is the same reduc-
tion as above.) Kosta seems here to be saying that the vast mass of twentieth century
researchers in philosophy of logic and language all make a mistake not far short of
adding 2 to 4 and getting 11. Sad to say, he is right that there are one or two pro-
fessionals in this field who lack this elementary competence; I could document this
but I won’t. But ‘practically all ...’: that seems to me an unreasonable accusation to
make with no evidence offered.

Kosta also refers to ‘the second dogma of semantics’. As Kosta formulates it in
his §3 (adjusting a similar statement in Peter’s [14]), this dogma states

The correctness of the hypothetical notions reduces to the preservation of the
correctness of the categorical ones.

If T understand this right, the notion of z being inferable from y is ‘hypothetical’
because one gets to z by using y as a ‘hypothesis’. The act of doing this is essentially
the same as the act of making an inference from y to z, so we are hovering around the
same semantic distinction as before. But I don’t think I recall ever hearing anybody
argue that the notion of making an inference can be defined in terms of something
being a Tarskian consequence of something else. Rather the opposite: Tarski gave
his definition at least partly so that a usable notion of consequence was available to
people who weren’t interested in the notion of making an inference. It’s a big world,
there are lots of different things to be interested in. Preferring to work on B rather
than A is not a kind of dogma.

Kosta adds that the second dogma ‘may be understood as a corollary’ of a dogma
that categorical notions have ‘primacy’ over hypothetical notions. [4, §3] In the
mainstream semantic and model-theoretic literature that I've seen, nobody talks about
‘prior’ notions or about one notion having ‘primacy’ over another. So the burden is
on those who use these terms to explain what they mean by them, and what evidence
they have for attributing views that involve these terms to semanticists. Otherwise
it’s they that are the dogmatists.

Peter has asked whether people who use Tarski’s truth definition regard satisfaction
as prior to truth. It’s a reasonable question, but I think that the answer is a straight No,
except in a technical sense that is probably not much relevant to this paper. Tarski’s
truth definition goes by recursion on the complexity of formulas. It’s a common
mathematical experience that when we define or prove something by recursion, it
can be nontrivial to formulate the notion that we carry up through the recursion. Often
it will need to carry extra features that can be discarded at the end of the recursion.
The notion of satisfaction was a technical requirement of just this sort, needed for
the recursive definition. But if the question is about having informal concepts of
truth and satisfaction, then my own view has always been that satisfaction has to be
understood in terms of truth and not the other way round. I should add that this is a
question I came to through trying to give an intuitive introduction to model theory
for non-model-theorists. It’s not a question that model theorists ever have to deal
with in their normal business.
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Comments on an Opinion

Kosta DoSen

Abstract Wilfrid Hodges’ opinion is that some ideas of Peter Schroeder-Heister and
the author concerning logical consequence are largely sound and probably uncon-
troversial, but he criticizes some of their aspects. In this note Hodges’ critique of the
author is found misplaced.

Keywords Inference - Deduction + Consequence - Proof-theoretic semantics -
Categorial proof theory

I am glad Wilfrid Hodges took in [9] an interest in my philosophical paper [3], but
I am sorry his reading of it is marred by misunderstanding, and leads to imprudent
reproaches. I don’t find Peter Schroeder-Heister’s ideas are evaluated correctly in
[9], but I will make comments only on what is said there, in the last few pages, on
my paper.

In the middle of Sect. 1.3 of [9], where the critique of my paper starts, Wilfrid
says that “at the heart of their [Peter’s and my] arguments against ‘model-theoretic
semantics’ is the question what can be defined in terms of what”. I was unaware that
I was producing arguments against model-theoretic semantics, and as much unaware
that I was dealing with Wilfrid’s question. Concerning the arguments against model-
theoretic semantics, the dogmas (assumptions that everybody makes, and nobody
calls into question) discussed by Peter and me are accepted not only in that kind
of semantics, but also in proof-theoretic semantics, and my paper discusses their
acceptance in the later kind of semantics. Concerning defining, at two places (in
Sects. 5 and 6 of [3]) I mentioned the inductive definition of derivations and codes
for them, and the definition of inference, i.e. deduction (as I said in Sect.?2 of [3], I
used the word “inference” to accord with Prawitz’s usage), as an equivalence class
of derivations. Elsewhere, I spoke of definition only when I mentioned the opinions
of others. “The question what can be defined in terms of what”, burdened (as the
linguist Anna Wierzbicka) by the legacy of Aristotle, is hardly “at the heart of my
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arguments”. My ideas, as should be quite clear from my paper, are very far from
Aristotle. They come from categorial proof theory, a mathematical field at the border
of category theory and proof theory.

Wilfrid seems to think that speaking of priority and primacy means one must be
speaking about “what can be defined in terms of what”. One may reasonably claim
that for explaining how an organism functions physiological notions, like for example
homoeostasis, have primacy over anatomical notions, like for example parenchyma
or stroma. This does not mean that the later notions are definable in terms of the former
ones, and not vice versa. In defining anatomical notions concerning organs one may,
but need not, rely on physiological notions, but one would equally rely on anatomical
notions—in particular on the notion of organ—when defining physiological notions.
In general, in the order of explanation, it seems indisputable that one may claim
precedence for the notions of a science that seeks laws accounting for phenomena
over the notions of a taxonomical science (see [1], Sect. 10). Nearer to the field of
logic, theoretical linguistics and its notions would have for explaining how language
functions precedence, primacy, over descriptive linguistics and its notions.

In a different register, in the order of exposition and not the order of explanation,
some notions can have for deep and natural reasons precedence over others without
this meaning that the later notions are simply definable in terms of the former. In logic,
one usually has that in the order of exposition the connectives of propositional logic
have primacy, priority, over the quantifiers of predicate logic, without the latter being
definable in terms of the former. In the foundations of mathematics, one usually has
that in the order of exposition logical notions, the connectives and the quantifiers,
together with the axioms concerning them, have priority over the set-theoretical
membership relation, together with the axioms concerning it, without the latter being
definable in terms of the former, as some authorities still expected a hundred years
ago. I will return to matters of primacy towards the end of this note.

I argue in [3] and elsewhere that the notion of inference should not be understood
as the notion of consequence relation. 1 don’t understand what Wilfrid means by
saying before (1.10) that I forgot the codes of inferences. It is quite the opposite. 1
argue that an inference should not be taken as an ordered pair made of the premise
and the conclusion, an ordered pair which is a member of a consequence relation.
With inferences we do not have a relation, but a graph in the sense of category theory,
which is given by a function assigning to every arrow an ordered pair of objects (some
graph-theorists call that a directed graph, and others, following [8], could call it a
directed pseudograph).

Wilfrid finds after (1.9) that a notation for derivations (does he mean by that the
same as I mean by inference or deduction?) in which he draws triangles “has the
advantage that it allows one to write several hypotheses”. The usual notation in the
style of Gentzen with sequents plural on the left can claim the same merit. In the
context where we are interested in identity of inferences there is no mathematical
loss, and there is a gain in clarity, if we restrict ourselves to the categorial format with
a single object as the source of an arrow. Since the premises are finite in number, we
can replace a plurality of them by their conjunction, and the absence of them by the
propositional constant true. If on the other hand we are interested in the question of
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reducibility of inferences to normal form, then it might be worthwhile to move to a
multicategorial, or operadic format, with a plurality of objects as sources. Moreover,
this should be done in an analogue of bicategories, i.e. weak 2-categories (see [4]).
One can also envisage working in polycategories (see [5]).

I argued at length against psychologism concerning inference towards the end
of Sect.4 of [3], and also in Sects.6 and 7. In Wilfrid’s remarks after (1.12) in
[9], though at the end of the paragraph he admits that “a psychological analysis of
‘making an inference’ is not the right way to go”, there are still psychologistic tones
in his mentioning that “people can perform an act called making an inference”. So I
am afraid that the point Wilfrid ascribes to me with approval is not exactly mine. If
one understands inference psychologistically, as much as Wilfrid seems to do, that
point may be acknowledged, but I don’t think it has much worth from a technical,
proof-theoretical, point of view.

To speak of impersonal inferences, not performed as an act, not made by anybody,
need not be natural. This may be something in the technical language of proof-
theorists. The task of proof theory however is not to stick to ordinary language, but
to speak about mathematical structures involved in deduction. One finds the very
interesting and important partial algebras in question in categorial proof theory (see
the elementary talk [2]). Model theory, as it was conceived up to now, is blind for
their logical role.

Wilfrid’s indignant remarks where I am accused to be saying that “the vast mass of
twentieth century researchers in philosophy of logic and language all make a mistake
not far short of adding 2 to 4 and getting 11” seem to stem from his assuming that a
Kosta made of straw is accusing the philosophers interested in logic and language of
confusing a psychologistic inference with a non-psychologistic consequence. With-
out putting psychologism into the picture, it was already shown by Gentzen that from
a purely technical point of view it is worth studying inference syntactically, though
Gentzen’s sequents could be read as consequence, i.e. a generalized implication
(this is how, for example, Church read them). Without psychologism, the difference
between inference and consequence becomes mathematically even clearer in cate-
gorial proof theory, where one studies identity of inferences. Gentzen did not study
that (though one may perhaps take that his results are pointing in that direction).

I believe that at least 95 % of logicians, and 99 % of philosophers of logic and
language, do not care about the codes of inferences and identity of inferences formal-
ized by systems of equations between these codes. They are quite happy with having
inferences that amount to consequence relations. Inferences that have respectively
the same premises and the same conclusions are for them always the same. Being one
of the rare logicians working in categorial proof theory on identity of inferences (i.e.
identity of deductions), in the footsteps of Lambek and Mac Lane, I dare advance
the figures of these percentages.

The primacy of propositions over deductions, i.e. of asserting over deducing, is
in the order of explaining how language functions, and is of the same kind as the
primacy of asserting over naming, which Dummett speaks about in Chap. 1 of [6],
and which is mentioned in Sect.2 of [3]. Dummett’s words are: “Frege’s account, if
it is to be reduced to a slogan, could be expressed in this way: that in the order of
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explanation the sense of a sentence is primary, but in the order of recognition the sense
of a word is primary.” ([6], p. 4) In the penultimate paragraph of [9] Wilfrid says:
“In the mainstream semantic and model-theoretic literature that I’ve seen, nobody
talks about ‘prior’ notions or about one notion having ‘primacy’ over another.”

One should first realize that in accordance with what was said about primacy and
defining at the beginning of this note, and contrary to what it seems Wilfrid would
have in the wake of Aristotle, this is not simply a matter of defining the notion of
deduction in terms of the notion of proposition, or vice versa, or defining the notion
of proposition in terms of the notion of name, or vice versa. The literature that would
supply what Wilfrid says he has not seen or heard could start with that reference
to Dummett and continue with the references to Frege [7] and Wittgenstein ([10]
and [11]), which are also in [3]. It is surprising that after starting so auspiciously,
on the shoulders of giants such as these last two, we don’t manage to end up in the
mainstream semantic literature.

I agree however with Wilfrid that model-theorists usually do not care about philo-
sophical questions concerning meaning. I don’t think this is because they have supe-
rior knowledge, but because together with interest they lack knowledge about these
philosophical matters—as well as knowledge about many interesting and important
mathematical matters of logic not in their realm.

Acknowledgments Work on this note was supported by the Ministry of Education, Science and
Technological Development of Serbia. I am grateful to Wilfrid Hodges for discussing the matters
raised in this note, and to the organizers of the Second Conference on Proof-Theoretic Semantics,
Peter Schroeder-Heister and Thomas Piecha, for accepting to include it in the proceedings edited
by them.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Dosen, K.: Logical consequence: a turn in style. In: Dalla Chiara, M.L. et al. (eds.) Logic and
Scientific Methods, Volume I of the 10th International Congress of Logic, Methodology and
Philosophy of Science, Florence 1995, pp. 289-311. Kluwer, Dordrecht (1997). http://www.
mi.sanu.ac.rs/kosta/publications.htm

2. Dosen, K.: Algebras of deductions in category theory. In: Jokanovi¢ et al. (eds), Third Math-
ematical Conference of the Republic of Srpska, Proceedings, Trebinje 2013, Zbornik radova,
vol. I, pp. 11-18. Univerzitet u Istoénom Sarajevu, Fakultet za proizvodnju i menadzment, Tre-
binje (2014). http://www.mi.sanu.ac.rs/kosta/DosenAlgebrasofDeductions.pdf; http://www.
mk.rs.ba/wp-content/uploads/2015/02/TOM1-Copy.pdf, pp. 1-8 http://www.mi.sanu.ac.rs/
kosta/publications.htm

3. Dosen, K.: Inferential semantics. In: Wansing, H., (ed.) Dag Prawitz on Proofs and Mean-
ing, pp. 147-162. Springer, Cham (2015). Preprint of 2012: http://www.mi.sanu.ac.rs/kosta/
publications.htm

4. Dosen, K., Petri¢, Z.: Weak cat-operads (2010). Preprint v. 8: http://arXiv.org


http://www.mi.sanu.ac.rs/kosta/publications.htm
http://www.mi.sanu.ac.rs/kosta/publications.htm
http://www.mi.sanu.ac.rs/kosta/DosenAlgebrasofDeductions.pdf
http://www.mk.rs.ba/wp-content/uploads/2015/02/TOM1-Copy.pdf
http://www.mk.rs.ba/wp-content/uploads/2015/02/TOM1-Copy.pdf
http://www.mi.sanu.ac.rs/kosta/publications.htm
http://www.mi.sanu.ac.rs/kosta/publications.htm
http://www.mi.sanu.ac.rs/kosta/publications.htm
http://www.mi.sanu.ac.rs/kosta/publications.htm
http://arXiv.org

Comments on an Opinion 193

10.

Dosen, K., Petri¢, Z.: Graphs of plural cuts. Theor. Comput. Sci. 484, 41-55 (2013). http://
arXiv.org

Dummett, M.A.E.: Frege: Philosophy of Language. Duckworth, London (1973)

Frege, G.: Die Grundlagen der Arithmetik: Eine logisch mathematische Untersuchung iiber
den Begriff der Zahl. Verlag von Wilhelm Koebner, Breslau (1884) (English translation by J.L.
Austin: The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of
Number, 2nd revised edn, Blackwell, Oxford, 1974)

Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass. (1969)

Hodges, W.: A strongly differing opinion on proof-theoretic semantics? In: Piecha, T.,
Schroeder-Heister, P., (eds.) Advances in Proof-Theoretic Semantics. Springer, Berlin (2015).
This volume

Wittgenstein, L.: Logisch-philosophische Abhandlung. Annalen der Naturphilosophie 14, 185-
262 (1921) (English translation by C.K. Ogden: Tractatus logico-philosophicus, Routledge,
London, 1922, new translation by D.F. Pears and B.F. McGuinness, Routledge, London, 1961)

. Wittgenstein, L.: Philosophische Untersuchungen. Blackwell, Oxford (1953) (English trans-

lation by G.E.M. Anscombe: Philosophical Investigations, fourth edition with revisions by
PM.S. Hacker and J. Schulte, Wiley-Blackwell, Oxford, 2009)


http://arXiv.org
http://arXiv.org

On Dummett’s “Proof-Theoretic
Justifications of Logical Laws”

Warren Goldfarb

Abstract This paper deals with Michael Dummett’s attempts at a proof-theoretic
justification of the laws of (intuitionistic) logic, pointing to several critical problems
inherent in this approach. It discusses in particular the role played by “boundary
rules” in Dummett’s semantics. For a revised approach based on schematic validity
it is shown that the rules of intuitionistic logic can indeed be justified, but it is argued
that a schematic conception of validity is problematic for Dummett’s philosophy of
logic.

Keywords Proof-theoretic justification - Logical laws - Dummett

Can logical laws be justified? Of course, the question can be answered, trivially, in
the affirmative: a logical law can be justified by deriving it from other logical laws.
But the question is meant to ask something deeper, something like: can the logical
laws be justified, all of them. Or, at least, can the logical laws be justified on the basis
of some small fragment of them, a fragment deductively weaker than the whole?
To this question it seems plausible that the answer is negative. Early analytic
philosophers might have argued that since the logical laws provide the canons of
justification, it does not even make sense to seek to justify them. (This view is, |
take it, near to the surface, if not completely explicit, in Frege. It is the cornerstone
of Carnap’s thought, when he takes the specification of a linguistic framework—
including all the logical laws—as a precondition for any rational inquiry or debate
at all.) This philosophical view is supported by, or mirrored in, an obvious technical
point: any justification would involve a deductive argument; this argument would
use logical laws, so that the justification would presuppose what it is supposed to
justify. Thus it would be circular, and not a justification at all. This is well illustrated
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by soundness proofs for deductive systems: ordinarily, in showing soundness of a
particular axiom or rule, one uses logical reasoning that is the direct analogue in the
metalanguage of that very axiom or rule.

Nonetheless, as Michael Dummett has long urged (see, e.g., [1]), anegative answer
might be too quick.

It might be proposed, for example, that it is the meaning of our words that have, as
upshots, the acceptability of the logical laws; might not an account of those meanings
therefore be able to play the role of supporting, or even fully justifying logical laws?
To put a finer point on it, the suggestion is that logical laws are true by dint of the
meanings of the words in them—specifically the meanings of the logical particles;
and hence one might be able to find justifications of those laws simply by unfolding
what the meanings of the logical particles are. The hope is that this might be done
without invoking the full panoply of logical laws that use those particles, so as to
obtain noncircular justifications.

In an odd sense, the idea goes back to Wittgenstein’s discovery of truth-functional
analysis: for the validity of the truth-functional laws follows at once from the stipu-
lation of the truth-functions that the connectives represent. (I say “in an odd sense”,
since for Wittgenstein the logical laws have no content, and it is surely odd to speak of
justifying something without content: what is there to justify?) But it should be noted
that a strong assumption underlies Wittgenstein’s procedure, namely his notion of
propositions as bipolar—possibly true, possibly false, and determinately either one
or the other. That is a highly suspect assumption, at least to those like Dummett
who wish to question classical two-valued logic. So perhaps the question should
be rephrased as: can we find noncircular justifications of logical laws by unfold-
ing the meanings of the logical particles, without making strong meaning-theoretic
assumptions?

Gerhard Gentzen’s work in proof theory in the 1930s proved to be suggestive
in this regard. Gentzen had developed logical systems in which the role of each
connective was isolated, so that each basic inference rule was “about” one and only
one connective. Indeed, he showed that two sorts of rules for each connective suffice.
One sort allows for the introduction of the connective, and one for its elimination.
In the context of a system for natural deduction (rather than in Gentzen’s sequent
calculus), the rule of A-introduction is that which licenses the inference of A A B
from premises A and B; the rules of A-elimination license the inference of A from
A A B and of B from A A B. The rule of —-introduction is the rule of discharge
of premises: if B has been deduced from premises including A, then we may infer
A — B while striking A from the list of premises. The rule of —-elimination is just
modus ponens, licensing the inference of B from A and A — B. Gentzen suggested
that introduction rules have much the same status as definitions: they fix the meaning
of the connectives they introduce, at least in part. That is, an introduction rule for
a connective gives the conditions under which a statement with that connective as
its main connective can be inferred. Those conditions can be thought of as simply
stipulated, and once stipulated, as constitutive of the meaning of the connective.

With respect to the project of justifying logical laws on the basis of the meaning
of the logical particles, if we accept this view of introduction rules then clearly those
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rules stand in no further need of justification. As Dummett puts it, they are “self-
justifying”. The question then is whether such self-justifying rules can be used to
endow further logical rules with justification, in particular, rules beyond those that
amount to iterated use of introduction rules.

In Chaps. 11-13 of The Logical Basis of Metaphysics [3], Michael Dummett
formulates a method for providing what he argues are just such justifications. The
introduction rules for the connectives are taken as furnishing the canonical means of
establishing sentences whose main connectives are one of those the rules introduce.
Dummett’s method then seeks to show, of an inference, that any canonical argument
for the premises of the inference can be transformed into a canonical argument for the
conclusion. Dummett’s claim is that if this can be shown, the inference is justified.

The clearest illustrative case is an inference by an elimination rule, say, an infer-
ence from F A G to G. A canonical argument for the premise F A G would end
in an application of the rule of A-introduction, that is, would end in an inference of
F A G from F and G. But then the argument already contains a canonical argument
for G. Thus, the inference is justified, since we can transform the given argument
for F A G into a canonical argument for G simply by extracting the subargument
for G. The basic idea here stems from Gentzen’s [6] technique of normalization of
proofs, which he devised to prove his cut-elimination theorem. Dummett’s use of
the technique as a justificatory procedure is inspired by a similar proposal of Dag
Prawitz from the early 1970s (especially in [7]), although there are differences in
formulation and in scope.

This method of justifying logical laws is important to Dummett for several rea-
sons. First, it provides a sense in which logical inferences can be justified, in a
way that is clearly noncircular, and so stills the doubt I mentioned at the start as to
whether any such program could make sense. Moreover, although the method pre-
supposes the self-justifying nature of introduction rules, and so relies on a view of the
meaning-endowing nature of those rules, the method need not invoke a full-fledged
and comprehensive theory of meaning, as Dummett’s better-known arguments crit-
icizing classical logic and supporting intuitionistic logic do. Since we seem to be
no closer to obtaining a comprehensive Dummettian theory of meaning for natural
language than we were when Dummett formulated his meaning-theoretic program
25 years ago, this avoidance of invoking such a theory makes the method more cred-
ible and presumably less open to controversy.

As it turns out, or so Dummett asserts, the method provides justification for intu-
itionistic logic but not for classical logic, at least not for the classical laws about
negation. Thus it gives important support to his position that intuitionistic logic is
preferable to classical. Indeed, it exhibits a virtue of intuitionistic logic—justifiability
on the basis of laws that merely express the meaning of the connectives—that clas-
sical logic fails to have: “[Intuitionistic logic’s] logical constants can be understood,
and its logical laws acknowledged, without appeal to any semantic theory and with
only a very general meaning-theoretical background.” [3, p. 300] The failure of this
method for the laws of classical negation thus allows an invidious distinction to be
made.
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In this paper I investigate Dummett’s method, as it applies to sentential logic.'
I shall show that, even in this restricted domain, Dummett’s method won’t do: it
provides “justifications” for obviously invalid inferences. I shall consider how to
repair the damage, and analyze the question of whether the repair restores confidence
in the philosophical framework underlying Dummett’s claim that his method does
indeed justify. The results are, I think, suggestive of some overlooked, and possibly
deep, difficulties in Dummett’s overarching project of marrying intuitionism and a
verificationistic theory of meaning.

1 Analysis of the Method

In order to make the method precise, we must define the notion of a canonical argu-
ment, for, to repeat, the idea is that an inference is justified if any canonical argument
for its premises can be transformed into a canonical argument for its conclusion. The
definition should make plausible the following: if a logically complex proposition
is provable at all, then it could in principle be proved by a canonical argument. For
only if that condition is met will Dummett’s procedure have any plausible claim to
justificatory force. In line with the underlying idea, it might be tempting to define a
canonical argument as one composed only of introduction rules. This does not work,
however, because of the nature of the introduction rule for the conditional, to wit:
F — G may be inferred from a subsidiary argument from premise F to conclusion
G, discharging the premise F. Since F itself may be logically complex, the argument
from F to G cannot be restricted to those that use introduction rules only, or else
many elementary logical truths will not be obtainable by canonical arguments, for
example, A A B — B. That is, a canonical argument will end in — -introduction:

[A A B]

B
AANB— B

But if we are constrained to using only introduction rules, we will not be able to fill
in the middle part. Hence the subsidiary arguments, the ones starting from premises
that will eventually be discharged, cannot be constrained to contain only introduction
rules. All that can be required of such subsidiary arguments is that they themselves be
already recognized as justified. The result is a definition, by simultaneous induction
on the complexity of the statements in the arguments, of the notion of “valid canonical
argument” along with the notion of “valid argument™:

'Dummett actually proposes the method for full first-order logic. Moreover, he aims at definitions
that could apply to arbitrary new connectives, as well as our familiar ones.
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A valid canonical argument is a deduction whose premises are all atomic
sentences and that uses only introduction rules except when auxiliary premises
are introduced; at any point when such are introduced, the subargument from
the point of the introduction of the first new premise to the last step before the
discharge of the last new premise must be a valid argument.

A valid argument is an inference / such that any valid canonical argument
(i.e., any valid canonical argument with any atomic premises) for the premises
of I can be transformed into a valid canonical argument, with the same atomic
premises, for the conclusion of 1.

We have simplified matters slightly by omitting what Dummett calls “boundary
rules”, which allow the inference of one atomic sentence from others.> For example,
these may be empirical laws, connecting the primitive notions of the vocabulary.
Dummett allows the employment of such rules in valid canonical arguments. For the
moment we take there to be no such rules, since the mathematics is clearer without
them. In the next section, we shall allow boundary rules and investigate their impact.

The validity of an argument depends only on its premises and conclusion, and
not on any intervening steps. Hence the second definition is framed as applying
to inferences, rather than deductions. The simultaneous induction works because
discharge of premises increases logical complexity. Thus, whether a deduction with
conclusion F is a valid canonical argument depends on the validity of arguments
whose premises and conclusion are of strictly lesser logical complexity than F.

These definitions are far from transparent. Applying them involves tracking
through the tree structures of deductions in natural deduction systems. Most impor-
tantly, the definitions do not readily yield any general information about the range
of inferences that are valid or not.

However, the definitions can be greatly clarified if we focus not on the proof-
theoretic layout but rather on the relation that holds between a set o of atomic
sentences and a formula F when there is a valid canonical argument with conclusion
F and premises among the atomic sentences in «. Let us use “«o |- F” for this
relation. Using this notation we may frame the definition of “valid” thus: an inference
from premises Fi, ..., F, to conclusion G is valid iff, for all sets «, if « I- F; for
each i, then o I G. (It may seem that this reformulation ignores a constructivity
requirement, implicit in the phrase “we can transform” of the original definition.
However, since we are dealing with sentential logic only, all notions are decidable
and all quantifiers in the metalanguage are constructively evaluable.)

We can now investigate the relation « |- F, by looking at how its behaviour
for logically complex F depends on its behaviour on the constituents of F. A valid
canonical argument for F A G is just a valid canonical argument for F and a valid
canonical argument for G, put together by means of a final inference to F' A G, using
the rule of A-introduction. A valid canonical argument for F Vv G is either a valid
canonical argument for F followed by one application of Vv-introduction or else a

2These amount to the definitions given by Dummett in [3, p. 261], simplified by the absence of
boundary rules and (more importantly) of the need to deal with free variables.
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valid canonical argument for G followed by one application of V-introduction. These
observations immediately yield:

alF FAG iff alF Fanda IF G (D
alFFVvGiffalF ForalFG 2)

A valid canonical argument for F'— G with atomic premises in « is a valid inference
I to G from premises F and members of «, followed by an application of —-
introduction, discharging the premise F and yielding F — G. The inference  will
be valid provided that every valid canonical argument for F* whose premises may
include members of « and possibly some other atomic sentences can be transformed
into a valid canonical argument for G whose premises are either in « or are among
those others. This yields the condition:

al- F— G iff VB(ifa C Band B IF F, then B IF G). 3)

(1)—(3) show that the relation IF is, in fact, a familiar one from the semantics of
intuitionistic logic, since they are nothing other than rules for the treatment of the
connectives in the usual Kripke model semantics, when we take the sets o of atomic
sentences as the nodes (worlds) of the model, and the relation « C f as the relation
of extension. Thus the proof-theoretic trappings of Dummett’s presentation conceal
anotion whose structure is the same as the standard model-theoretic or semantic one.

One connective remains to be considered, namely, negation. As Dummett notes,
the only way to treat negation that is consonant with his general procedure is to take
—F as an abbreviation for (F — L), where _L is a sentential constant governed by the
following introduction rule: from premises that are all the atomic sentences, it may
be inferred. Dummett allows there to be infinitely many atomic sentences; in fact,
this treatment of negation fares poorly if there are not. For if Ay, ..., A, exhaust
the atomic sentences, then the introduction rule just mentioned yields the validity
of inferring —(A; A ... A A,) with no premises. Thus on logical grounds alone we
would be able to infer that not every atomic statement is true, and this is surely an
unacceptable result.

If there are infinitely many atomic sentences, then this treatment of negation can
most easily be incorporated into our forcing relation by requiring that the domain
of sets of atomic sentences « that we consider is always finite. Then the stipulation
above becomes:

o IF L forno a. (@)

The resulting rule for negation is then: o IF —F iff VB(ifa € Bthennot g I-
F). This is just the standard rule for the treatment of negation in the semantics of
intuitionistic logic.

The characterization of the forcing relation will be complete once we give the
clause governing atomic sentences themselves. Since we are at the moment allowing
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no boundary rules, we have:
for any atomic sentence A, o I A iff A € . (®))

As we’ve just seen, Dummett’s notion of valid canonical model yields a relation
I that obeys just the usual semantic rules for models of intuitionism, as given by
(1)-(4). However, there is a key difference between I as used in Dummett’s method
and the ordinary model-theory of intuitionistic logic. In the latter, the validity of
an inference would mean that at each node (world) in every Kripke model, if the
premises are true then the conclusion is true. Dummett’s method, in contrast, amounts
to considering only one particular structure, the Kripke model in which every finite
set of atomic sentences is a distinct node, and for every finite set of atomic sentences
there is exactly one node at which all and only those sentences are true, namely, the
node that is the set of those sentences. This restriction to one particular structure
yields anomalous results.

Counterexample 1 If F does not contain L, then the inference from no premise to
——F isvalid.

Proof 1t is easily shown by induction on the construction of F that if F' does not
contain L then for every « there exists 8 with « € § and § I~ F. But then for no y
do we have y I —F. Hence, for every «, o |- =—F'. O

By the way, since we have shown that, for F that do not contain L, y |F —=F for
no F, we also have the conclusion that, for such F and any G, the inference from no
premises to —=F — G is valid.

Counterexample 2 Let F be a sentence not containing 1 and G a sentence having
no atomic sentences in common with F. Then the inference from premise F — G to
conclusion G is valid.

Proof Suppose o |- F — G; we must show « IF G. By (3), for any g with o C B, if
B IF F then B IF G. Moreover, as noted in the previous proof, there exists a 8 such
thatao C Band B I F.

The following is easily shown by induction on the construction of sentences: for
any sentence H and any sets y and §, if A € y iff A € 6 for all atomic sentences A
that occur in H, then y I+ H iff § I+ H.

Thus, if B’ is the subset of 8 containing just those atomic sentences either in o or
occurring in F, we have A € B iff A € B’ for all A that occur in F. Since 8 I+ F,
it follows that 8’ I F. Hence B’ IF G. Since F and G have no atomic sentence in
common, no atomic sentence occurring in G isin ' —a. Thus A € B/ iff A € «
for all A that occur in G. Hence « IF G. (]

Thus there are many inferences that turn out valid under Dummett’s definition,
and yet are logically valid in no plausible sense. The counterexamples show that such
inferences exist even in the fragment of the language that does not contain L, and so
does not contain negation. As a particularly vivid case, we have the validity of the
inference from A — B to B whenever A and B are distinct atomic sentences! We
must conclude that Dummett’s method has no justificatory force whatsoever.
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2 Boundary Rules

To see how the trouble arises in terms of canonical arguments, rather than the relation
I, it is helpful to consider the case of the inference from A — B to B, where A and
B are distinct atomic sentences. If there were to be a valid canonical argument for
A — B, it would have to enable us to transform any valid canonical argument for
A into one for B. Since B is atomic, the only valid canonical argument for B is the
one-step argument of taking B as a premise. Hence a valid canonical argument for
A — B must have B as an (undischarged) premise; and so it will be transformable
into a valid canonical argument for B. The problem, in short, is that there is no way
of getting from A to B, except by taking B as premise.

Here, it might be thought, is where Dummett’s boundary rules can play a role,
since boundary rules license inferences from atomic formulas to atomic formulas.
However, three considerations—one technical and two philosophical—show that the
problems in the method cannot be avoided by boundary rules as Dummett envisages
them.

First, if the counterexamples are to be avoided, there are going to have to be an
inordinate number of boundary rules. To forestall the validity of the inference from
A — B to B, there must be a rule allowing the inference of B from A (and possibly
other premises not including B) for any pair (A, B) of distinct atomic sentences. To
forestall the validity of the inference from no premise to =——A, there must be a rule
allowing the inference of L from A (again, possibly with other premises). Rules that
avoid some anomalies may engender others. For example, if L can be inferred by
boundary rules from premises A and B, and from premises A and C, but not from
A and any other premises, then although the inference from no premise to =—A
is no longer valid, the inference from —A to B Vv C is. It appears, then, that it is
unreasonable to expect that boundary rules will avoid the difficulty.

(By the way, it is not clear that a rule allowing the inference of L from atomic
premises should count as a boundary rule at all. Dummett characterizes boundary
rules as “rules governing ... non-logical expressions.” Allowing L as a conclusion
violates this description. After all, a rule allowing the inference of L from premises
A and B is just a rule allowing the inference of =B from A, and of —A from B.
This significantly weakens the claim that | is given meaning only by its introduction
rule; indeed, it seems to me to weaken the contrast Dummett makes between intu-
itionistic negation and classical, saying of the latter “there is no way of attaining an
understanding of the classical negation operator if one does not have it already” [3,
p- 299] Nonetheless, if we are to block the anomalies given by Counterexample 1,
we must allow boundary rules with conclusion _L.)

Alongside the technical difficulties there are philosophical ones. To use boundary
rules in the manner envisioned makes the validity of inferences dependent on which
boundary rules there are, and hence, in particular, on empirical claims about the
connections of different empirical basic sentences. This is not consistent with the
claim that the validity of the logical inferences comes only from the meaning of the
logical connectives (as based on the introduction rules).
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Finally, even if the latter difficulty is set aside, there is another disturbing con-
sequence, namely, that it becomes impossible to put forth a link between atomic
sentences as a supposition, and draw consequences from it. For either the link is
taken as a boundary rule, and hence becomes part of the logical framework, usable
in any argument anywhere and playing a role in the criterion of validity; or else there
is no link, in which case having A — B as a supposition yields B as a valid conclu-
sion, and therefore we can infer from the conditional everything that is yielded by its
consequent alone. The irony here is that we have landed in a position akin to Frege’s
odd-sounding view that “Only true thoughts can be premises of inferences.” [5,
p. 335)3

The true nature of the difficulty should be apparent, by now. The intuitionist
reading of F — G is, roughly, “from any demonstration of F we can obtain a
demonstration of G.” In Brouwer and the early intuitionistic tradition, the notion
of demonstration here is taken to be open-ended, identified not with any particular
formal system, indeed, not with the entirety of means of demonstration we currently
have at our disposal, but as anything that we might come to accept as a demonstration.
In later studies, particularly those inspired by Kreisel’s work of the 1950s, the gen-
erality in talking of “any demonstration” is expressed by speaking of the intuitionist
— as being “impredicative”: F — G implicitly quantifies over all demonstrations,
including those that may contain the very demonstration of ¥ — G. Dummett, in
contrast, wants to read “any demonstration” here as meaning “any valid canonical
argument”’, where this notion is defined in an inductive and hence purely predicative
way. It is this restriction that gives rise to the difficulties above, both in the case
without boundary rules, and the peculiarities of trying to use a fixed set of boundary
rules to block those difficulties.

It is I think far more natural to use the notion of boundary rule in a way not
envisaged by Dummett, and in fact inconsistent with Dummett’s aim. The definition
of “valid” can be revised so that what counts as a valid inference is one that was
valid in the old sense given any assumption of boundary rules.* This revision avoids
both of the philosophical difficulties just canvassed. It does not restrict allowable
arguments to a fixed set of accepted ones, but rather allows any collection of possible
arguments from atomic sentences to atomic sentences. Since all sets of boundary rules
are considered, there is no need for empirical input to determine which boundary
rules should be adopted.

Technically, the consideration of all sets of boundary rules amounts to the con-
sideration of different model-theoretic structures. There are two equivalent ways of
formulating this. Given a set S of boundary rules, the relation IF-relative-to-S, or
IFs as we shall write it, can be defined by appropriate changes in clauses (4) and
(5), keeping clauses (1)—(3) as is. Alternatively, (1)—(5) can be kept as is, and the
domain of sets altered to contain all and only sets « that are closed under all the
boundary rules in S and do not contain L. For our purposes, the latter procedure is
more convenient. For any set o of atomic sentences, let c/s(«) be the closure of «

3For Dummett’s appraisal of this view, see [4, p. 313].
4This is the idea in the work of Prawitz [7, p. 236].



204 W. Goldfarb

under the rules in S, that is, the smallest set 8 such that « € B8 and if S contains a
rule “infer B from A, ..., A,” and Ay, ..., A, are in B, then B is in S.

It is easy to show that every inference that is valid in the revised sense is classically
valid. Suppose the inference from premise F' to conclusion G is valid in the revised
sense. Let T be a (classical) truth-assignment to the atomic sentences in F and G
under which F comes out true; we must show that G also comes out true under 7.
Let S be the set of boundary rules containing “from no premise infer A” for every
atomic sentence A to which 7" assigns truth, and “from A infer L” for every other
atomic sentence A. Obviously, there is only one set « that is closed under S and does
not contain L, namely, the set of atomic sentences assigned truth by 7'. But then kg
behaves classically on the connectives, so that « |Fg F. Since the inference is valid
in the revised sense, o IFg G. Hence G is true under 7.

From this we can surmise that there will be no counterexamples of the alarming
sort encountered above. However, validity in the revised sense still does not coincide
with intuitionistic validity.

Counterexample 3 Let A be an atomic sentence, and G and H any sentences. Then
the inference from premise A — (G vV H) to conclusion (A — G) V (A — H) is
valid in the revised sense.

Proof Let S be a set of boundary rules, and suppose « is an S-closed set not containing
1 suchthata IFg A — (G Vv H). Let 8 be the S-closure of « U {A}. If L € 8, then
alFs A— F forevery F,soa lFg (A — G) VvV (A — H); hence we may suppose
1L ¢ B IfBlFs G, thena lFg A — G, for if y is any S-closed extension of « with
y IFs Athen B C y, sothat y IFg G; similarly if § -5 H then ¢ IFg A — H; in
either case @ IFg (A— G) VvV (A— H).Butif neither, then § is an S-closed extension
of « such that 8 I-¢ A while not 8 I-s G v H, which contradicts the hypothesis that
alkFs A— (G vV H). O

In the usual model-theory of intuitionistic logic, say via Kripke trees, one obtains
amodel of A — (G Vv H) that is not a model of (A — G) V (A — H) by having two
nodes v; and vy, one of which models A and G but not H, the other models A and
H but not G. For this it is essential that there be no u with u < v; and u < v, that
models A; for if the root of the tree is to model A — (G V H) any such u would have
to model G Vv H, and thus have to model G or model H, but every node above u
would also model G or every node would also model H, thus defeating the example.
The problem is that, using |- and boundary rules, these strictures cannot be met. For
example, suppose G and H are also atomic. Using boundary rules one can insure
that there is a closed set containing A and G and a distinct one containing A and H,
but then there will also be a closed set containing A that is a subset of each of those,
and in order to insure that A — (G Vv H) holds, that subset will have to contain either
GorH.

It may be helpful to translate the situation back into Dummett’s proof-theoretic
language. Again suppose G and H, as well as A, are atomic. The counterexample
shows that any valid canonical argument for A — (G Vv H) can be transformed into
one for (A — G) vV (A — H). Suppose, then, there is a valid canonical argument
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from premises « to conclusion A — (G Vv H). This is just to say that the inference
from o and A to G Vv H is valid, which in turn means that every valid canonical
argument for o and A can be transformed into one for G Vv H. Since there is a valid
canonical argument from « and A to o and A, there must be one from « and A to
G Vv H. The last step of this must be an application of V-introduction. Hence there
is either a valid canonical argument from « and A to G or one from « and A to H,
and so there is a valid canonical argument from o to (A — G) V (A — H). The idea
is that there is only one way to demonstrate A, so to speak.

3 Schematic Inferences

The counterexamples I have presented are not schematic inferences, that is, infer-
ences that rely only on the forms of the premises and conclusion. The inferences
that I showed to be valid-by-Dummett’s lights (although not valid in any ordinary
sense) were further constrained, e.g., in Counterexample 2 the formulas could have
no atomic constituent in common, and in Counterexample 3 the antecedent had to be
atomic.

The question naturally arises as to how Dummett’s definitions fare on schematic
inferences. Let us call an inference schematically valid in Dummett’s original sense
iff the inference and all its instances are valid in Dummett’s original sense. (An
instance is simply any inference obtained from the original one by replacing atomic
sentences with other sentences.)

Now any inference that is schematically valid is classically valid, since if F' does
not imply G in the classical sense, a truth-assignment 7' that makes F true and G
false can be mimicked by the substitution instances of F and G in which sentence
letters assigned truth by T are replaced with “p — p” and those assigned falsity are
replaced with “_L”. The resulting instances F* and G* are such that - F* but not
@ |- G* (since forcing will then just amount to two-valued truth-computation).

However, schematic validity outstrips intuitionistic logic.

Counterexample 4° The inference from no premise to —F ~ =—F is schematically
valid (that is, for any F the inference from no premise to —F vV ——F is valid in
Dummett’s original sense).

Proof If not o IF —F, then there exists 8 such that « C 8 and g I F. But then, for
any y suchthata C y, there exists § suchthaty C 6 and § |- F,namely,§ = y U B.
Thus, for any y such that C y, not y IF —F. Thatis, « IF =—F. |

However, we can obtain a positive result if we combine the notion of schematic
inference with that of validity-in-the-revised-sense, that is, validity given any collec-
tion of boundary rules. That is, it is possible to prove the following:

5T owe this counterexample to Philip Kremer.
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Theorem [f every instance of the inference from F to G is valid in the revised sense,
then the inference from F to G is intuitionistically valid.

For the proof, see the Appendix.

4 Assessment

Dummett can’t take too much comfort in this positive result. Dummett is careful
to point out, in framing his method, that the inferences treated are actual infer-
ences, involving particular meaningful sentences, the atomic components of which
are actual atomic sentences, not schematic parts [3, p. 254]. That is, he treats the lan-
guage as fully interpreted. On the view he is propounding, an inference is justified
by its validity; the justification of a schematic inference (an inference rule) can lie
only in the fact that each of its instances is justified. There is simply no room, on his
view, for a position to the effect that validity does not justify an inference unless all
inferences like it in being subsumable under a particular rule are also justified.

Let us return to Counterexample 3. Intuitionistically, the inference from A —
(GvVv H)to (A— G)V (A— H) is incorrect, because the former means “any
demonstration of A can be transformed either into one for G or into one for H”
whereas the latter means “any demonstration of A can be transformed into one for
G or any demonstration of A can be transformed into one for H.” This inference
turns out to be valid, in the revised sense, because—so to speak—the method treats
an atomic formula as its own proof. That is, the criterion of the identity of a proof
is just the atomic formulas it has as premises or are implied by its premises. Thus
distinct ways of proving an atomic A will not register as distinct. Now this view of
proofs arises because the whole set-up envisages all proofs as, ultimately from atomic
formulas. And this is the upshot of the set-up’s being part of, or the beginnings of, a
verificationist meaning-theory.

I believe the basic views that lead to Dummett’s difficulties are well exhibited in
the following remark (he is speaking here only of mathematics, but presumably he
would maintain the same for a language with empirical vocabulary as well):

If the intuitionistic explanations of the logical constants and, more generally, of the meanings
of mathematical statements are to be considered as constituting a coherent theory of meaning
for the language of mathematics, then the notion of proof which is appealed to must be such
that we can fully grasp the concept of a proof of any constituent of a given sentence in
advance of grasping that of a proof of that sentence. It cannot, therefore, be identified with
the notion of the sort of proof that we may, at some future time, come to consider valid ...
[2, p. 402]

This remark expresses a fundamental view of Dummett’s; and from it we can see
three sources of the problems with his program for “proof-theoretic justification”.
Of course, most generally, his underlying concern to meld intuitionistic logic with
theory of meaning impels him to differ with the Brouwerian tradition of the open-
endedness of the notion of demonstration, and as we saw that was key to the anomalies



On Dummett’s “Proof-Theoretic Justifications of Logical Laws” 207

exemplified by Counterexamples 1 and 2. But the remark also expresses Dummett’s
commitment to molecularity: that what it is to prove a sentence is explained in terms
of what it is to prove each constituent of the sentence. That, of course, is a denial of the
impredicative nature of intuitionistic conditionals; and it signals his commitment to
just the view of the proofs of atomic sentences as, if you like, logically unanalyzable,
that engenders Counterexample 3.

The difference between Dummett and the treatments of intuitionism standard in
mathematical logic on these two points has not been sufficiently explored. In classical
truth-functional semantics, atomic sentences are the basic building blocks, and it is
clear why. Dummett takes atomic sentences to be the basic building blocks of a
proof-theoretic semantics—and on both the “basic” aspect and the “building block”
aspect he differs from classical intuitionism. It is not clear why one should believe
this, except perhaps for the conflation of the notion of verification and a mathematical
notion of proof.

The third factor expressed in Dummett’s remark is that there will be no definite
meaning ascribed to a sentence unless it is fixed what a demonstration is for that
sentence. That will presuppose that not just the logical rules but also the boundary
rules are fixed. This tells us that, from Dummett’s viewpoint, the revised notion of
validity is not acceptable. For, in considering all possible boundary rules, it should
be clear, the revised notion of validity treats the atomic components of sentences
in abstraction from their actual content. It takes them to be schematic, in that their
connections to one another (and hence also to complex sentences) are varied at
will, but this is precisely what Dummett’s insistence that he seeks to justify actual
inferences, not schematic ones, would rule out.’

Finally, I suppose the following line might be taken. The claim that Dummett’s
method provides justifications of logical laws might be abandoned or weakened,
while still it be pressed that the method does show something. That, under the revised
notion of validity, the inference rules that yield valid inferences under all substitutions
are not the classical ones but precisely the intuitionistic ones, surely supports the
ascription of some advantageous status to intuitionistic logic. But here we should
note at once that the method—in taking the introductory rules as definitory of the
connectives—identifies the sense of F — G as “G can be validly inferred from
F”, and then goes on to define the latter as “every valid canonical argument for
F can be transformed into a valid canonical argument for G”. Thus, built into the
method at the start is the intuitionistic construal of the conditional. As pointed out
above, this is just what leads to condition (3) on the IF--relation, and that in turn is
the characteristic of the model theory of intuitionism. If (3) were to be replaced by
alF F— G iff (ifa |F Fthen «a I G), then what we obtain will be a classical

Nor is Dummett’s insistence ill-placed. The justificatory force of his method rests on what he calls
the “fundamental assumption”, that a logically complex sentence, if demonstrated, could have been
demonstrated by a (valid) canonical argument. For this reason, Dummett spends an entire chapter
of [3] investigating the exact sense and the plausibility of the fundamental assumption. Clearly, for
the fundamental assumption to make sense at all requires that the sentences about which it speaks
have content. If they are merely schemata, it is unclear what the assumption could mean, unless it
is to be true by fiat.
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notion of validity. In short, it should occasion no surprise, that the (revised) method
yields intuitionistic validity, because the method is based on, or presupposes, an
intuitionistic reading of the conditional. (Although attention is usually focused on
negation as that which marks the difference between classical and intuitionistic, a
case can be made that it’s the conditional. A classical conditional combined with the
definition of —=F as F — L would still yield the classical laws of negation.) And
for this reason, that the method yields the intuitionistic inferences once it is applied
schematically does not signal any greater virtue of intuitionistic logic, at least as
framable from neutral ground. What is odd, and perhaps even undermining of the
claims to virtue of intuitionistic logic, is that even when the intuitionistic reading of
the conditional is built into the project at the start, it still takes lots of fussing here
and jiggling there to get the method to yield just the intuitionistic laws.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix

Theorem Let F and G be sentential formulas such that the inference from F to G
is not intuitionistically valid. Then there are instances F* and G* of F and G, a
set S of boundary rules, and a set a of atomic sentences such that o =g F* but not
o ks G*.

Proof Let X be the set of atomic sentences occurring in F orin G. Since the inference
from F to G is not intuitionistically valid, there is a Kripke tree (W, <, I') with root
w such that (W, <, I) E,, F but not (W, <,I) F,, G. Here (W, <) is a tree (we
take the root as being at the bottom), and / is a mapping from W to subsets of
X' for each u € W, I(u) is the set of atomic sentences true at u. [ is subject
to the constraint that if u < v then I («) C I(v). We wish to obtain sets of atomic
sentences that “mimic” (W, <, I). For this we shall need additional atomic sentences
for there may be distinct nodes in W making the same atomic sentences of X' true,
but to these nodes we want to have correspond distinct sets of atomic sentences.
For each u in W let u™ be a distinct atomic sentence not in X', and for each u in
Wlet o(u) = {v* | v € Wandv < u}. ¢(u) will be the set of atomic sentences
corresponding to the node u. We now so formulate boundary rules that the only S-
closed sets that do not contain L are precisely the sets ¢(u) foru € W. In fact, let §
be the following set of boundary rules:

“Infer L from Ay, ..., A, whenever {Aq,..., A} C ¢(u) fornou € W;”

“Infer v* from u™* whenever u,v € Wandv < u.”
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Now, for each p € X, let D(p) be the disjunction of all atomic sentences u* such
that p is in I (u). Finally, for any sentence H constructed from members of X, let
H* be obtained from H by replacing each atomic sentence p with D(p).

It is a routine matter to show by induction on the construction of formulas that,
forany H and any u € W, (W, <,I) F, H iff ¢(u) IFg H*. It then follows from
the supposition that ¢ (u) IFg F* but not ¢ (u) IFg G*, so that the inference from F*
to G* is not valid, in the revised sense. O

Author’s Postscript, January 2015

From 1999 to 2007 I presented this paper at various universities and conferences.
Often audience members raised stimulating points, particularly about my suggestions
in Sect. 4, which I hoped to address in an expanded version, but I never managed to
do so to my satisfaction. However, the basic issues still seem to me to be well-framed
in the original version that is printed here.

The last presentation I gave was in September 2007 at the Oxford philosophy of
mathematics seminar led by Daniel Isaacson. I was delighted that Michael Dummett
was able to attend, despite infirmities of age. (Sir Michael and I had been on warm
terms since his spring semester 1976 residence at Harvard, when he delivered the
William James Lectures from which The Logical Basis of Metaphysics [3] evolved,
and I was in my first year on the Harvard faculty.) It was particularly pleasing that
at the 2007 seminar one of the younger Oxford philosophers, Ofra Magidor, raised
the same objection that Sir Michael had framed nine years earlier in a letter to me,
namely that Counterexamples 1 and 2 (from Sect. 1) are really not worrisome at all.
In his 1998 letter he wrote, “I do not accept that your counter-examples are genuinely
such.” His point and Magidor’s was that if G and F have no atomic sentences in
common, and F has no occurrences of L, then the only reason to assert F — G
would be that one had independent reason for thinking that F* were false or G were
true, and since the former is ruled out by F' not containing L, it isn’t at all surprising
that we can infer G.

However this point seems to me mistaken: for if the rule (infer G from F — G,
when F does not contain L and G and F contain no atomic parts in common) is
justified, it is justified in application not just to assertions but also to suppositions. On
the ordinary understanding of what it is to suppose F — G, this is simply untenable. So
if the rule is to be accepted, it would have to be argued that the ordinary understanding
of supposition is incorrect, and in fact to suppose F — G is to suppose something
like “every canonical argument for F can be transformed into a canonical argument
for G”. But this is clearly wrong if F and G are empirical. (It might be maintained
for mathematical F' and G, but in this case it would again appear that a bias in favor
of intuitionistic logic were being built in at the ground level.)
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Even though I was criticizing his position, Sir Michael clearly enjoyed my presen-
tation at the seminar, no doubt because he thought the issues needed more discussion.
Despite his infirmities, he maintained his famously cheerful humour as well as his
robust sense of what philosophy could aspire to do. I dedicate this publication to his
memory.
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Self-contradictory Reasoning

Jan Ekman

Abstract This paper concerns the characterization of paradoxical reasoning in terms
of structures of proofs. The starting point is the observation that many paradoxes use
self-reference to give a statement a double meaning and that this double meaning
results in a contradiction. Continuing by constraining the concept of meaning by the
inferences of a derivation “self-contradictory reasoning” is formalized as reasoning
with statements that have a double meaning, or equivalently, cannot be given any
meaning. The “meanings” derived this way are global for the argument as a whole.
That is, they are not only constraints for each separate inference step of the argument.
It is shown that the basic examples of paradoxes, the liar paradox and Russell’s
paradox, are self-contradictory. Self-contradiction is not only a structure of paradoxes
but is found also in proofs using self-reference. Self-contradiction is formalized in
natural deduction systems for naive set theory, and it is shown that self-contradiction
is related to normalization. Non-normalizable deductions are self-contradictory.

Keywords Paradox -+ Proof structure - Self-contradiction - Proof theory - Russell’s
paradox

1 Introduction

Let us consider Russell’s paradox:

Let 7 be the set of all sets not containing themselves. Assume that # contains itself. Hence, by
the definition of ¢, ¢ does not contain itself. This contradicts the assumption that ¢ contains
itself and hence ¢ does not contain itself. Since ¢ does not contain itself, it follows from the
definition of ¢ that ¢ contains itself. This is a contradiction.

This article is based on Chap.5 of the author’s PhD thesis; see Ekman (1994) [2]. Definitions of
elementary notions can be found in the Appendix below.

J. Ekman (X))
SICS Swedish ICT AB, Box 1263, SE-164 29 Kista, Sweden
e-mail: jan@sics.se

© The Author(s) 2016 211
T. Piecha and P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics,
Trends in Logic 43, DOI 10.1007/978-3-319-22686-6_14



212 J. Ekman

Let us take a closer look at the part of Russell’s paradox that proves that ¢ does
not contain itself. Let &z be this part of Russell’s paradox. We observe that the
assumption that ¢ contains itself is used twice in &z. We shall now distinguish
the use of an assumption from how it is used. Let us therefore, to express that an
assumption is used in an argument, say that the assumption occurs in an argument.
Thus there are two occurrences of the assumption that ¢ contains itself in &z. One
of these two occurrences of the assumption that ¢ contains itself is used together
with the definition of ¢ to derive that t does not contain itself. To contradict this
last proposition the other occurrence of the assumption that ¢ contains itself is used.
Hence, there are two occurrences of the assumption that ¢ contains itself in &z,
and they are used in such a way that they contradict each other. In the last step of
&, the conclusion that t does not contain itself is drawn from the contradiction
that the assumption that ¢ contains itself leads to. In a sense the two occurrences of
the assumption that ¢ contains itself are identified in this step. Considering the two
occurrences of the assumption that ¢ contains itself as one and the same proposition,
we have that there in & is a proposition which is used in two ways and that the two
ways of using the proposition are incompatible.

A self-contradictory argument is, informally, an argument, as &z above, in which
there is a proposition which is used in two or more ways such that not all of the ways
of using the proposition are compatible. In this article we aim to make those ideas
more precise and formally express the notion of self-contradictory reasoning in some
formal systems.

2 Meaning Conditions

The notion of a self-contradictory argument as introduced in the previous section is
based on “the way in which a proposition is used in an argument.” In this section we
aim at making it more precise what we mean by this, and we will outline how the
notion of a self-contradictory argument will be formally expressed in the succeed-
ing sections. Given an argument and a proposition of this argument we shall in the
following consider the meaning forced on the proposition, by the steps of the argu-
ment. The meaning forced on a proposition, by the steps of the argument, expresses
precisely the way in which the proposition is used in the argument.

Let us consider an example. Let 2 be the following argument: The wind is blowing
because it’s snowing and the wind is blowing. Let A be the proposition it’s snowing
and the wind is blowing and let B be the proposition the wind is blowing. Thus &
consists of one step and A and B are the premise and the conclusion, respectively,
of this step. If we forget about which propositions A and B represent we still know
something about them by remembering what kind of step the inference of & is. That
is, knowing only that the inference of & is of the kind that informally corresponds
to one of the &E inference schemata in natural deduction for naive set theory N (see
Appendix below), we know that since A is the premise of the step, A is A and Aj
for some propositions A and A,. Moreover, if A is A and A then B is Aj. The
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meaning forced on the propositions A and B by the inference of Z is this knowledge
about A and B given by the knowledge about what kind of step the inference of &
is. Hence the meaning of the meaning forced on the proposition, by the steps of the
argument depends on what is considered to be known, when knowing only what kind
of steps the steps of the argument are.

In the previous section, “a self-contradictory argument” was explained to be an
argument in which there is a proposition which is used in two or more ways such
that not all of the ways of using the proposition are compatible. In this section “the
meaning forced on a proposition, by the steps of the argument” expresses precisely
the way in which the proposition is used in the argument. Hence, we can explain
what “a self-contradictory argument” is by saying that it is an argument such that
the steps of the argument force several meanings on one of the propositions of the
argument and that not all of these meanings are compatible. Yet another way to put
this is to say that an argument is self-contradictory if and only if the steps of the
argument force an ambiguous meaning on one of the propositions of the argument.
Note that, as is clear from the example above, the meaning forced on a proposition
by an argument is not an interpretation of the proposition but a constraint on how it
may be interpreted.

Now we change to how to formally express “a self-contradictory argument.” Let
us by the meaning of a proposition mean an interpretation of the proposition. For
instance, the wind is blowing is the meaning of the proposition B in the example
above. Let A be a formula occurrence in a deduction in some formal system. To
denote that A has a certain meaning, m say, we decorate A with m. More precisely,
we shall write m : A to denote that A has the meaning m. We use these decorations
to define meaning conditions. Meaning conditions are formal representations of the
constraints given by the meaning forced on a proposition by an argument. For every
formal system considered in this article we shall do the following. We shall define
what the set of formal meanings is for decorating the formulas in deductions in
the formal system and we shall give the meaning conditions associated with the
formal system. Thus, through the meaning conditions we formally define what is
informally described by “the way in which a proposition is used in an argument.” By
an assignment of meanings to the formulas in a deduction we mean a decoration of
all of the formulas in the deduction. That a meaning is assigned to a formula means
that the formula has been decorated with the meaning. The meaning conditions are
given as constraints on the decorations, by formal meanings, of the formulas in the
deductions. As an example let us consider, in the formal system N, a deduction
consisting of an DE inference, o say. Let X, Y and Z be the major premise, the
minor premise and the conclusion, respectively, of «. Let my, m, and m, denote
some meanings assigned to X, Y and Z, respectively. We decorate the formulas in

the deduction as follows.
my . X my Y

o
m;: Z
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Reasoning in the same way as in the previous example, we know that since X is
the major premise of an DE inference, X must be X1 D X, for some propositions
X1 and X,. We express this constraint by requiring the meaning m, to be m = n for
some meanings m and n, where thus = means “implies that.” Moreover we require
my to be m and m; to be n. Thus, m, may notbe it’s snowing and the wind is blowing.
However m, may be it’s snowing and the wind is blowing and m, may be the wind
is blowing. In this case m, must be it’s snowing and the wind is blowing implies that
the wind is blowing. We express meaning conditions given for any DE inference in
any deduction in the formal system N by the schema

9 &
m=n:A m: B

n:C oF

Hence the meaning condition for the major premise A of an DE inference is that A
must have the meaning m = n for some meanings m and n. Moreover, the meanings
of the major premise, the minor premise and the conclusion respectively must have
the relation to each other expressed by the schema. The notion of a self-contradictory
deduction in a formal system is defined as follows.

Definition 1 Assume that F is a formal system. Assume that the set of formal mean-
ings for decorating the formulas in the deductions in F are defined, and assume that
the meaning conditions associated with the formal system are given in some way.
Then a deduction Z in F is self-contradictory if there is no assignment of formal
meanings to the formulas in Z such that this assignment satisfies the meaning con-
ditions.

The meaning conditions, as we shall give them, are related to the inversion prin-
ciple of Prawitz. In Prawitz (1965) [6] we can read the following.

Observe that an elimination rule is, in a sense, the inverse of the corresponding introduction
rule: by an application of an elimination rule one essentially only restores what had already
been established if the major premise of the application was inferred by an application of an
introduction rule.

We may say that, for a given deduction, the constraint expressed by the meaning
conditions is an attempt to make the inversion principle global, in the deduction. But
this attempt is successful if and only if the deduction is not self-contradictory, since
otherwise there is no assignment of formal meanings to the formulas in the deduction
such that this assignment satisfies the meaning conditions.

The Curry-Howard interpretation may resemble what designates meanings in
the meaning conditions. However, the similarity is only superficial. In general, it
is not the case that the assignment of Curry-Howard interpretations to the formula
occurrences in a deduction satisfies the meaning conditions. Since the Curry-Howard
interpretation is just a representation of an argument, there are always Curry-Howard
interpretations of the formula occurrences in a deduction, but there need not be
an assignment of formal meanings to the formulas in the deduction such that this
assignment satisfies the meaning conditions.
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3 The Liar Paradox

In this section we shall study the liar paradox as an example of a self-contradictory
argument. The liar paradox is the following.

Let P be the sentence “This sentence is false.” That is, P is the sentence “P is false.”
Assume P. Hence, by the definition of P, P is false. This contradicts the assumption P, and
hence P is false. Since P is false, P follows from the definition of P. This is a contradiction.

This argument is very similar to Russell’s paradox. Below we present the formal
system FP, specially designed for a formal presentation of the liar paradox. The
language of FP is the set of formulas, where L and P are formulas, and if A and B
are formulas, then A D B is a formula; —A is defined to be A D L. The inference
schemata of FP are the following.

9 9

=L P — - PE

[A]

9 9 &
7A§B o) —ADBB 4 g

The liar paradox is formally represented by the following deduction ¢,

F [P]
7 —p FE
7 =P pilg where 7 P LP] SE
=P P g — o
1 -P 2

The set of formal meanings to be assigned to formulas in deductions in the formal
system FP is inductively defined as follows. The meaning variable x is a meaning,
and if m and n are meanings, then pm and m = n are meanings. We may interpret
the meanings as follows: m = n means “m implies that n,” and pm means “This
sentence is false,” where “This” refers to the sentence expressed by m. The meaning
conditions associated with the formal system FP are the following.

7 9
m:—P pm: P
pm:PPI m:—P PE
[m : A]

9 9 &
n:B m=n:ADB m: A

m=n:ADB ol n:B oF
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Now assume that there is an assignment of formal meanings to the formulas in
the deduction .% above such that this assignment satisfies the meaning conditions.

Assume that m is the meaning of the minor premise P of the DE inference and that
n is the meaning of the conclusion _L of the DE inference. Then, by the conditions
above we conclude that the meaning of the premise P of the PE inference must be
p(m = n).

[p(m = n) : P]
—p PE g
m=-n: m: SEV T
n: L I
?7.=P -

The condition given for the DI inference schema requires both of the formulas can-
celled at the DI inference in .% to have the same meaning. However, no matter how
we choose m and n the meanings m and p(m = n) are not the same. Hence, there
is no assignment of formal meanings to the formulas in .% such that this assignment
satisfies the meaning conditions. Hence, .# is self-contradictory.

4 Self-contradictory Reasoning in N_y3—

Let N_va= be the fragment of N obtained by removing the symbols V, 3 and = and
the inference schemata corresponding to these symbols from N. In this section we
shall study the notion of self-contradictory deductions in the formal system N_y3—.
We shall also prove the following theorem.

Theorem 1 Every non-self-contradictory deduction in N_y3= is normalizable.

In this section and the two succeeding ones we shall use the terminology of Ekman
(1994) [2, Sect.3.1], see Appendix below. Hence, by “normalizable” in Theorem 1
we mean normalizable as defined in Ekman (1994) [2, Sect. 3.1], see Appendix below.
As in the formal system FP, m and n denote meanings.

Assume that A is a formula such that there is no normal proof of A in N_y3_.
Then, by Proposition 3.1.4 in Ekman (1994) [2] there is no normalizable proof of A
in N_y3=. Hence by Theorem 1 every proof of A is self-contradictory. Since there
is no normal proof of L in N_y3— it follows that every paradox in N_y3— is self-
contradictory, if by paradox we mean a proof of L. In Ekman (1994) [2, Sect.2.1]
it is shown that there is no normal proof of the formula ¢ u, where ¢ is the term
defined by

t={x|xeu & x ¢x}

Hence, every proof of ¢ ¢ u in N_y3= is self-contradictory. In Ekman (1994) [2,
Sect.2.1] also a proof, named Crabbe’s counterexample (see Crabbé (1974) [1]), of
the formula 7 ¢ u is presented. This proof is a proof in N_y3= and hence Crabbe’s
counterexample is a self-contradictory proof. It is also argued in Ekman (1994) [2,
Sect.2.1] that Crabbe’s counterexample expresses a correct argument in ZF. Hence
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the formula ¢ ¢ u, or the proposition that informally corresponds to ¢ ¢ u, serves as
an example of a proposition provable in ZF, but only by self-contradictory proofs,
unless we use proof principles not expressible in N_y3—.

The variables of the language of N_y3— will also be used to denote meaning
variables. The set of formal meanings to be assigned to formulas in deductions in
the formal system N_y3= is inductively defined as follows. The meaning variable
x and false are meanings, and if m and n are meanings, then em, m = n,m A n
and m + n are meanings. The meaning conditions associated with the formal system
N_va= are the following.

9 9
m: Alt/x] em:t€f{x|A}
—————— € ———F X ¢cE
em:te{x|A} m: Alt/x]
9
false : L
m:A LE
[m: A]
9 9 &
n:B o1 m=n:ADB m: A SE
m=n:ADB n:B
9 & 9 9
m:A n:B mAn:A&B mAn:A&B
mAn:A&B &I m:A &El n:B &E2

[my: A1l [my: Azl

7 17 2 & &

m: A n:B mp+mp: ALV A n:C n:C
vI VI VE
m+n:AVB m+n:AVB n:C

Let 2 and & be two deductions in N_y3— such that & is non-self-contradictory,
0 is an assignment of formal meanings to the formula occurrences in & such that
this assignment satisfies the meaning conditions and ¥ — & (i.e., Z reduces to &’;
see Appendix for the definition of reductions of deductions). Then we let a (6, &, 2)
denote the assignment of formal meanings to the formula occurrences in & given by
considering every formula occurrence in & to correspond to a formula occurrence in
2 and assigning the same meaning to the formula occurrence in & as the meaning
assigned to the corresponding formula occurrence in 2. If & reduces to & via an
epsilon reduction, then the deduction 2, with its formula occurrences decorated by
6 has the form

F
m: Alt/x] c
em:tef{x]|A}
mo Al B[
¢

C
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In this case &, with its formula occurrences decorated by a (0, &, 2), is the following
deduction
F
m: Alt/x]
9
C

&

If 2 reduces to & via an imply reduction, then &, with its formula occurrences
decorated by 0, has the form

[m: A]

F
n:B o1 9
m=n:A>DB m: A 9
DE

n:B

R4

C

In this case &, with its formula occurrences decorated by a (0, &, 2), is the deduction

9
m:A
F
n:B
H
C

&

For all other cases of the kind of reduction that takes & to &, a(0, &, 2) is defined
similarly.

Lemma 1 Ifadeduction 9 is non-self-contradictory and 9 reduces to &, then also
the deduction & is non-self-contradictory.

Proof Let 6 be an assignment of formal meanings to the formula occurrences in
2 such that this assignment satisfies the meaning conditions. Then a (8, &, 2) is
an assignment of formal meanings to the formula occurrences in & such that this
assignment satisfies the meaning conditions. (]

Let the formal system P of propositional logic be given as in the Appendix below.
We assume that there is at least one propositional variable P in the language of P.
Let™* be the function from the set of meanings to be assigned to formulas in deductions
in the formal system N_vy3— onto the set of formulas of P, defined as follows.
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x*=P
false = L
(em)*=(L>1L)om*
m=n*=m*>n*

m An)* =m™ &n*

m+n)* =m*vn*

We extend * to a function from the set of sets of meanings to be assigned to formulas
in deductions in the formal system N_y3= onto the set of sets of formulas of P by
letting I"* denote the set of formulas A* such that A belongs to I", for all sets of
meanings to be assigned to formulas in deductions in the formal system N_y3—.
We extend * once more, to a function from the set of non-self-contradictory
deductions in N_vy3— to the set of deductions in P. If & is a deduction in N_vy3—
consisting of the open assumption m : A, then Z* is the open assumption m*:

17 * %
m: Alt/x] = m* o1
emitelx|A) © LoL)om'

Observe that there is no open assumption of the form L O L in Z*, cancelled at the
Dl inference, in the deduction to the right above.

9 * 9D* [L] I
emirelr|A) )= (Lobhom 151 DE
m: Alt/x] € m* -

For all other cases of the end inference of a deduction &, the definition of Z*
commutes with the definition of deduction. For instance, for the case that an DI is
the last inference of a deduction, we have the following clause defining the image
under * of this deduction:

[m: Al * [m*]

9 — 7

n:B n*
m=n:ADB ol m* > n* ol

Proposition 1 Assume that 9 is a non-self-contradictory deduction, 0 is an assign-
ment of formal meanings to the formula occurrences in & such that this assignment
satisfies the meaning conditions and 9 = &. Let 9 also denote the deduction
obtained from 9 by decorating the formula occurrences in 9 with 6. Let & also
denote the deduction obtained from & by decorating the formula occurrences in &
witha(©, &, D). Then * = &*.

Since P is strongly normalizable (see Prawitz (1965) [6]), we have Theorem 1 as
a consequence of Proposition 1.
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5 Self-contradictory Reasoning in N_3—

Under the assumption that meaning conditions formally express the way in which
a proposition is used, as outlined in Sect.2, it is a bit more complicated to define
the meaning conditions associated with a formal system with quantifiers than it is
to define the meaning conditions associated with a quantifier-free formal system. In
this section we shall study the notion of self-contradictory deductions in the formal
system N_3—, which is the fragment of N obtained by removing the symbols 3 and
= and the inference schemata corresponding to these symbols from N. We shall also
prove the following theorem.

Theorem 2 Every non-self-contradictory deduction in N_3— is normalizable.

Let A be any formula. To define the meaning conditions associated with the formal
system N_3— we shall informally consider Vx A to represent the informally given
infinitely long formula A[#/x] & (A[tx/x] & (Al3/x] & ...)), where t1, 2, 13, . ..
are all terms of the formal system N_3—.

A naive way to give the meaning conditions associated with N_3 is to add the
following meaning conditions to the meaning conditions associated with N_y3—,
where A is assumed to have been added to the constructors of the syntax defining
what the set of formal meanings to be assigned to formulas in deductions is, such
that Am is a meaning for any meaning m.

9 9
m: A Am i VxA
Am :VxA vi m: Alt/x] VE

With meaning conditions given this way, we require that there is a one to one cor-
respondence between the meaning of the premise and the conclusion both for VI
inferences and for VE inferences. This condition is however too strong, if we con-
sider Vx A to represent the informally given infinitely long formula above, since the
meaning conditions given for &E inferences does not require that there is a one to
one correspondence between the meaning of the premise and the conclusion of an
&E inference. As an example, consider the following deduction.

[ref{y|A}&(re{y|—A} &C)]

relvi-Aj&C o [re{y| A& (r € {y | ~A} & C)]
relbvizAb o relbviar o
—A[r/y] Alr/y]
T DE
ol

—(refylAl&(re{y|—A}&C))

This deduction is non-self-contradictory independently of which formulas A and
C are. It is straightforward to assign meanings to the formula occurrences of the
deduction above such that this assignment satisfies the meaning conditions. Assume
that C is Vx(r € x) and let us consider C to represent the informally given formula
(ret)&((ren)&((renn)&...)),wherety, tr, t3, ... are all terms of the formal
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system N_3—. Thenr € {y | A} & (r € {y | =A} & C) and C informally represent
the same formula. We have the following proof of —C, which from an informal point
of view is another presentation of the deduction above.

[Vx(r € x)] [Vx(r € x)]
re{ylﬁA}e re{yl A} <E
—Alr/yl Alr/y]
T DE
=Vx(r € x) oI

This deduction is self-contradictory if the meaning conditions are given as above.

We suggest the following definition of meaning conditions associated with the
formal system N_3—. The set of formal meanings to be assigned to formulas in
deductions in the formal system N_3— is inductively defined as follows. The meaning
variable x and false are meanings, and if m and n are meanings, then em, m = n,
m An, m+n and Ax.m are meanings. The meaning conditions are the following and
in addition the meaning conditions associated with the formal system N_y3—.

9 9

m:A Ax.m :Vx A
Ax.m :VxA vi mln/x]: Alt/x] VE

We have the restriction on the meaning variable, designated x, in the VI meaning
condition schema that it may not occur free in any meaning assigned to an open
assumption in Z. This restriction excludes, for instance, the following decoration of

a deduction.
Ayx :Vy(rey)
X:rex
Ax.x :Vx(r € x)

VE

Remember that the aim is to define the meaning conditions so that the meaning
conditions express a constraint given by the meaning forced on a proposition given
by an argument, in the sense of Sect.2. Remember also that the meaning forced on
a proposition given by an argument is arbitrary so far as what is considered to be
known is arbitrary, when knowing only what kind of steps the steps of the argument
are. We do not claim that the meaning conditions given are the only possible. The
given meaning conditions express constraints which we judge as accurate.

We have chosen the constraint defined by the meaning conditions to be no more
restrictive than what is necessary to prove Theorem 2. There are however reasons to
consider further restrictions on the meaning conditions. Consider the deduction

mi T A
Ax.x : VxA
my . A

VI
VE
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Assume that x does not occur free in A. Then the constraint defined by the meaning
conditions can be strengthened so that m, and m are required to be syntactically
equal. More generally, if x occurs free in A we can strengthen the constraint defined
by the meaning conditions so that, in an informal sense, if one “submeaning” of
mo and one “submeaning” of m; “correspond” to the same subformula of A, and
x does not occur free in this subformula, then these “submeanings” of m| and mo,
respectively, are required to be syntactically equal.

In the following we shall not assume this last restriction to be added. Of course,
if Theorem 2 holds without this restriction added to the restrictions of the meaning
conditions, then this theorem also is true with this restriction added.

All meaning condition schemata except the L E meaning condition schema define
a relation between the meanings assigned to the premises and the conclusion of the
inference. We can interpret this as follows: use of the _LE inference schema says that
nothing more is known about how the premise of an LE inference is derived other
than that it is the premise of an _LE inference. Instead of having L primitively given
in N we can define it by Vx(r € x), where r is an arbitrary term. We then have the
L E inference schema as a derived schema, derived as follows, where x is supposed
to be chosen so that x does not occur free in A.

Ax.ex :Vx(r € x)
em:ref{x| A}
m:A

VE
€E

Then if we also take false to be defined by Ax.ex we have the LE meaning condition
schema as a derived meaning condition schema, derived from the meaning condition
schemata VE and €E.

Lemma 2 If a deduction 9 is non-self-contradictory and 9 reduces to & then also
the deduction & is non-self-contradictory.

The proof of Theorem 2 is similar to the proof of Theorem 1. To prove Theorem 1
we define a function * from the set of non-self-contradictory deductions in N_y3_ to
the set of deductions in P. To prove Theorem 2 we shall instead defined a function
* from the set of non-self-contradictory deductions in N_3= to the set of deductions
in P2, where P2 denotes the formal system of second order propositional logic. The
language of P2 is the set of formulas, inductively defined as follows. The propositional
variables X, X1, X», ...and L are formulas, and if A and B are formulas, then AD B,
A& B, AV B and YXA are formulas. The L, D, & and V inference schemata are
the same for P? as for the formal system N_y3=. The V inference schemata for P2
are the following.

1% 9
A VXA
vxa "I AB/xX] "B

We have the restriction on deductions in P? that the variable designated X in
the VI schema may not occur free in any open assumption in the deduction desig-
nated 2. The reduction rules for deductions in P2 are the same as the reduction
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rules for deductions in N_3— except that the substitution of a term for a variable in
the V-reduction in N_3_ corresponds, in P2, to a substitution of a proposition for
a propositional variable. We presuppose that the set of variables of N_3— and the
set of propositional variables of P? have the same cardinality. Hence there is a one
to one correspondence, * say, between the set of variables of N_3— and the set of
propositional variables of P2. For any variable x of N_3_ we let the propositional
variable X of P2 denote x*. The function * from the set of meanings to be assigned
to formulas in deductions in the formal system N_3_ onto the set of formulas of P2
is defined as follows.

x*=X
false = L
(em)*=(LD>L)Om*
(m=n)*=m*>n*
mAn)*=m* &n*
m+n)*=m*vn*

(Ax.m)* =VXm*

The function * is extended to a function from the set of sets of meanings to be assigned
to formulas in deductions in the formal system N_3— onto the set of sets of formulas
of P2 by letting I"* denote the set of formulas A* such that A belongs to I, for all
sets I of meanings to be assigned to formulas in deductions in the formal system
N_3_. In a similar way as in Sect.4 we extend * once more, to a function from the
set of non-self-contradictory deductions in N_3— to the set of deductions in P2. To
define this function we add the following clauses to the definition of the function *
in Sect. 4.

9 *k 9*
m: A = m*
( Ax.m :VxA VI) YXm* vi

9 " g*
( Ax.m :VxA VE) = vYXm*

mln/x]: Alt/x] m*[n*/ X]

VE

The definition of a(0, &, &), given in Sect. 4, extends from deductions in N_y3—
to deductions in N_3_ by defining a(6, &, 2) also in the case Z reduces to & via
an V reduction. This is done in a similar way as for the other cases of the kind of
reduction that takes & to &.

Proposition 2 Assume that 9 is a non-self-contradictory deduction, 0 is an assign-
ment of formal meanings to the formula occurrences in 9 such that this assignment
satisfies the meaning conditions and 9 — &. Let 9 also denote the deduction
obtained from 2 by decorating the formula occurrences in 9 with 6. Let & also
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denote the deduction obtained from & by decorating the formula occurrences in &
witha(9, &, D). Then 9* = &*.

From Girard (1971) [4] it is known that deductions in P2 are strongly normalizable;
see also Martin-Lof (1971) [5]. From this together with Proposition 2, Theorem 2
follows.

6 Self-contradictory Reasoning in N_—

The meaning conditions associated with N__ are defined by adding to the meaning
conditions associated with N_3— some constraints given by informally considering
dx A to represent the informally given infinitely long formula A[#/x] V (Alf2/x] VvV
(A[t3/x]V...)),wheret, o, t3, . . . are all terms of the formal system N__. The set of
formal meanings to be assigned to formulas in deductions in the formal system N__
is inductively defined as follows. The meaning variable x and false are meanings,
and if m and n are meanings, then em, m = n, m An, Ax.m and px.m are meanings.
The meaning conditions associated with the formal system N__ are the following,
and in addition the meaning conditions associated with the formal system N_3_.
[m: A]
P 9 &
mln/x]: Alt/x] ux.m :AxA n:C

pux.m :Ax A Al n:C &

We have the restriction on the meaning variable designated x in the 3F meaning
condition schema that neither may it occur free in the meaning designated n assigned
to the subsequent premise of the IE nor may it occur free in any meaning assigned
to an open assumption of the deduction of the subsequent premise & other than the
open assumption designated A.

Theorem 3 Every non-self-contradictory deduction in N__ is normalizable.

Let PR be the formal system with the same language as N__, obtained by remov-

ing the e-inferences from N. We have the following result concerning PR.
Proposition 3 Every deduction in PR is non-self-contradictory.

Proof Let 2 be any given deduction in PR. We shall define an assignment of for-
mal meanings to the formulas in 2 such that this assignment satisfies the meaning
conditions. This assignment is defined by decorating every formula occurrence A in
2 with the formal meaning A°, where ° is a function from the set of formulas of PR
to the set of formal meanings to be assigned to formulas in deductions in the formal
system N_—. The bijection ° is defined as follows.

(rex)® =ex
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(re{x|A})° =¢€A°
1° = false
(ADB)° = A° = B°
(A& B)° = A° A B°
(AV B)° = A° + B°
(VxA)° = Ax.A°
(3xA)° = ux.A° O

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix
Naive Set Theory

We present the system N of natural deduction for naive set theory. The syntactic
categories of the language of N are

1. Variables, x,y,z
2. Terms, r,s,t,u,v,w
3. Formulas, A,B,C,...

The language of N is the set of terms and formulas, inductively defined as follows.
Variables x, y and z are terms, and if A is a formula, then {x | A} is a term. If r
and s are terms, then r = s and r € s are formulas, and if A and B are formulas,
then A D B, A & B, VxA, AV B and Jx A are formulas; L is also a formula. The
symbols used in the language of a formal system are the primitive symbols of that
formal system. In addition to the primitive symbols of N, we shall use the following
defined symbols

—A=AD L1
reé¢s=-(res)

We use 2, &, F, ... to denote deductions. The deductions in N are defined by the
following inference schemata.
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9 9
Alt/x] te{x| A} B
rex| Al < Alr/x] <
9
1
A 1E
[A]
9 9 &
B ADB A
A5 B DI 3 OE
9 & 9 9
A B A& B A& B
1% B &I A &E B &E
9 9
A VxA
via I Alt/x] F
[A]
9 9 &
Alt/x] dxA C
T4 =l - c JE
[A1]  [Az]
9 9 9 & F
A B A1V Ay C C
ave U ave M c VE
[x er] [y et]
9 & 9 & 9 &
xet yer o r=t Alr/x] _E r=t Alt/x] _E
r=t Alt/x] Alr/x]

An inference is an application of an inference schema. An atomic formula is a
formula that cannot be the conclusion of an introduction inference. In an elimination
inference the leftmost premise is the major premise and all other premises, if there
are any, are the minor premises. A proof is a deduction without open assumptions.
A subdeduction is defined to be an occurrence of a subdeduction in a deduction.

The variable x in the VI and 3E schemata and the variables x and y in the =I
schema designate eigenvariables of inferences. We require that the eigenvariables
occurring in a deduction & are syntactically distinguished from each other and from
variables with free non-eigenvariable occurrences in Z.

For a treatment of the basic concepts of natural deduction the reader is referred
to Gentzen (1969) [3] and Prawitz (1965, 1971) [6, 7].
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Normal Deductions in a Fragment of N

Let F be a formal system. We consider a fragment of F to be a formal system
obtained from F by removing some primitive symbols and the corresponding infer-
ence schemata. To begin with we look at normal deductions in the formal system
obtained by removing the symbols 3, v and = and the inference schemata corre-
sponding to these symbols from N. We let N_3, = denote this formal system.

In addition to the uniqueness of names of eigenvariables we have restrictions on
deductions concerning the scopes of eigenvariables. The scope of an eigenvariable
in a deduction Z is the subdeduction of Z in which the eigenvariable is defined.
The scope of an eigenvariable of an VI inference is the premise deduction of the
inference. We have the restriction on deductions that an eigenvariable of an inference
may not occur free in any open assumption in the scope of the eigenvariable other
than assumptions cancelled at the inference.

Definition 2 In N_5,— a cut is formula occurrence which is both the conclusion
of an introduction inference and the major premise of an elimination inference. A
normal deduction is a deduction containing no cut.

Definition 3 A branch in a deduction ¥ is a sequence Ay, Ay, ..., A, of formula
occurrences in Z such that: (1) Ay is an assumption. (2) For each i such that 1 <
i < n, A; stands immediately above A;;; and A; is not the minor premise of an
elimination inference. (3) A, is the end formula of the deduction or the minor premise
of an elimination inference. An E-part of a branch is a sequence of consecutive
formulas of the branch, none of which is the conclusion of an introduction inference.
An I-part of a branch is a sequence of consecutive formulas of the branch, all of
which are the conclusions of introduction inferences. A main branch is a branch
Ai, As, ..., A,, with A, as the end formula of the deduction. An E-main branch is
a main branch consisting only of an E-part. Note that there cannot be more than one
E-main branch in a deduction.

If a formula occurrence in a deduction in N_3 = is a minor premise of an elimina-
tion inference then this formula occurrence is the minor premise of an DE inference.
The reason that the phrase the minor premise of an elimination inference is used in
the definition of a branch above is to make the definition applicable to deductions in
other formal systems, where it is not the case that a minor premise of an elimination
inference always is the minor premise of an DE inference.

Proposition 4 Every branch in a normal deduction in N_3\ = consists of an E-part
followed by a (possibly empty) I-part.

Proposition 5 A normal proof in N_gy= has an introduction inference as its last
inference.
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Reductions of Deductions in N__

We use Z = & to denote that & reduces to the deduction &. If there is a deduction
& such that 2 = & then & is reducible. 9 reduces in zero steps to itself. If there
are deductions &7, ..., &,, where n > 1, such that

D= 6 = ... = &,

then 2 reduces in n steps to the deduction &,. Hence, the two phrases & reduces in
one step to & and P reduces to & have the same meaning. If there isann > 0 and a
deduction & such that & reduces in n steps to &, and & is not reducible, then Z is
normalizable. If there is no infinite family {&;},i = 1, 2, 3, ... of deductions such
that ¥ — & and §; =— &; 41, for i > 1, then Z is strongly normalizable.

The relation = is defined inductively, by the schemata below. Notice that a
deduction is reducible only if it has a cut and that the reduction defined removes the
cut.

Epsilon reduction Imply reduction
P (4] P
LA 9 7 . A
re{x|A) Alr/x] B 1 ’ 2
— € ADB A
Alt/x] ) B
B
And reduction Or reduction
9 & 9 [A] [B] %
A B 9 A & T A
A&B &g L= 4 ave ' ¢ C e = ¢
A C v c
9 & 9 [A] [B] %
A B & B & 7 B
A&B &g = 3 ave ! c C g = 7
B C v c
Exist reduction For all reduction
7 [A] 2 9
Alt £ Alt/x] DIt )x
L I Ay o, 7w
JxA C g Elt/x] VXA e Alt/x]
C C Alr/x]

For two further reductions (Left Compose and Subderivation) see Ekman (1994)
[2, Sect.4.1].
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Propositional Logic

Propositional logic is the formal system P obtained by removing the symbols €, V, 3
and = and the inference schemata corresponding to these symbols from N. The formal
system P does not have any term variables but instead propositional variables. The
language of P is the set of formulas, inductively defined as follows. The propositional
variables P, Q, R and L are formulas, and if A and B are formulas, then A D B,
A & B and A Vv B are formulas.

A branch in a deduction in P is defined as a branch in a deduction in N_3,—.
The notion of a cut in a deduction in P and the notion of a normal deduction in P is
defined as in N_—_. The definitions of an E-part of a branch, an I-part of a branch, a

main branch and an E-main branch are the same for a branch in a deduction in N as
for a branch in a deduction in N_gy—.
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Completeness in Proof-Theoretic Semantics

Thomas Piecha

Abstract We give an overview of completeness and incompleteness results within
proof-theoretic semantics. Completeness of intuitionistic first-order logic for certain
notions of validity in proof-theoretic semantics has been conjectured by Prawitz.
For the kind of semantics proposed by him, this conjecture is still undecided. For
certain variants of proof-theoretic semantics the completeness question is settled,
including a positive result for classical logic. For intuitionistic logic there are positive
as well as negative completeness results, depending on which variant of semantics
is considered. Further results have been obtained for certain fragments of first-order
languages.

Keywords Completeness * Proof-theoretic validity * Intuitionistic logic - Classical
logic + Atomic systems

1 Introduction

In proof-theoretic semantics (see Schroeder-Heister [34]; cf. Wansing [36]) for log-
ical constants several related notions of validity have been proposed. We men-
tion Kreisel (cf. Gabbay [6]), Prawitz [18-22], Dummett [3] and Sandqvist [26].
Overviews and discussions of such proof-theoretic notions of validity can be found
in Schroeder-Heister [31] and Read [24].

What these notions of validity have in common is that the validity of an atomic
formula, or atom, is defined in terms of the derivability of that atom in a given system
of atomic rules, that is, of rules which can only contain atoms. Leta, b, ..., aj, az, . ..
be atoms. Then
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is an example of a system § of atomic rules (the first two having the form of atomic
axioms), in which c is derivable by

and therefore valid with respect to S. Atomic rules are also called boundary rules
(cf. Dummett [3]) or production rules. Atomic systems S are also called bases; they
can have the form of Post systems, definite Horn clause logic programs etc.

The validity of complex formulas A, B, ..., A1, A2, ... (constructed as usual
from atoms with logical constants) with respect to an atomic system S can then be
defined inductively by giving semantic clauses for the logical constants. The validity
of implications A — B with respect to an atomic system § is usually defined by
taking into account arbitrary atomic extensions S’ of S. Let g stand for ‘valid with
respect to S’; then the semantic clause for implication has the form

FsA— B <= VS 2S:(Fy A = Fg B)

where in the definiens all extensions S’ of S have to be considered. This ensures that
implications A — B cannot become valid with respect to S just because some atom
on which the validity of A depends is not derivable in S. Considering extensions thus
guarantees monotonicity for validity with respect to S.

It was conjectured by Prawitz [19, 22] that intuitionistic first-order logic is com-
plete with respect to certain notions of validity for inference rules. This conjecture is
still undecided. There are, however, several negative as well as positive results about
completeness for certain plausible variants of this notion of validity, formulated not
for inference rules but for formulas. One kind of variants considers only certain frag-
ments of first-order languages. Other variants are based on different kinds of atomic
systems which allow for atomic rules of a more general form than production rules
only. Further variants are given through different treatments of negation or absurdity,
and by different notions of what an extension of an atomic system is.

In the following, we present several of these variants together with their respective
completeness or incompleteness results.

2 Prawitz’s Conjecture

Prawitz has given several definitions of proof-theoretic validity (see Prawitz [18—
22]), and he has conjectured completeness of intuitionistic first-order logic for some
of them. We here present a formulation for the fragment {—, Vv, A} as given by
Schroeder-Heister [33], which captures the main ideas underlying Prawitz’s defini-
tions. The restriction to the fragment {—, Vv, A} is only made to keep the exposition
simple; the definitions can be extended to the first-order case in a more or less
straightforward way.
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We first define some preliminary notions:

Definition 1 A (first-level) atomic system S is a (possibly empty) set of atomic rules
of the form

ay a,

b

where the a; and b are atoms. The set of premises {a1, ..., a,} in arule can be empty;
in this case the rule is an atomic axiom and of level 0. First-level atomic systems that
do not contain atomic axioms are called proper first-level atomic systems.

Definition 2 An arbitrary inference rule has the form

[Allv"'9All’n]] [AnlvuwAnm,,]
B B,
C

The notation is the same as the one used for the logical rules of natural deduction
(see Gentzen [7]). That is, rules of this form allow one to conclude C from the set
of premises {Bj, ..., By} and to discharge any of the assumptions A;;, written in
square brackets [ ], on which premises B; might depend.

Definition 3 A derivation structure is a derivation tree composed of arbitrary infer-
ence rules. (Derivation structures correspond to what Prawitz calls ‘(argument or
proof) schemata’ or ‘(argument or proof) skeletons’.)

The notions open/closed and canonical/non-canonical as used for derivations
in natural deduction are carried over to derivation structures. That is, a derivation
structure with no open assumptions is closed, otherwise open. It is canonical, if it
ends with one of the introduction rules

[A]
B A o A B
A— B A va, G=lor2) AANB

It is non-canonical, if it does not.

Definition 4 A reduction procedure transforms a given derivation structure into
another derivation structure.

A justification J of an arbitrary inference rule R, excluding introduction rules, is
a set of reduction procedures which transform derivation structures 2 ending with
an application of R into another derivation structure with the same end formula as
2 and having no more open assumptions than & (see Prawitz [22]).

Now validity with respect to atomic systems S and justifications J (short: (S, J)-
validity) can be defined as follows:
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Definition 5 (i) Every closed derivation in an atomic system S is (S, J)-valid (for
every justification J).

(i) A closed canonical derivation structure is (S, J)-valid, if all its immediate
substructures are (S, J)-valid.

(iii) A closed non-canonical derivation structure is (S, J)-valid, if it reduces, with
respect to J, to a canonical derivation structure, which is (S, J)-valid.

(iv) An open derivation structure

A ... Ay
9
B

where all open assumptions of & are in {Ay, ..., A,}, is (S, J)-valid, if for
every extension S’ of S and every extension J’ of J, and for every list of
closed derivation structures fi (for 1 <i < n) which are (S, J')-valid, the
derivation structure l

is (S, J)-valid.

Extensions S’ of S and J’ of J are here understood in the set-theoretic sense as
S’ D S and J' D J. Taking extensions into account ensures that (S, J)-validity
of derivation structures is monotone with respect to extensions of S and J. This is
an important constraint, if atomic systems S and justifications J are understood to
represent, for example, states of knowledge.

In [18, Appendix A.1], Prawitz gave a definition of ‘valid derivation’, which
makes use of extensions of atomic systems. However, in definitions of the more
general notion of ‘valid derivation structure’ (i.e., of ‘valid argument schema’ or
‘valid argument’) he uses (consistent) extensions of justifications, but no extensions
of atomic systems. Completeness of minimal logic for one such notion was conjec-
tured in Prawitz [19]. A completeness conjecture for intuitionistic logic and a similar
notion of validity is made in Prawitz [22]:

Conjecture 1 (Prawitz [22, p. 274]) Every valid inference rule that can be for-
mulated within first-order languages holds as a derivable inference rule within the
system of natural deduction for intuitionistic logic.

Prawitz’s motivation for considering proof-theoretic notions of validity is to give
an answer to the question of whether the elimination rules of Gentzen’s intuitionistic
system of natural deduction are the strongest possible ones justifiable in terms of the
introduction rules of that system. Gentzen’s idea that the introduction rules define
the logical constants and that the elimination rules have to be justified on the basis of
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the introduction rules (see Gentzen [7]; cf. [1]) is reflected in the notion of validity
by the fact that priority is given to canonical derivation structures, that is, to deriva-
tion structures ending with an introduction rule, to which non-canonical derivation
structures have to be reduced. The (as yet unsettled) completeness conjecture implies
a positive answer to that question.

In [22], Prawitz also gives a further modification of the notion of validity with
respect to the role played by justifications. We will not discuss this modification here.
Moreover, in what follows we will focus on proof-theoretic notions of validity for
formulas instead of validity for derivation structures or inference rules. This approach
has the advantage that justifications J (i.e., sets of reduction procedures for derivation
structures) do not need to be considered at all. We here only mention that certain
notions of validity for inference rules were given in Schroeder-Heister [28, 30], and
that intuitionistic logic was claimed to be complete with respect to them there.

3 Failure of Completeness for Intuitionistic Logic

Our first example of a notion of validity for formulas is due to Kreisel [10]. We
follow the expositions given by Gabbay in [5] and [6, Chap. 13], adjust the notation
and speak of ‘Kreisel validity’.

Let <7 be a fixed alphabet and S a Post system on .«. If a word w over &/ is
derivable in S, we write kg w. Let h be any function which assigns words over &7
to all variables x, y, x, x2, ... and relation symbols R of a first-order language, and
lethy =x ho := h1(y) = ha(y) forall y # x.

Definition 6 Kreisel S-validity (hg) and Kreisel validity (F) are defined as follows:

(K1) lzg R(xy,...,xp) <= ks h(R)h(xy)...h(x,) (where R(x1,...,x,)
is an atom),

(K2) Ft A—> B 1= V' D S:(Fl, A = K& B),

(K3) F AV B = FlAor Fl B,

(K4) F' ANB = FL A andF! B,

(K5) lzlsl —A :&= forall consistent S’ O S : J?fg, A (where §’ is consistent
iff ¥g w for some word w),

(K6) |=/§ IxA(x) <= forsome h| =, h : |=2' A(x),

(K7) |:i§ VxA(x) <= forallhy =, h : lzgl A(x),

(K8) FA &= Vo S, h: Fl A

(K9) A is substitution-Kreisel-valid :<—> all substitution instances of A are
Kreisel valid (where substitutions are uniform substitutions of formulas for
atoms in A).

Note that clause (K5) for negation is restricted to consistent extensions, and that
extensions S’ D S are understood in the normal set-theoretic sense, that is, the Post
system S’ contains at least all the rules of the Post system S. Alternatively, extensions
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S’ of S can be understood to mean that the implication g w = kg w holds for
all words w over 7. In this latter case, Gabbay speaks of weak validity.
Intuitionistic first-order logic is neither complete for weak validity nor for Kreisel
validity. Completeness already fails in the propositional case for both notions (we now
consider weak validity and Kreisel validity restricted to the propositional fragment):

Theorem 1 (Gabbay [6, p. 224]) Intuitionistic propositional logic is not complete
for weak validity. The formula (——A — A) —> (mAV —=—A)) —> (A V ——A)is
a counterexample.

Theorem 2 (Gabbay [6, p. 225]) Intuitionistic propositional logic is not complete
for Kreisel validity. The set of Kreisel valid sentences is not closed under substitution.
The formula (a — (b Vv ¢)) — ((a — b) Vv (a — ¢)), for propositional atoms a, b, c,
is a counterexample.

Considering only the propositional fragment, completeness has been conjectured for
substitution-Kreisel-validity:

Conjecture 2 (Gabbay [6, p. 226]) Intuitionistic propositional logic is complete for
substitution-Kreisel-validity (restricted to the propositional fragment).

4 Goldfarb’s Account of Dummett’s Approach

Dummett [3, Chaps. 11-13] made an approach to proof-theoretic validity for infer-
ence rules (or arguments) which is similar to Prawitz’s (cf. Sect.2). It is supposed
to yield a justification of intuitionistic first-order logic. Goldfarb [8] (this volume)
has given an analysis of the propositional part of Dummett’s approach, resulting in
a notion of validity for formulas (instead of inference rules).

Goldfarb first gives a formulation for atomic systems of axioms only, that is, for
sets of atoms. It is presumed that there are infinitely many atoms available and that
only finite sets of atoms «, B are ever considered. We follow his notation in writing
a, B for such sets but adjust it to ours otherwise:

Definition 7

(Gl) aFa <= ac€aqa,

(G2) aFA— B «— VB2Da:(BFA = BEB),
(G3) aFAVB << aFAoraF B,

(G4) a FAAB <<= aFAanda F B,

(G5) There is no « such that o F L.

This notion of validity (F) can be discarded right away, since it validates formulas
which are not even derivable in classical logic (see Goldfarb [8]):
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Lemma 1 (i) Suppose A does not contain L. Thena F (A — 1) — L.
(ii) Let a and b be two distinct atoms. Then a E (a — b) — b.

Goldfarb then modifies this notion of validity by relativizing the relation F to
proper first-level atomic systems S (i.e., in Dummett’s terminology, to sets of bound-
ary rules) as in Dummett’s approach. He points out that in order to avoid cases like
Lemma 1 (i), atomic rules with conclusion _L_ have to be allowed as well. The modified
notion can be given by rewriting clauses (G1)—(G5) with Fg instead of F, together
with the condition that sets o, 8 have now to be closed under the rules in S and do
not contain L:

Definition 8 Let S be a proper first-level atomic system. Let the sets «, B be closed
under the rules in S, and L ¢ «, .

(G1) akFsa = aca,

(G2) abs A—> B 1< Y82Da:(BEs A —> B Es B),
(G3) aF§ AVB &< akFgAorakg B,

(G4) a ks AAB &= aFgAanda Fg B,

(G5) There is no « such that @ Fg L.

According to Goldfarb, this notion of validity is a revision of Dummett’s approach
in that it considers in principle all atomic systems S instead of only a fixed one.

For this revised notion of validity all valid formulas are classically valid. Com-
pleteness for intuitionistic logic does not hold (see Goldfarb [8]):

Lemma 2 (i) Every valid formula is derivable in classical logic.
(ii) The formula (a — (B Vv C)) — ((a — B) Vv (a — C)) is valid for any atom a
and any formulas B and C, but it is not intuitionistically derivable for all B, C.

The counterexamples to completeness given in Lemmas 1 and 2 are not schematic
in the sense that all substitution instances of the valid formulas presented there are
valid too. Goldfarb introduces the relation of schematic validity, which holds for a
formula A if and only if all instances of A resulting from uniform substitutions of
formulas for atoms in A are valid (cp. substitution-Kreisel-validity). He shows that
the intuitionistically non-derivable formula —=A v ——A is schematically valid for
atomic systems which do only contain atoms (i.e., for atomic systems of level 0). In
other words:

Theorem 3 (Goldfarb [8]) Intuitionistic logic is not complete for schematic validity
for sets of atoms « (i.e., for the notion of schematic validity based on validity (F)
according to Definition 7).

However, for the schematically understood revised notion of validity the following
completeness result holds:

Theorem 4 (Goldfarb [8]) Intuitionistic propositional logic is complete for sche-
matic validity based on the revised notion of validity (i.e., for the notion of schematic
validity based on validity (Fg) according to Definition 8).



238 T. Piecha

We note that this completeness result depends on the restriction to consistent sets
of atoms «, § in the sense that | ¢ «, 8. A restriction to consistent extensions is
also made in Definition 6 of (substitution-) Kreisel validity, namely in clause (K5)
for negation. If negation is understood as =A := A — L, and L is explained by
aFg 1l (<= Va:«aFga,then

aFg—A < VBDa:BFsA.

Since «, B are consistent, this is equivalent to clause (K5), where L is a word w such
that ¥g» w. However, in the case of (substitution-) Kreisel validity this is the only
clause where a restriction to consistent atomic systems (resp. Post systems) S, S’ is
made, whereas such a restriction applies in general in the case of (schematic) validity
according to Definition 8. Assuming consistent extensions in general also in the case
of Kreisel validity implies completeness for substitution-Kreisel-validity. That is,
Conjecture 2 is decided positively in this case.

5 Proof-Theoretic Validity for Generalized Atomic Systems

‘We now consider atomic systems which are not restricted to first-level atomic rules
but which can contain atomic rules that can also discharge assumptions of a certain
kind. One can show that intuitionistic logic is not complete for a notion of proof-
theoretic validity based on such generalized atomic systems (see [16]).

To motivate such a generalization one might argue that since the device of assump-
tion discharge is available at the level of logical rules (e.g., in the rules of implication
introduction and disjunction elimination of natural deduction), it should be available
at the level of atomic rules, too. However, from the point of view of attempting a
justification of a certain logic by giving a semantics based on atomic systems, such
a generalization might be conceived as being counterproductive, as it introduces a
feature of implication already at the level of atomic rules.

5.1 Generalized Atomic Systems

We generalize the notion of first-level atomic system to higher-level atomic systems
by allowing for atomic rules that can discharge atomic assumptions (cf. [16]).

Definition 9 A second-level atomic system S is a (possibly empty) set of atomic
rules of the form

[171] /%]

ai a,
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where the @; and b are atoms, and the [ are finite sets of atoms. The sets I; may be
empty, in which case the rule is a first-level rule. The set of premises {ay, ..., a,}
can be empty as well; in this case the rule is an axiom.

Such arule can be applied as follows: If the premises ay, . . . , @, have been derived in
S from certain assumptions, then one may conclude b, where, for each i, in the branch
of the subderivation leading to @; assumptions belonging to I'; may be discharged.

Second-level atomic systems are now further generalized to the higher-level case
by allowing for atomic rules which can discharge not only atoms but atomic rules
as assumptions (see Schroeder-Heister [29, 32] and Olkhovikov and Schroeder-
Heister [15]; cf. [16]). We use the following linear notation for atomic higher-level
rules:

Definition 10 (i) Every atom a is a rule of level 0.
@i1) If Ry, ..., R, are rules (n > 1), whose maximal level is £, and a is an atom,
then (R, ..., R, > a)isarule of level £ + 1.

Definition 11 A higher-level atomic system S is a (possibly empty) set of atomic
rules of the form

[I1] [I7%]
ai a,

b

(in linear notation: (I'y > ay), ..., (I, > a,) > b), where the a; and b are atoms,
and the I are now finite sets {R!, ..., R,’c} of rules, which may be empty. The set of
premises {ay, ..., a,} of such a rule can also be empty, in which case the rule is an
axiom.

In the higher-level case atomic rules can be used as (dischargeable) assumptions,
whereas in the second-level case only atoms could be used in that way. This difference
requires a definition of the notion of derivation of an atom a from rules Ry, ..., Ry:

Definition 12 For a level-O rule a,

is a derivation of a from {a}.
Now consider a level-(£ + 1) rule (I'1 > ay), ..., (I > ay,) > b. Suppose that for
eachi (1 <i < n) aderivation

2 UTr;
D

ai
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of a; from X; U I7; is given. Then

El 2—Jn
@1 -@n
a o (s ap), ... (I >ay) > b

is a derivation of b from X1 U ... U X, U{(I1 > ay), ..., (I, > a,) > b}.
An atom b is derivable from X in a higher-level atomic system S, symbolically
Y kg b, if there is a derivation of b from X' U S.

As an example, consider the atomic system S = {((b>e)> f), (((a>b)>c)>e)}
and the set of assumptions X' = {((a>b)>d), ((b, d)r>c)}. The following derivation
shows that X' g f:

ol
. T[zmb]z
— P 12 Gebhd
b d_pdsec

2% (((a>b)>c)>e)

3%<(b>6)>f>

Angle brackets () are used to indicate the rules of S, and square brackets [ ] with
numerals indicate the discharge of assumptions.

5.2 Proof-Theoretic Validity

‘We now consider a notion of validity for intuitionistic propositional logic (see [16]),
which will be based on the following clauses for the fragment {—, Vv, A}. Absurdity
1 is taken as a distinguished atom. Extensions S’ of atomic systems S are again
understood in the set-theoretic sense: An atomic system S’ is an extension of an
atomic system S (written S’ 2 S), if S’ results from adding a (possibly empty) set
of atomic rules to S.

Definition 13 S-validity (Fs) and validity (F) are defined as follows:

S1) Fsa <= Fgsa,

(S2) Fs A— B «<—= AFg B,

S3)) TEs A &= VS D S5: (kg I' = FEg A), where I' is a set of
formulas, and where Fg I stands for {Fg A; | A; € '},

(S4) EsAVB (< FgA or Fg B,

(S5) FsAAB < Fgs A and Fg B,

S6) 'FA &= VS:I'Fg A.

Since only the logical constants of the fragment {—, \/, A} are considered, and
L is just an atom, one could also speak of minimal validity or validity for minimal
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logic here. This notion is very similar to the ‘minimal part’ of Kreisel validity, given
by clauses (K1)—(K4) and (K8) of Definition 6, when restricted to a propositional
language and for words w identified with atoms a.

In analogy to substitution-Kreisel-validity, we define in addition validity under
substitution as validity for all substitution instances (resulting from uniform sub-
stitutions of formulas for atoms). Thus validity under substitution is by definition
closed under substitution.

Definition 14 S-validity under substitution (IFs) and validity under substitution (1)
are defined as follows:

(1) I''lFg A &= for each substitution instance I, A’ of I, A: I'" Eg A’.
(i) I' lF A :<= for each substitution instance I', A’ of I, A: I'" E A’.

These notions of validity are now extended for intuitionistic propositional logic:
Definition 15 Intuitionistic S-validity (lzg) is defined as follows. Let (L) stand for

the setofrules{ i‘ aatomic}.ThethiSA <= I Fsu) A.

Correspondingly, I" F' A, I' IH A and I" IF" A are defined as I" F(1) A,
I' lFsyc) A and I' Iy A, respectively.

The treatment of absurdity L, and therefore of negation if understood as —A :=
A — 1, differs from the one given by clause (KS5) of Kreisel validity and from the
one given by clauses (G5) or (G5'). If L were defined as a non-atomic constant by a
semantical clause which says that there is no atomic system S such that Fg L, then
Fs ——a would hold for any atom a; this is the case, since ¥g —a for any S’ 2 S,
as Fgr a for some S” O §.

We note the following properties of S-validity:

Lemma 3

(i) Es is a consequence relation, that is,

(1) AFg A,
(2) TEs A = I',AFg A,
(3) I"'Es A and A,AEs B) — I, AFEgs B.

(ii) Es is monotone with respectto S, thatis, ' Fs A = VS' 2 §: T Eg A.
(iii) 'Fs A— B < I AFg B.

For intuitionistic S-validity (i.e., for Fg replaced with lzis ) these properties hold as
well.

Atomic rules can be represented by formulas and vice versa (for details see [16]).
Let X* stand for the set of formulas representing a finite set X' of atomic rules. The
following completeness and soundness result holds:

Lemmad4 Y*Fga < X*Fga.
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5.3 Failure of Strong Completeness

We now consider the system NI of natural deduction for intuitionistic propositional
logic, for which one can show that it is not complete for validity.

Definition 16 Derivability of a formula A from a (possibly empty) set of assump-
tions I" in NI is written I" - A.

Definition 17 (i) Soundness of NI means: ' H A = I E! A.
(ii) Strong completeness of NI means: I' ' A = I' - A.
(iii) Completeness (simpliciter) of Nl means: I' IH A = ' F A.

Soundness holds. Since derivability I" - A in NI is closed under substitution,
this implies I” I A, that is, intuitionistic validity under substitution. The distinction
between strong completeness and completeness (simpliciter) is useful, because one
can show that validity is not closed under substitution; the given semantics validates
a formula which is not derivable in NI. Thus strong completeness does not hold:

Theorem 5 NI is not strongly complete. The set of valid formulas is not closed under
substitution.

Three proofs of this result are discussed in [16]. Here we only mention the coun-
terexample (cf. also Goldfarb [8] and Sect. 4)

a— (bVve)E(a@a—>b)V(a—c)

which is already a counterexample for strong completeness of minimal logic, and
hence of NI. This counterexample is independent of the level of atomic systems. There
are other counterexamples, for which this is not the case. For example, ——a El a
holds for first-level atomic systems, but fails for atomic systems of levels higher
than 1. Thus certain counterexamples in the realm of first-level atomic systems can be
avoided by allowing for higher-level atomic systems. What the given counterexample
therefore also shows is that strong completeness already fails for the (more standard)
notion of validity based on first-level atomic systems.

5.4 Strong Completeness Results

Strong completeness holds for the fragment of disjunction-free formulas and for the
fragment of arbitrary negative formulas —A (see [16]):

Lemma 5 Let I" and A be disjunction-free. Then I' F' A <= I I A.

Lemma 6 Ler I and A be disjunction-free. Then I' F A << I F" A,
where F" denotes derivability in minimal logic. In other words, strong completeness
holds for the {—, A}-fragment of minimal (and intuitionistic) logic (see Schroeder-
Heister [33]).
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Lemma 7 For any formula of the form —A it holds that E' —=A <= F —A.

These results depend on higher-level atomic systems, for which Lemma 4 holds.

5.5 Failure of Completeness

Theorem 6 [ntuitionistic logic is not complete with respect to the semantics based
on higher-level atomic systems.

This has been proved in [16] by showing that the intuitionistically non-derivable
Harrop or Kreisel-Putnam formula (see Harrop [9], Kreisel and Putnam [11]) is
intuitionistically valid under substitution, that is, that

IH (=A— (BV C)) = ((mA — B)V (=A — 0))

holds. We emphasize that the given proof of this theorem depends on the fact that
the considered semantics is based on higher-level atomic systems.

Since higher-level rules can be reduced to second-level rules by an appropri-
ate coding (see Sandqvist [27]), it follows that intuitionistic logic is incomplete
for S-validity based on second-level atomic systems. Whether intuitionistic logic
is complete (simpliciter) for validity based on first-level atomic systems is an open
problem.

Similarly to Gabbay’s completeness conjecture for substitution-Kreisel-validity,
the following conjecture can be made for intuitionistic validity under substitution:

Conjecture 3 Intuitionistic propositional logic is complete (simpliciter) for intu-
itionistic validity based on first-level atomic systems. Thatis, ' ' A — T + A,
for first-level atomic systems only.

5.6 Comparison with Kripke Semantics

Proof-theoretic validity shares some similarities with the notion of validity in Kripke
semantics, which is sound and complete for intuitionistic logic (see Kripke [12];
cf. Moschovakis [14]). We mention that the semantical clauses for conjunction and
disjunction have the same form in both cases, and that the clauses for implication are
similar in that they depend on the idea of extensions. In Kripke semantics the clause
for implication is

k forces A - B <= Vk' >k : (k' forces A = k' forces B)

for nodes k, k" and partial orders >. The forcing relation for atoms a and nodes k is
given by truth-value assignments v (k, a), which obey the monotonicity requirement
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that if ¥* > k and v(k, a) = true, then v(k’, a) = true. Thus k’ is an extension of
k in the sense that {a | k' forces a} D {a | k forces a}, just like §" D § for atomic
systems S, S’ of level 0 in the case of proof-theoretic validity.

Besides these similarities, there are the following main differences to Kripke
semantics. In proof-theoretic validity, the S-validity of atoms is given by their deriv-
ability in S, whereas in Kripke semantics the validity (resp. the forcing relation) for
nodes k and atoms a is given by truth-value assignments v(k, a).

In S-validity, atomic systems S are not only sets of atoms (which in Kripke
semantics would be assigned to nodes k by v) but sets of atomic rules. This also means
that ' D S can be the case, although {a | k¢ a} = {a | 5 a} (and consequently
{a | Es a} = {a | Eg a}), simply because S’ might contain inapplicable additional
rules besides the ones in S, which therefore do not enlarge the set of atoms derivable
in §’. For example, let S contain only the axiom a and let ' = S U {%}, then

S’ > S, while both in §" and S only a is derivable. A notion like weak validity (see
Sect. 3), where

S’ is an extension of § <= Va:(Fsa = kg a),

is in this respect closer to the notion of validity in Kripke semantics than to S-validity.

In Kripke semantics, a formula has to be forced by every node in every Kripke
structure in order to be Kripke valid. Besides different sets of nodes k and differ-
ent truth-value assignments v(k, a), one therefore has to consider different partial
orders >, whereas in proof-theoretic validity only one kind of structure is taken into
account (cf. Goldfarb [8]; see also [16]), namely the one where the partial order is
set inclusion 2 for atomic systems S.

Furthermore, inconsistent extensions are possible in the case of S-validity, since
absurdity L could be added as an axiom to atomic systems S. This is not the case in
Kripke semantics, where the forcing relation is consistent in the sense that a node &
cannot force both A and —A (cp., however, the modified Kripke models of Veldman
[35D).

5.7 A Completeness Result for Intuitionistic Logic

A completeness result for intuitionistic propositional logic is available for the fol-
lowing notion of validity, which is given for second-level atomic systems S (see
Sandqvist [27]; we adjust it to our notation):

Definition 18

(Tl) Fsa <= Fga,

(T2) Fs A— B <= AFg B,

(T3) 'Eg A &= VS D S: (kg I' = kg A), where I' is a set of
formulas, and where Fg I" stands for {F¢ A; | A; € '},
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(T4) Fs AV B < VS D SandVc: (AFg cand BFy ¢ = Fg ¢),
(T5) Fs AAB <= Fgs Aand Fg B,

(T6) Fs L <= Va: Fsa,

(T7) TEA 1= VS: T Eg A.

Compared to S-validity (see Definition 13) there are two differences (besides the
restriction to second-level atomic systems §):

(1) Clause (T4) for disjunction replaces (S4). It resembles the natural deduction
elimination rule for disjunction. Note that the definiens is restricted to extensions
S’ D 8, and that propositional quantification is made use of in the universal
quantification over all atoms ¢ (not over all formulas; cf. Ferreira [4]).

(i) Absurdity L is not an atom but a logical constant, whose meaning is given by
clause (T6). This clause is based on Dummett’s introduction rule for L (cf.
Dummett [3, Chap. 13]).

Theorem 7 (Sandqvist[27]) Intuitionistic propositional logic is sound and complete
for this semantics, thatis, ' F A < I+ A.

6 Completeness Results for Classical Logic

So far, we have only discussed notions of proof-theoretic validity intended for intu-
itionistic logic or for certain fragments thereof. Now we will discuss a notion of
proof-theoretic validity for classical logic.

Sandqvist [26] gives a semantics for the fragment {—, L, V} of the language of
first-order logic. He considers basic sequents of the form (I” : a), which are relations
between finite sets I” of basic sentences and basic sentences a. Basic sentences are
closed atomic formulas, that is, formulas containing neither logical constants nor free
variables. Sets of basic sequents are called ‘bases’. In our terminology, basic sequents
are first-level rules, and bases are first-level atomic systems S. Sandqvist shows that
minimal logic can be justified and that the law of double negation elimination is
valid for the fragment {—, L, V}. The other logical constants can then be defined,
and a justification of classical logic is achieved without making use of the principle
of bivalence. That classical logic is sound and complete for the given semantics is
surprising, since this semantics is very similar to semantics proposed for intuitionistic
logic. Discussions of these results can be found in Makinson [13] and in [2].

Sandqvist’s semantics is the following (again, we use our notation):

Definition 19

(C1) For closed atoms a: Fg a :<= every set of closed atoms which is
closed under S contains a.

(C2) Fornon-empty I': I' Eg A <= kg Aforevery S’ O SsuchthatFgy B
forevery B e I'.

(C3) FsA— B :«— AFg B.
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(C4) By L :&= Fg a forevery closed atom a.

(C5) Fs VxA(x) < Fgs A(x)[x/t] for every closed term ¢.
(C6) TEA = VS:T Fg A.

(C7) ' F* A < I'o F Ao for all ground substitutions o.

Note that the definiens in clause (C1) could be expressed equivalently as 5 a.
Another (equivalent) formulation has been given by Makinson [13], where S(A)
is written for the closure of a set A of closed atoms under the rules in S. That
is, S(A) is the intersection of all sets A of closed atoms such that A € A, and if

@ e I Swith{ay, ..., an) C A, thenb € A.Clauses (C1)and (C4)
can then be written as follows:

(Cl") Forclosed atoms a: Fga < a € S(¥).
(C4) Fs L < a e S®) for every closed atom a.

We point out that L is not an atom here. In clause (C5), the notation A (x)[x/¢] means
that each occurrence of x in A is replaced by the term ¢. The relation I" F* A defined
in clause (C7) deals with open formulas; a ground substitution is a substitution of
variable-free terms for variables. The sets I" of formulas are finite, but in Definition 19
infinite sets I” could be allowed as well. The relation Fg is called ‘valid inferability’
by Sandqvist; by ‘validity’ we refer to the relation = defined in clause (C6).

The given semantics validates minimal logic (see Sandqvist [26, Lemma 3]).
Furthermore, Sandqvist [26, Lemma 4] shows that the law of double negation elim-
ination holds: (A — 1) — L F* A. Since minimal logic plus double negation
elimination amounts to classical logic, the following soundness and completeness
result for classical first-order logic holds:

Theorem 8 (Sandqvist[25,26]) ' F A <= I\ Ainclassical first-order logic.

The theorem is proved constructively by Sandqvist. An alternative proof is given by
Makinson [13], who uses classical meta-reasoning.

Sandqvist [26] refers to the implication from right to left as soundness, whereas
Makinson [13] takes the opposite perspective, in which the implication from right
to left expresses that Sandqvist’s semantics is complete with respect to the usual
model-theoretic semantics of classical logic. The implication from left to right, that
is, completeness in the sense that Sandqvist validity (I" F A) implies classical
derivability, or equivalently classical validity, holds as well.

6.1 Other Logical Constants

Sandqvist’s semantics contains clauses only for the logical constants of the fragment
{—, L, V}. A clause for conjunction A like (S5)

FsAAB << FgAand Fg B
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could be added without causing any problems with respect to completeness (cf.
Makinson [13]). However, as noted by Sandqyvist [26], if a clause for disjunction v
like (S4)

FsAVB < FgAor FsB

were added, then Theorem 8 would no longer hold. For example, the law of double
negation elimination (A — L) — L F A does then not hold for each substitution
instance anymore; a counterexample is A := B Vv (B — L) (cf. [2]). In other words,
validity fails to be closed under substitution, if disjunction is taken as primitive and
understood according to the given semantical clause. This is also the case for the
following stricter disjunction clauses (see Makinson [13]):

FsAVB (<= VS 2 S:(Fg A orkFg B),

and

ESAVB (<= VS DS: EgAorVS DS: E¢ B.

Similar observations can be made for the existential quantifier.

Makinson also gives an alternative clause for disjunction (see [13, p. 149]), which
does not affect completeness. However, this clause is modeled on the definition
AV B := (A— 1) — B, which represents a classical understanding of disjunction,
whereas by clause (S4) disjunction is given its intuitionistic meaning.

6.2 Remarks

Theorem 8 still holds if atomic rules of S are allowed to have empty conclusions,
and the closure S(A) of a set A of closed atoms under the rules in S is understood
as follows (see [13, p. 152]): S(A) is the intersection of all sets A of closed atoms
such that

dn

(i) A C A, and if 2 s € Swith {a1,...,a,} C A, thenb € A,
and
(i) if a1 e Swith{ay,...,a,} € A, thenb € A for every closed

atom b (where again L is not an atom).

This generalization introduces a kind of negation at the level of atomic rules. In logic
programming terms, this is a generalization of definite Horn clauses to Horn clauses.

Theorem 8 fails, however, if second-level rules are allowed in S. For example,
consider the atomic system S which contains only the second-level rule

[a]
b

a
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Then Eg (a — b) — a, but g a, since g a. Thus ¥ ((a — b) — a) — a, that is,
Peirce’s law is no longer valid, and soundness fails.

We already remarked that absurdity L is not an atom here. Furthermore, it is
essential that there are infinitely many atoms in the language; otherwise completeness
would be lost, since for finite sets of n atoms the classically non-derivable formula
ar— (...— (a, — L) ...) becomes valid (see Makinson [13]). Soundness would
fail if instead of clause (C4) the clause

There is no S such that Fg L

were used (cf. [2, 13]). The use of a semantical clause for L could also be avoided.
Instead of showing the validity of the law of double negation, which depends both
on clause (C3) for — and on clause (C4) for L, one can show the validity of Peirce’s
law, which does not depend on clause (C4) at all (cf. [2, 26]).

Sandqvist’s result is remarkable, since it shows that the intuitionistically accept-
able semantics given by Definition 19 allows for a justification of classical logic, as
long as disjunction is understood classically.

The fact that the semantics is given for only a fragment of the language of first-
order logic might be seen as a critical point. This leads to the question of whether such
a semantics fulfills the requirements of proof-theoretic semantics for a justification
of alogic. Makinson [13] argues that one might require to treat every logical constant
used in informal mathematical discourse as a primitive in the formal language of the
semantics and to give adequate semantical clauses for each of them. But, as he points
out, such a requirement would be difficult to fulfill since it is too vague.

From the point of view of the formal systems used to represent logical reasoning
in mathematical discourse one could argue that it is sufficient to have semantical
clauses only for the standard logical constants present in the respective formal sys-
tems, such as the set {—, Vv, A, L, V, 3} of logical constants in natural deduction
for intuitionistic or classical logic. In the case of classical logic the restriction to a
semantics for a fragment like {—, L, V}, which is sufficient to define all the standard
logical constants, should then be acceptable for the purpose of giving a justification
for the whole logic.

7 Conclusion

We saw that within proof-theoretic semantics several similar notions of validity
have been proposed. For some of these notions completeness results are available
for certain fragments of intuitionistic (propositional) logic or for full intuitionistic
(propositional) logic. In other cases, such as validity based on higher-level atomic
systems, completeness for minimal and intuitionistic logic does not hold. For yet
another notion a completeness result holds for classical logic, provided that disjunc-
tion is understood classically.
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The considered notions of validity have in common that they are not closed under
substitution. As derivability in intuitionistic or classical logic is closed under substi-
tution, it seems questionable to even consider these notions as candidates for com-
pleteness. Indeed, for intuitionistic logic the failure of completeness with respect to
validity based on first- or higher-level atomic systems could be proved by showing
the validity of instances of classical laws which are not valid as a schema. For a
notion of validity based on atomic systems of level 0, that is, for sets of atoms alone,
there are counterexamples of not even classically derivable valid formulas.

As a way out, strengthened notions of validity have been proposed, which are
by definition closed under substitution. Thus a formula can now only be valid (in
the strengthened sense), if each of its substitution instances, resulting from uniform
substitutions of arbitrary formulas for atoms, is valid (in the sense of the underlying,
non-strengthened notion of validity). Intuitionistic propositional logic is complete
with respect to two of these strengthened notions considered here. In the case of
Goldfarb’s account, it is essential for completeness (Theorem 4) that only consistent
extensions of atomic systems are taken into account. In the case of Sandqvist’s com-
pleteness result for intuitionistic propositional logic and validity based on second-
level atomic systems (Theorem 7) it is crucial that disjunction is explained by the
given clause (T4), and not by a more standard clause like (S4).

An essential component of all the considered notions of validity is their depen-
dency on atomic systems. In each notion the validity of atoms a with respect to an
atomic system S is defined by derivability of @ in S (or as membership in a set of
atoms closed under the rules of §), and the validity of implications (or of logical
consequences I” g A) with respect to atomic systems S is defined by making use
of extensions S’ of S. Using extensions guarantees that validity is monotone with
respect to atomic systems S. Whether extensions of atomic systems should be an
integral part of any proof-theoretic notion of validity cannot be discussed here; we
just point out that, for example, Prawitz has given up to consider extensions of atomic
systems from the mid-1970s on and now emphasizes that this is not an intrinsic part
of his analysis [personal communication]. His main argument is that atomic systems
should not be looked at as descriptions of one’s knowledge but as rules defining the
meaning of atomic propositions (cf. Prawitz [22, 23]), which would be changed by
considering extensions (see [17] for a critical discussion).

With respect to completeness, the choice of the kind of atomic systems can be
critical. For example, certain counterexamples to completeness of intuitionistic logic,
namely examples of valid classically derivable formulas, can be prevented, if one
allows for second-level instead of only first-level atomic systems. With regard to the
completeness result for classical logic (Theorem 8) this means that the choice of
first-level atomic systems is essential, since completeness does no longer hold for
second-level atomic systems. Other results, such as strong completeness for certain
fragments of intuitionistic logic, depend on the availability of arbitrary higher-level
atomic systems.

For the philosophical endeavor of justifying a certain logic one might want to
restrict oneself to first-level atomic systems in the first place, since higher-level
systems already presuppose a feature of implication at the atomic level by allowing for
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the discharge of atomic assumptions. This presupposition might be deemed too strong
for any adequate justification. For a justification of intuitionistic logic one would
therefore prefer a proof-theoretic semantics which is restricted to first-level atomic
systems, possibly allowing for inconsistent extensions. The question of whether
intuitionistic logic is complete for such a semantics is still open.
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Open Problems in Proof-Theoretic
Semantics

Peter Schroeder-Heister

Abstract I present three open problems the discussion and solution of which I
consider relevant for the further development of proof-theoretic semantics: (1) The
nature of hypotheses and the problem of the appropriate format of proofs, (2) the
problem of a satisfactory notion of proof-theoretic harmony, and (3) the problem of
extending methods of proof-theoretic semantics beyond logic.

Keywords Proof-theoretic semantics « Hypothesis « Natural deduction + Sequent
calculus - Harmony - Identity of proofs + Definitional reflection

1 Introduction

Proof-theoretic semantics is the attempt to give semantical definitions in terms of
proofs. Its main rival is truth-theoretic semantics, or, more generally, semantics that
treats the denotational function of syntactic entities as primary. However, since the
distinction between truth-theoretic and proof-theoretic approaches is not as clear cut
as it appears at first glance, particularly if ‘truth-theoretic’ is understood in its model-
theoretic setting (see Hodges [33], and DoSen [10]). it may be preferable to redirect
attention from the negative characterisation of proof-theoretic semantics to its posi-
tive delineation as the explication of meaning through proofs. Thus, we leave aside the
question of whether alternative approaches can or do in fact deal with the phenomena
that proof-theoretic semantics tries to explain. In proof-theoretic semantics, proofs
are not understood simply as formal derivations, but as entities expressing arguments
by means of which we can acquire knowledge. In this sense, proof-theoretic seman-
tics is closely connected and strongly overlaps with what Prawitz has called general
proof theory.

The task of this paper is not to provide a philosophical discussion of the value
and purpose of proof-theoretic semantics. For that the reader may consult Schroeder-
Heister [56, 61] and Wansing [72]. The discussion that follows presupposes some
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acquaintance with basic issues of proof-theoretic semantics. Three problems are
addressed, which I believe are crucial for the further development of the proof-
theoretic approach. This selection is certainly personal, and many other problems
might be added. However, it is my view that grappling with these three problems
opens up further avenues of enquiry that are needed if proof-theoretic semantics is
to mature as a discipline.

The first problem is the understanding of hypotheses and the format of proofs. It is
deeply philosophical and deals with the fundamental concepts of reasoning, but has
important technical implications when it comes to formalizing the notion of proof.
The second problem is the proper understanding of proof-theoretic harmony. This
is one of the key concepts within proof-theoretic semantics. Here we claim that an
intensional notion of harmony should be developed. The third problem is the need
to widen our perspective from logical to extra-logical issues. This problem proceeds
from the insight that the traditional preoccupation of proof-theoretic semantics with
logical constants is far too limited.

I work within a conventional proof-theoretic framework where natural deduction
and sequent calculus are the fundamental formal models of reasoning. Using catego-
rial logic, which can be viewed as abstract proof theory, many new perspectives on
these three problems would become possible. This task lies beyond the scope of what
can be achieved here. Nevertheless, I should mention that the proper recognition of
categorial logic within proof-theoretic semantics is still a desideratum. For the topic
of categorial proof theory the reader is referred to DoSen’s work, in particular to his
programmatic statement of 1995 [6], his contribution to this volume [11] and the
detailed expositions in two monographs [7, 12].

2 The Nature of Hypotheses and the Format of Proofs

The notion of proof from hypotheses—hypothetical proof—Iies at the heart of proof-
theoretic semantics. A hypothetical proof is what justifies a hypothetical judgement,
which is formulated as an implication. However, it is not clear what is to be understood
by a hypothetical proof. In fact, there are various competing conceptions, often not
made explicit, which must be addressed in order to describe this crucial concept.

2.1 Open Proofs and the Placeholder View

The most widespread view in modern proof-theoretic semantics is what I have called
the primacy of the categorical over the hypothetical [58, 60]. According to this
view, there is a primitive notion of proof, which is that of an assumption-free proof
of an assertion. Such proofs are called closed proofs. A closed proof proves outright,
without referring to any assumptions, that which is being claimed. A proof from
assumptions is then considered an open proof, that is, a proof which, using Frege’s
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term, may be described as ‘unsaturated’. The open assumptions are marks of the
places where the proof is unsaturated. An open proof can be closed by substituting
closed proofs for the open assumptions, yielding a closed proof of the final assertion.
In this sense, the open assumptions of an open proof are placeholders for closed
proofs. Therefore, one can speak of the placeholder view of assumptions.

Prawitz [46], for example, speaks explicitly of open proofs as codifying open
arguments. Such arguments are, so-to-speak, arguments with holes that can be filled
with closed arguments, and similarly for open judgements and open grounds [50].
A formal counterpart of this conception is the Curry-Howard correspondence, in
which open assumptions are represented by free term variables, corresponding to the
function of variables to indicate open places. Thus, one is indeed justified in viewing
this conception as extending to the realm of proofs Frege’s idea of the unsaturatedness
of concepts and functions. That hypotheses are merely placeholders entails that no
specific speech act is associated with them. Hypotheses are not posed or claimed but
play a subsidiary role in a superordinated claim of which the hypothesis marks an
open place.

I have called this placeholder view of assumptions and the transmission view of
hypothetical proofs a dogma of standard semantics. It should be considered a dogma,
as it is widely accepted without proper discussion, despite alternative conceptions
being readily available. It belongs to standard semantics, as it underlies not only the
dominant conception of proof-theoretic semantics, but in some sense it also underlies
classical truth-condition semantics. In the classical concept of consequence according
to Bolzano and Tarski, the claim that B follows from A is justified by the fact that,
in any model of A—in any world, in which A is true—, B is true as well. This
means that hypothetical consequence is justified by reference to the transmission of
the categorical concept of truth from the condition to the consequent. We are not
referring here to functions or any sort of process that takes us from A to B, but
just to the metalinguistic universal implication that, whenever A is true, B is true as
well. However, as with the standard semantics of proofs, we retain the idea that the
categorical concept precedes the hypothetical concept, and the latter is justified by
reference to the former concept.

The concept of open proofs in proof-theoretic semantics employs not only the idea
that they can be closed by substituting something into the open places, but also the
idea that they can be closed outright by a specific operation of assumption discharge.
This is what happens with the application of implication introduction as described
by Jaskowski [34] and Gentzen [25]. Here the open place disappears because what
is originally expressed by the open assumption now becomes the condition of an
implication. This can be described as a two-layer system. In addition to hypothetical
judgements given by an open proof with the hypotheses as open places, we have
hypothetical judgements in the form of implications, in which the hypothesis is a
subsentence. A hypothetical judgement in the sense of an implication is justified by
an open proof of the consequent from the condition of the implication. The idea of
two layers of hypotheses is typical for assumption-based calculi and in particular for
natural deduction, which is the main deductive model of proof-theoretic semantics.
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According to the placeholder view of assumptions there are two operations that
one can perform as far as assumptions are concerned: Introducing an assumption
as an open place, and eliminating or closing it. The closing of an assumption can
be achieved in either of two ways: by substituting another proof for it, or by dis-
charge. In the substitution operation the proof substituted for the assumption need
not necessarily be closed. However, when it is open then instead of the original open
assumption the open assumptions of the substitute become open assumptions of the
whole proof. Thus a full closure of an open assumption by means of substitution
requires a closed proof as a substitute. To summarise, the three basic operations on
assumptions are: assumption introduction, assumption substitution, and assumption
discharge.

These three basic operations on assumptions are unspecific in the following sense:
They do not depend on the internal form of the assumption, that is, they do not
depend on its logical or non-logical composition. They take the assumption as it is.
In this sense these operations are structural. The operation of assumption discharge,
although pertaining to the structure of the proof, is normally used in the context
of a logical inference, namely the introduction of implication. The crucial idea of
implication introduction, as first described by Jaskowski and Gentzen, involves that,
in the context of a logical inference, the structure of the proof is changed. This
structure-change is a non-local effect of the logical rule.

The unspecific character of the operations on assumptions means that, in the
placeholder view, assumptions are not manipulated in any sense. The rules that govern
the internal structure of propositions are always rules that concern the assertions, but
not the assumptions made. Consequently, the placeholder view is assertion-centred
as far as content is concerned. In an inference step we pass from assertions already
made to another assertion. At such a step the structure of the proof, in particular which
assumptions are open, may be changed, but not the internal form of assumptions. This
may be described as the forward-directedness of proofs. When proving something,
we may perform structural changes in the proof that lies ‘behind’ us, but without
changing the content of what lies behind. It is important to note that we do not here
criticise this view of proofs. We merely highlight what one must commit oneself to
in affirming this view.

2.2 The No-Assumptions View

The most radical alternative to the placeholder view of assumptions is the claim that
there are no assumptions at all. This view is much older than the placeholder view
and was strongly advocated by Frege (see for example Frege [22]). Frege argues
that the aim of deduction is to establish truth, and, in order to achieve that goal,
deductions proceed from true assertions to true assertions. They start with assertions
that are evident or for other reasons true. This view of deduction can be traced back to
Bolzano’s Wissenschaftslehre [1] and its notion of ‘Abfolge’. This notion means the
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relationship between true propositions A and B, which obtains if B holds because
A holds.

However, in view of the fact that hypothetical claims abound in everyday life,
science, legal reasoning etc., it is not very productive simply to deny the idea of
hypotheses. Frege was of course aware that ‘if ..., then ...’ statements play a central
role wherever we apply logic. His logical notation (the Begriffsschrift) uses implica-
tion as one of the primitive connectives. The fact that he can still oppose the idea of
reasoning from assumptions is that he denies a two-layer concept of hypotheses. As
we have the connective of implication at hand, there is no need for a second kind of
hypothetical entity that consists of a hypothetical proof from assumptions. Instead
of maintaining that B can be proved from the hypothesis A, we should just be able to
prove A implies B non-hypothetically, which has the same effect. There is no need
to consider a second structural layer at which hypotheses reside.

For Frege this means, of course, that implication is not justified by some sort
of introduction rule, which was a much later invention of Jaskowski and Gentzen.
The laws of implication are justified by truth-theoretic considerations and codified
by certain axioms. That A implies itself, is, for example, one of these axioms (in
Frege’s Grundgesetze, [21]), from which a proof can start, as it is true.

The philosophical burden here lies in the justification of the primitive axioms.
If, like Frege, we have a truth-theoretic semantics at hand, this is no fundamental
problem, as Frege demonstrates in detail by a truth-valuational procedure. It becomes
aproblem when the meaning of implication is to be explained in terms of proofs. This
is actually where the need for the second structural layer arises. It was the ingenious
idea of Jaskowski and Gentzen to devise a two-layer method that reduces the meaning
of implication to something categorically different. Even though this interpretation
was not, or was only partly, intended as a meaning theory for implication (in Gentzen
[25] as an explication of actual reasoning in mathematics, in Jaskowski [34] as an
explication of suppositional reasoning) it has become crucial in that respect in later
proof-theoretic semantics. The single-layer alternative of starting from axioms in
reasoning presupposes an external semantics that is not framed in terms of proofs.

Such an external semantics need not be a classical truth-condition semantics,
or an intuitionistic Kripke-style semantics. It could, for example, be a constructive
BHK-style semantics, perhaps along the lines of Goodman-Kreisel or a variant of
realisability (see, for example, Dean and Kurokawa [4]). We would then have a
justification of a formal system by means of a soundness proof. As soon as the
axioms or rules of our system are sound with respect to this external semantics, they
are justified. In proof-theoretic semantics, understood in the strict sense of the term,
such an external semantics is not available. This means that a single-layer concept of
implication based only on axioms and rules, but without assumptions, is not a viable
option.!

IDigression on Frege: Even though formally Frege has only a single-layer system, there is a hidden
two-layer system that lies in the background. Frege makes an additional distinction between upper
member and lower members of (normally iterated) implications. This distinction is not a syntactical
property of the implication itself, but something that we attach to it, and that we can attach to it
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2.3 Bidirectionality

The transmission view of consequence is incorporated in natural deduction in that we
have the operations of assumption introduction, assumption-closure by substitution
and assumption-closure by discharge. There are various notations for it. The most
common such notation in proof-theoretic semantics is Gentzen’s [25] tree nota-
tion that was adopted and popularised by Prawitz [44]. Alternative notations are
Jaskowski’s [34] box notation, which is the origin of Fitch’s [18] later notation. A
further notation is sequent-style natural deduction. In this notation proofs consist of
judgements of the form Ay, ..., A, - B, where the A’s represent the assumptions
and B the conclusion of what is claimed. This can be framed either in tree form,
in boxed form, or in a mixture of both. With sequent-style natural deduction the
operation of assumption discharge is no longer non-local. In the case of implication

introduction
Al,...,A,, BEC

Ay, ..., Ay F-B = C

(1)

we pass from one sequent to another without changing the structure of the proof. In
fact, in such a proof there are no sequents as assumptions, but every top sequent is
an axiom, normally of the form AF A or Ay, ..., A,, AF A. However, this is not
a no-assumptions system in the sense of Sect.2.2: It combines assumption-freeness
with a two-layer approach. The structural layer is the layer of sequents composed out
of lists of formulas building up the left and right sides (antecedent and succedent)
of a sequent, whereas the logical layer concerns the internal structure of formulas.
By using introduction rules such as (1), the logical layer is characterised in terms
of the structural layer. In this sense sequent-style natural deduction is a variant of
‘standard’ natural deduction.

However, a different picture emerges if we look at the sequent calculus LK or
LJ that Gentzen devised. These are two-layer systems in which we can manipulate
not only what is on the right hand side and what corresponds to assertions, but also
what is on the left hand side and what corresponds to assumptions. In sequent-style
natural deduction a sequent

A,...,A, B 2)
just means that we have a proof of B with open assumptions Ay, ..., Ay:
A, ..., Ay
2 3)
B

(Footnote 1 continued)

in different ways. This distinction is analogous to that between assumptions and assertion, so that,
when we prove an implication, we can at the same time regard this proof as a proof of the upper
member of this implication from its lower members taken as assumptions. In the Grundgesetze
Frege [21] even specifies rules of proofs in terms of this second-layer distinction. This means that
he himself goes beyond his own idea of a single-layer system. See Schroeder-Heister [64].
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In the symmetric sequent calculus, which is the original form of the sequent calculus,
the Ay, ..., A, can still be interpreted as assumptions in a derivation of B, but no
longer as open assumptions in the sense of the transmission view. Or at least they can
be given an alternative interpretation that leads to a different concept of reasoning.
In the sequent calculus we have introduction rules not only on the right hand side,
but also on the left hand side, for example, in the case of conjunction:

A Ay, .. A EC
AANB Ay, ..., A, FC

(AL)

This can be interpreted as a novel model of reasoning, which is different from
assertion-centred forward reasoning in natural deduction. When reading a sequent
(2) in the sense of (3), the step of (AL) corresponds to:

ANB
A
9
C

This is a step that continues a given derivation Z of C from A upwards to a deriva-
tion of C from A A B. Therefore, from a philosophical point of view, the sequent
calculus presents a model of bidirectional reasoning, that is, of reasoning that, by
means of right-introduction rules, extends a proof downwards, and, by means of
left-introduction rules, extends a proof upwards.

This is, of course, a philosophical interpretation of the sequent calculus, reading it
as describing a certain way of constructing a proof from hypotheses.? Since under this
schema both assumptions and assertions are liable to application of rules, assumptions
are no longer understood simply as placeholders for closed proofs. Both assumptions
and assertions are now entities in their own right. Read in that way we have a novel
picture of the nature of hypotheses. We can give this reading a format in natural-
deduction style, namely by formulating the rule (AL) as

[A]
ANB C
C

where the line above A A B expresses that A A B stands here as an assumption. We
may call this system a natural-deduction sequent calculus, that is, a sequent calculus
in natural-deduction style. It is a system in which major premisses of elimination
rules occur only as assumptions (‘stand proud’ in Tennant’s [70] terminology). The

2Gentzen [25] himself devised the sequent calculus as a technical device to prove his Hauptsatz
after giving a philosophical motivation of the calculus of natural deduction. He wanted to give a
calculus in ‘logistic’ style, by which he meant a calculus without assumptions that just moves from
claim to claim and whose rules are local due to the assumption-freeness of the system. The term
‘logistic’ comes from the designation of modern symbolic as opposed to traditional logic in the
1920s (see Carnap, [3]).
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intuitive idea of this step is that we can introduce an assumption in the course of a
derivation. If a proof of C from A is given, we can, by introducing the assumption
A A B and discharging the given assumption A, pass over to C. That A A B occurs only
as an assumption and cannot be a conclusion of any other rule, demonstrates that we
have a different model of reasoning, in which assumptions are not just placeholders

for other proofs, but stand for themselves. The fact that, given a proof ANB of

A A B and a proof of the form

[A]

@/

AANB C
C

we obtain a proof of C by combining these two proofs is no longer built into the
system and its semantics, but something that must be proved in the form of a cut
elimination theorem. According to this philosophical re-interpretation of the sequent
calculus, assumptions and assertions now resemble handles at the top and at the
bottom of a proof, respectively. It is no longer the case that one side is a placeholder
whereas the other side represents proper propositions.

This interpretation also means that the sequent calculus is not just a meta-calculus
for natural deduction, as Prawitz ([44], Appendix A) suggests. It is a meta-calculus in
the sense that whenever there is a natural-deduction derivation of B from Ay, ..., A,,
there is a sequent-calculus derivation of the sequent Ay, ..., A, - B, and vice versa.
However, this does not apply to proofs. There is no rule application in natural deduc-
tion that corresponds to an application of a left-introduction rule in the sequent calcu-
lus. This means that at the level of proof construction there is no one-one correspon-
dence, but something genuinely original in the sequent calculus. This is evidenced
by the fact that the translation between sequent calculus and natural deduction is
non-trivial. Prawitz is certainly right that a sequent-calculus proof can be viewed as
giving instructions about how to construct a corresponding natural-deduction deriva-
tion. However, we would like to emphasise that it can be interpreted to be more than
such a metalinguistic tool, namely as representing a way of reasoning in its own
right. We do not want to argue here in favour of either of these positions. However,
we would like to emphasise that the philosophical significance of the bidirectional
approach has not been properly explored (see also Schroeder-Heister, [59]).

2.4 Local and Global Proof-Theoretic Semantics

We have discussed the philosophical background of three conceptions of hypotheses
and hypothetical proofs. Each of them has strong implications for the form of proof-
theoretic semantics. According to the no-assumptions view (Sect. 2.2) with its single-
layer conception there is no structural way of dealing with hypotheses. Therefore,
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there is no proof-theoretic semantics of implication, at least not along the common
line that an implication expresses that we have or can generate a hypothetical proof.
We would need instead a semantics from outside.

A proof-theoretic semantics for the placeholder view of assumptions (Sect.2.1),
even though it is assertion-centred, is not necessarily verificationist in the sense that
it considers introduction rules for logical operators to be constitutive of meaning.
Nothing prevents us from considering elimination rules as primitive meaning-giving
rules and justifying introduction rules from them (see Prawitz [49], Schroeder-Heister
[67]). However, the placeholder-view forces one particular feature that might be
seen as problematic from certain points of view, namely the global character of the
semantics.

According to the placeholder-view of assumptions, an open derivation & of B

from A
A

9
B

would be considered valid if for every closed derivation of A

the derivation

obtained by substituting the derivation 2’ of A for the open assumption A is valid.
This makes sense only if proof-theoretic validity is defined for whole proofs rather
than for single rules, since the entity in which the assumption A is an open place is a
proof. A proof would not be considered valid because it is composed of valid rules,
but conversely, a rule would be considered valid if it is a limiting case of a proof,
namely a one-step proof. This is actually how the definitions of validity in the spirit
of Prawitz’s work proceed (Prawitz [48], Schroeder-Heister [56, 61]).

This global characteristic of validity has strong implications. We must expect
now that a proof as a whole is well-behaved in a certain sense, for example, that
it has certain features related to normalisability. In all definitions of validity we
have as a fundamental property that a closed proof is valid iff it reduces to a valid
closed proof, which means that validity is always considered modulo reduction. And
reduction applies to the proof as a whole, which means that it is a global issue. As
validity is global, there is no way for partial meaning in any sense. A proof can be
valid, and it can be invalid. However, there is no possibility of the proof being only
partially valid as reflected in the way the proof behaves.
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This global proof semantics has its merits as long as one considers only cases such
as the standard logical constants, where everything is well-founded and we can build
valid sentences from the bottom up. However, it reaches its limits of applicability,
if proof-theoretic semantics should cover situations where we do not have such a
full specification of meaning. When dealing with iterated inductive definitions, we
can, of course, require that definitions be well-behaved, as Martin-Lof [40] did in
his theory. However, when it comes to partial inductive definitions, the situation is
different (see Sect.4).

Here it is much easier to say: We have locally valid rules, but the composition
of such rules is not necessarily a globally valid derivation. In a rule-based approach
we can make the composition of rules and its behaviour a problem, whereas on
the transmission view the validity of composition is always enforced. Substitution
becomes an explicit step, which can be problematised. It will be possible, in particular,
to distinguish between the validity of rules and the effect the composition of rules
has on a proof. In fact, it is not even mandatory to allow from the very beginning
that each composition of (locally) valid rules renders a proof valid. We might impose
further restriction on the composition of valid rules. This occurs especially when the
composition of locally valid rules does not yield a proof the assumptions of which
can be interpreted as placeholders, that is, for which the substitution property does
not hold.

Therefore, the bidirectional model of proof allows for a local proof-theoretic
semantics. Here we can talk simply of rules that extend a proof on the assertion or
on the assumption side. There will be rules for each side, and one may discuss issues
such as when these rules are in harmony or not. Whether one side is to be considered
primary, and, if yes, which one, does not affect the model of reasoning as such. In
any case a derivation would be called valid if it consists of the application of valid
rules, which is exactly what local proof-theoretic semantics requires.

3 The Problem of Harmony

In the proof-theoretic semantics of logical constants, harmony is a, or perhaps the,
crucial concept. If we work in a natural-deduction framework, harmony is a property
that introduction and elimination rules for a logical constant are expected to satisfy
with respect to each other in order to be appropriate. Harmony guarantees that we
do not gain anything when applying an introduction rule followed by an elimination
rule, but also, conversely, that from the result of applying elimination rules we can,
by applying introduction rules, recover what we started with. The notion of harmony
or ‘consonance’ was introduced by Dummett ([13], pp. 396-397).3

3 At least in his more logic-oriented writings, Dummett tends to use ‘harmony’ as comprising only
the ‘no-gain’ direction of introductions followed by eliminations, and not the ‘recovery’ direction
of eliminations followed by introductions, which he calls ‘stability’. See Dummett [14].
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However, it is not absolutely clear how to define harmony. Various competing
understandings are to be found in the literature. We identify a particular path that
has not yet been explored, and we call this path ‘intensional’ or ‘strong’ harmony.
The need to consider such a notion on the background of the discussion, initiated by
Prawitz [45], on the identity of proofs, in particular in the context of Kosta DoSen’s
work (see DoSen [6, 8, 9], DoSen and Petri¢ [12]), was raised by Luca Tranchini.*
As the background to this issue we first present two conceptions of harmony, which
are not reliant on the notion of identity of proofs.

3.1 Harmony Based on Generalised Rules

According to Gentzen “the introductions represent so-to-speak the ‘definitions’ of the
corresponding signs” whereas the eliminations are “consequences” thereof, which
should be demonstrated to be “unique functions of the introduction inferences on the
basis of certain requirements” (Gentzen [25], p. 189). If we take this as our charac-
terisation of harmony, we must specify a function .# which generates elimination
rules from given introduction rules. If elimination rules are generated according to
this function, then introduction and elimination rules are in harmony with each other.

There have been various proposals to formulate elimination rules in a uniform way
with respect to given introduction rules, in particular those by von Kutschera [36],
Prawitz [47] and Schroeder-Heister [53]. Atleast implicitly, they all intend to capture
the notion of harmony. Read [51, 52] has proposed to speak of ‘general-elimination
harmony’. Formulated as a principle, we could say: Given a set ¢.# of introduction
rules for a logical constant ¢, the set of elimination rules harmonious with c. is the
set of rules generated by .%, namely .% (¢.#). In other words, ¢.# and .% (¢.¥) are by
definition in harmony with each other. If alternative elimination rules c¢&” are given
for ¢, one would say that ¢&’ is in harmony with c., if ¢& is equivalent to .7 (c.¥)
in the presence of ¢.#. This means that, in the system based on ¢.# and ¢&’, we can
derive the rules contained in .% (¢.#), and in the system based on ¢.# and .% (c.¥),
we can derive the rules contained in c&.

Consequently the generalised elimination rules .7 (c¢.¥) are canonical harmo-
nious elimination rules® given introduction rules c.#. The approaches mentioned
above develop arguments that justify this distinguishing characteristic, for example
by referring to an inversion principle. The canonical elimination rule ensures that

4This topic will be further pursued by Tranchini and the author.

30f course, this usage of the term ‘canonical’ is different from its usage in connection with meaning-
giving introduction rules, for example, for derivations using an introduction rule in the last step.
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everything that can be obtained from the premisses of each introduction rule can be
obtained from their conclusion. For example, if the introduction rules for ¢ have the
form

A A
(0D 7 7
the canonical elimination rule takes the form
[A1] [Am]
10 r .. r

(@ BE)can 7

The exact specification of what the A; can mean, and what it means to use the A; as
dischargeable assumptions, depends on the framework used (see Schroeder-Heister
(63, 65]).6

While the standard approaches use introduction rules as their starting point, it is
possible in principle, and in fact not difficult, to develop a corresponding approach
based on elimination rules. Given a set of elimination rules ¢& of a connective ¢, we
would define a function ¢ that associates with ¢& a set of introduction rules ¢ (c&)
as the set of introduction rules harmonious to ¢.#. While the rules in ¥ (c¢&’) are
the canonical harmonious introduction rules, any other set ¢.# of introduction rules
for ¢ would be in harmony with ¢& if ¢.# is equivalent to ¥ (c&’) in the presence
of ¢&. This means that, in the system based on c& and c.#, we can derive the rules
contained in 4 (c&’), and in the system based on ¢& and ¥ (c&’), we can derive the
rules in c.#. For example, if the elimination rules have the form

% Ay % Ay
@E) q1 dm

then the canonical introduction rule takes the form

[Al] [Am]
(@ Dean 1 dm

@
Here the conclusions of the elimination rules become premisses of the canonical
introduction rules. Again, the exact specification of A; depends on the framework

used. For example, if, for the four-place connective A —, the set A— & consists of
the three elimination rules

AN— (p1, p2, P3, P4) AN—> (p1, P2, P3, P4)
P1 P2
A= (p1, P2, P3, p4) D3
P4

(A= E)

SIn this section, we do not distinguish between schematic letters for formulas and propositional
variables, as we are also considering propositional quantification. Therefore, in a rule schema such
as (¢ E)can, the propositional variable r is used as a schematic letter.
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we would define ¥ (A — &) as consisting of the single introduction rule

[p3]
p1 p2 P4
A= (p1, P2, P3, P4)

(A= Dean

In Schroeder-Heister [63] functions .% and ¢ are defined in detail.

3.2 Harmony Based on Equivalence

Approaches based on generalised eliminations or generalised introductions maintain
that these generalised rules have a distinguished status, so that harmony can be
defined with respect to them. An alternative way would be to explain what it means
that given introductions c.# and given eliminations ¢& are in harmony with each
other, independent of any syntactical function that generates ¢& from ¢.# or vice
versa. This way of proceeding has the advantage that rule sets ¢.# and c¢& can be
said to be in harmony without starting either from the introductions or from the
eliminations as primary meaning-giving rules. That for certain syntactical functions
Z and ¥ the rule sets ¢.# and .% (c¢.¥), or ¢& and ¥ (c&), are in harmony, is then a
special result and not the definiens of harmony. The canonical functions generating
harmonious rules operate on sets of introduction and elimination rules for which
harmony is already defined independently. This symmetry of the notion of harmony
follows naturally from an intuitive understanding of the concept.

Such an approach is described for propositional logic in Schroeder-Heister [66].
Its idea is to translate the meaning of a connective ¢ according to given introduction
rules c.# into a formula ¢! of second-order intuitionistic propositional logic IPC2,
and its meaning according to given elimination rules ¢& into an IPC2-formula c”.
Introductions and eliminations are then said to be in harmony with each other, if ¢!
and ¢F are equivalent (in IPC2). The introduction and elimination meanings ¢! and
cf can be read off the proposed introduction and elimination rules. For example,
consider the connective && with the introduction and elimination rules

[pi] [p1] [p2] [r1,72]
P1 2] P1&& p2 I8 r r
P1 && p2 r

Its introduction meaning is p;1 A (p1 — p2), and its elimination meaning is
Vrirar(((p1 — r1) A (p2 — 1) A ((r1 A ra) — 1)) — r). As these formulas
are equivalent in IPC2, the introduction and elimination rules for && are in harmony
with each other. Further examples are discussed in Schroeder-Heister [66].

The translation into IPC2 presupposes, of course, that the connectives inherent in
IPC2 are already taken for granted. Therefore, this approach works properly only for
generalised connectives different from the standard ones. As it reduces semantical
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content to what can be expressed by formulas of IPC2, it was called a ‘reductive’
rather than ‘foundational’ approach. As described in Schroeder-Heister [63] this
can be carried over to a framework that employs higher-level rules, making the
reference to IPC2 redundant. However, as the handling of quantified rules in this
framework corresponds to what can be carried out in IPC2 for implications, this is
not a presupposition-free approach either. The viability of both approaches hinges
on the notion of equivalence, that is, the idea that meanings expressed by equivalent
propositions (or rules in the foundational approach), one representing the content
of introduction-premisses and the other one representing the content of elimination-
conclusions, is sufficient to describe harmony.

3.3 The Need for an Intensional Notion of Harmony

Even though the notion of harmony based on the equivalence of ¢! and ¢ in IPC2 or
in the calculus of quantified higher-level rules is highly plausible, a stronger notion
can be considered.” Let us illustrate this by an example: Suppose we have the set
A consisting of the standard conjunction introduction

P p2

P1 A P2

and two alternative sets of elimination rules: A& consisting of the standard projection

rules
P1 A\ P2 P1 A p2

D1 p2

and A&’ consisting of the alternative rules

P11\ p2 P1AP2 p1
p1 )2)

It is obvious that A& and A&” are equivalent to each other, and also equivalent to the
rule
[p1. p2]
P1A P2 q
q

which is the canonical generalised elimination rule for A. However, do A& and
A&’ mean the same in every possible sense? According to A&, conjunction just
expresses pairing, that is, a proof of p; A p> is a pair (I1y, I1») of proofs, one for
p1 and one for p;. According to A&”, conjunction expresses something different.
A proof of p; A p> is now a pair that consists of a proof of pj, and a proof of p;
which is conditional on p;. Using a functional interpretation of conditional proofs,

"The content of this subsection uses ideas presented by Kosta Dogen in personal discussion.
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this second component can be read as a procedure f that transforms a proof of pi
into a proof of p; so that, according to A&”, conjunction expresses the pair (ITy, f).
Now (I1y, ITy) and (I1y, f) are different. From (I1;, f) we can certainly construct
the pair (ITy, f(I11)), which is of the desired kind. From the pair (I1y, I1,) we can
certainly construct a pair (ITy, f’), where f’ is the constant function that maps any
proof of p; to IT,. However, if we combine these two constructions, we do not obtain
what we started with, since we started with an arbitrary function and we end up with
a constant function. This is an intuition that is made precise by the consideration that
p1 A pa, where conjunction here has the standard rules A.# and A&, is equivalent
to p1 A (p1 — p2), butis not isomorphic to it (see DoSen [6, 9]). Correspondingly,
only A&, but not A&” is in harmony with A.7.

Unlike the notion of equivalence, which only requires a notion of proof in a
system, the notion of isomorphism requires a notion of identity of proofs. This
is normally achieved by a notion of reduction between proofs, such that proofs
that are linked by a chain of reductions are considered identical.® In intuitionistic
natural deduction these are the reductions reducing maximum formulas (in the case
of implication this corresponds to B-reduction), as well as the contractions of an
elimination immediately followed by an introduction (in the case of implication this
corresponds to n-reduction) and the permutative reductions in the case of disjunction
and existential quantification. Using these reductions, moving from p; A p> to p; A
(p1 — p2) and back to p; A pr reduces to the identity proof p; A pa (i.e., the
formula p; A py conceived as a proof from itself), whereas conversely, moving from
p1 A (p1 — p2)to p1 A pr and back to p1 A (p1 — p2) does not reduce to the
identity proof p; A (p1 — p2). In this sense A& and A& cannot be identified.

More precisely, given a formal system together with a notion of identity of proofs,
two formulas v and v, are called isomorphic if there are proofs of ¥ from 1| and of
Y1 from yrp, such that each of the combination of these proofs (yielding a proof of ¥/
from 11 and ¥, from ) reduces to the trivial identity proof | or yrp, respectively.
As this notion, which is best made fully precise in categorial terminology, requires not
only a notion of proof but also a notion of identity between proofs, it is an intensional
notion, distinguishing between possibly different ways of proving something. The
introduction of this notion into the debate on harmony calls for a more finegrained
analysis. We may now distinguish between purely extensional harmony, which is
just based on equivalence and which may be explicated in the ways described in the
previous two subsections, and intensional harmony, which requires additional means
on the proof-theoretic side based on the way harmonious proof conditions can be
transformed into each other.

However, even though the notion of an isomorphism has a clear meaning in a
formal system given a notion of identity of proofs, it is not so clear how to use it to
define a notion of intensional harmony. The notion of intensional harmony will also
be called strong harmony in contradistinction to extensional harmony which is also
called weak harmony.

8We consider only a notion of identity that is based on reduction and normalisation. For further
options, see Dosen [8].
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3.4 Towards a Definition of Strong Harmony

For simplicity, take the notion of reductive harmony mentioned in Sect.3.2. Given
introduction rules ¢.# and elimination rules c& of an operator c, it associates with
¢ the introduction meaning ¢! and the elimination meaning ¢Z, and identifies exten-
sional harmony with the equivalence of ¢! and ¢f in IPC2. It then appears to be
natural to define intensional harmony as the availability of an isomorphism between
¢! and ¢f in IPC2. However, this definition turns out to be unsuccessful, as the
following observation shows.

What we would like to achieve, in any case, is that the canonical eliminations for
given introductions are in strong harmony with the introductions, and similarly that
the canonical introductions for given eliminations are in strong harmony with the
eliminations. The second case is trivial, as the premisses of the canonical introduction
are exactly the conclusions of the eliminations. For example, if for the connective
<> the elimination rules

P1 <> P2 P1 P1<> P2 P2
P2 P1

(<> E)can

are assumed to be given, then its canonical introduction rule has the form

[p1] [p2]
2 1
(© Dean 25550

Both the elimination meaning <>/ and the introduction meaning <> have the form
(p1 — p2) A (p2 — p1), so that the identity proof identifies them. However, in
the first case, where the canonical eliminations are given by the general elimination
rules, the situation is more problematic.

Consider disjunction with the rules

[p1] [p2]
P1 P2 P1V p2 q q
piVvp2 piVp2 4q

Here the introduction meaning of p; V pj is p1 V pa2, viewed as a formula of IPC2,
and its elimination meaning is V¢(((p1 — ¢q) A (p2 — ¢q)) — ¢q). However,
though p; vV pr and Vg (((p1 — ¢q) A (p2 — ¢q)) — ¢q) are equivalent in IPC2,
they are not isomorphic. There are proofs

piV p2 Yg(((p1 = @) A (p2 = @) — q)
@1 @2
Yg(((p1 = @) A (p2 = q)) — q) PV p2

of Vg(((p1 — q) A (p2 = ¢)) — ¢q) from p; Vv py and of p; v p> from
Yq(((p1 — q) AN (p2 — gq)) — q), so that the composition %, o Z; yields
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the identity proof p; V pa, but there are no such proofs so that &) o 2, yields
the identity proof Yg(((p1 — ¢q) A (p2 — ¢q)) — ¢). One might object that,
due to the definability of connectives in IPC2, p; V p; should be understood as
Yg(((p1 — q) A (p2 — q)) — q),sothat the isomorphism between p; V p> and
Yg(((p1 — q) A (p2 = q)) — gq) becomes trivial (and similarly, if conjunction
is also eliminated due to its definability in [PC2). To accommodate this objection, we
consider the example of the trivial connective 4 with the introduction and elimination
rules
[p]

P tr 4
+p q

Here the elimination rule is the canonical one according to the general-elimination
schema. In order to demonstrate strong harmony, we would have to establish the
isomorphism of p and Vg((p — ¢g) — ¢g) in IPC2, but this fails. This failure may
be related to the fact that for the second-order translations of propositional formulas,
we do not have n-conversions in IPC2 (see Girard et al. [27], p. 85%). This shows that
for the definition of strong harmony the definition of introduction and elimination
meaning by translation into IPC2 is perhaps not the best device. We consider the
lack of an appropriate definition of strong harmony a major open problem, and we
provide two tentative solutions (with the emphasis on ‘tentative’).

First proposal: Complementation by canonical rules. In order to avoid the
problems of second-order logic, we can stay in intuitionistic propositional logic as
follows. Suppose for a constant ¢ certain introduction rules ¢.# and certain elimi-
nation rules c¢&” are proposed, and we ask: When are ¢.# and c¢& in harmony with
each other? Suppose c.# is the canonical elimination rule for the introduction rules
c.#,and ¢& is the canonical introduction rule for the elimination rules c¢&. We also
call ¢.# the canonical complement of ¢.#, and c& the canonical complement of ¢&.
We define two new connectives ¢ and ¢;. Connective ¢ has ¢.# as its introduction
rules and its complement ¢.7 as its elimination rule. Conversely, connective ¢ has
¢& as its elimination rules and its complement ¢& as its introduction rules. In other
words, for one connective we take the given introduction rules as complemented by
the canonical elimination rule, and for the other connective we take the given elim-
ination rules as complemented by the canonical introduction rule. Furthermore, we
associate with c¢; and ¢ reduction procedures in the usual way, based on the pairs
c.Zlc.# and c&/cé as primitive rules. Then we say that ¢.# and ¢& are in strong
harmony, if ¢ is isomorphic to ¢, that is, if there are proofs from ¢ to ¢, and back,
such that the composition of these proofs is identical to the identity proof c; or ¢z,
depending on which side one starts with.'? In this way, by splitting up ¢ into two
connectives, we avoid the explicit translation into IPC2.!!

9This was pointed out to me by Kosta Doen.
19For better readability, we omit possible arguments of ¢; and c3.

'This procedure also works for weak harmony as a device to avoid the translation into second-order
logic.
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Second proposal: Change to the notion of canonical elimination. As mentioned
above, we do not encounter any problem in IPC2, if we translate the introduction
meaning of disjunction by its disjunction-free second-order translation, as isomor-
phism is trivial in this case. In fact, whenever we have more than one introduction
rule for some c then the disjunction-free second-order translation is identical to the
second-order translation of the elimination meaning for the canonical (indirect) elim-
ination. We have a problem in the case of the connective +, which has the introduction
meaning p and the elimination meaning Vg((p — ¢) — ¢q). However, for + an
alternative elimination rule is derivable, namely the rule

+p
P

In fact, this sort of elimination rule is available for all connectives with only a single
introduction rule. We call it the ‘direct’ as opposed to the ‘indirect’ elimination rule.
For example, the connective &> with the introduction rule

[p1]

NIy
p1&D pa
has as its direct elimination rules
p1&D p2 p1&D p2 pi
P1 P2

If we require that the canonical elimination rules always be direct where possible,
that is, whenever there is not more than one introduction rule, and indirect only if
there are multiple introduction rules, then the problem of reduction to IPC2 seems to
disappear. In the direct case of a single introduction rule, the elimination meaning is
trivially identical to the introduction meaning. In the indirect case, they now become
trivially identical again. This is because disjunction, which is used to express the
introduction meaning for multiple introduction rules, is translated into disjunction-
free second-order logic in a way that makes its introduction meaning identical to its
elimination meaning.

This second proposal would require the revision of basic tenets of proof-theoretic
semantics, because ever since the work of von Kutschera [36], Prawitz [47] and
Schroeder-Heister [53] on general constants, and since the work on general elimina-
tion rules, especially for implication, by Tennant [69, 70], Lopez-Escobar [37] and
von Plato [43],!2 the idea of the indirect elimination rules as the basic form of elimi-
nation rules for all constants has been considered a great achievement. That said, the
abandonment of projection-based conjunction and modus-ponens-based implication
has received some criticism (Dyckhoff [15], Schroeder-Heister [66], Sect. 15.8). In
fact, even the first proposal above might require this priority of the direct elimination

12For a discussion see Schroeder-Heister [65].
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rules. If we consider conjunction with A.# and A& given by the standard rules

pP1 P2 P1APp2 PLAD2
P1 A\ P2 D1 P2

then A.# is the generalised A-elimination rule

[p1, p2]
P1 N\ P2 q
q

whereas A& is identical with A.#. This means that strong harmony would require
that projection-based conjunction and conjunction with general elimination are iso-
morphic, but no such isomorphism obtains. '3

4 Proof-Theoretic Semantics Beyond Logic

Proof-theoretic semantics has been occupied almost exclusively with logical reason-
ing, and, in particular, with the meaning of logical constants. Even though the way
we can acquire knowledge logically is extremely interesting, this is not and should
not form the central pre-occupation of proof-theoretic semantics. The methods used
in proof-theoretic semantics extend beyond logic, often so that their application in
logic is nothing but a special case of these more general methods.

What is most interesting is the handling of reasoning with information that is
incorporated into sentences, which, from the viewpoint of logic, are called ‘atomic’.
A special way of providing such information, as long as we are not yet talking about
empirical knowledge, is by definitions. By defining terms, we introduce claims into
our reasoning system that hold in virtue of the definition. In mathematics the most
prominent example is inductive definitions. Now definitional reasoning itself obeys
certain principles that we find otherwise in proof-theoretic semantics. As an inductive
definition can be viewed as a set of rules the heads of which contain the definien-
dum (for example, an atomic formula containing a predicate to be defined), it is
only natural to consider inductive clauses as kinds of introduction rules, suggesting
a straightforward extension of principles of proof-theoretic semantics to the atomic
case. A particular challenge here comes from logic programming, where we con-
sider inductive definitions of a certain kind, called ‘definite-clause programs’, and
use them not only for descriptive, but also for computational purposes. In the context
of dealing with negation, we even have the idea of inverting clauses in a certain sense.
Principles such as the ‘completion’ of logic programs or the ‘closed-world assump-
tion’ (which logic programming borrowed from Acrtificial Intelligence research), are

13This last observation is due to Luca Tranchini.
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strongly related to principles generating elimination rules from introduction rules
and, thus, to the idea of harmony between these rules.

4.1 Definitional Reflection

In what follows, we sketch the idea of definitional reflection, which employs the idea
of clausal definitions as a powerful paradigm to extend proof-theoretic semantics
beyond the specific realm of logic. It is related to earlier approaches developed by
Lorenzen [38, 39] who based logic (and also arithmetic and analysis) on a general
theory of admissible rules using a sophisticated inversion principle (he coined the
term ‘inversion principle’ and was the first to formulate it in a precise way). It is
also related to Martin-Lo6f’s [40] idea of iterated inductive definitions, which gives
introduction and elimination rules for inductively defined atomic sentences. More-
over, it is inspired by ideas in logic programming, where programs can be read as
inductive definitions and where, in the attempt to provide a satisfactory interpreta-
tion of negation, ideas that correspond to the inversion of rules have been considered
(see Denecker et al. [5], Hallnds and Schroeder-Heister [31]). We take definitional
reflection as a specific example of how proof-theoretic semantics can be extended
beyond logic, and we claim that such an extension is quite useful. Other extensions
beyond logic are briefly mentioned at the end of this section.

A particular advantage that distinguishes definitional reflection from the
approaches of Lorenzen and Martin-L6f and makes it more similar to what has
been done in logic programming is the idea that the meaning assignment by means
of a clausal or inductive definition can be partial, which means in particular that
definitions need not be well-founded. In logic programming this has been common
from the very beginning. For example, clauses such as

p<=p

which defines p by its own negation, or related circular clauses have been standard
examples for decades in the discussion of normal logic programs and the treat-
ment of negation (see, e.g. Gelfond and Lifschitz [24], Gelder et al. [23]). Within
mainstream proof-theoretic semantics, such circular definitions have only recently
garnered attention, in particular within the discussion of paradoxes, mostly with-
out awareness of logic programming semantics and developments there. The idea
of definitional reflection can be used to incorporate smoothly partial meaning and
non-wellfounded definitions. We consider definitional reflection as an example of
how to move beyond logic and, with it, beyond the totality and well-foundedness
assumptions of the proof-theoretic semantics of logic.

As definitional reflection is a local approach not based on the placeholder view
of assumptions, we formulate it in a sequent-style framework. A definition is a list
of clauses. A clause has the form

a < B
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where the head a is an atomic formula (‘atom’). In the simplest case, the body B is a
listof atoms by, . . ., b,,, in which case a definition looks like a definite logic program.
We often consider an extended case where B may also contain structural implica-
tion'* ‘=, and sometimes even structural universal implication, which essentially
is handled by restricting substitution. Given a definition D, the list of clauses with a
head starting with the predicate P is called the definition of P. In the propositional
case where atoms are just propositional letters, we speak of the definition of a having
the form
a < B
D, :
a < B,

However, it should be clear that the definition of P or of a is normally just a particular
part of a definition D, which contains clauses for other expressions as well. It should
also be clear that this definition D cannot always be split up into separate definitions
of its predicates or propositional letters. So ‘definition of a’ or ‘of P’ is a mode of
speech. What is always meant is the list of clauses for a predicate or propositional
letter within a definition D.

Syntactically, a clause resembles an introduction rule. However, in the theory of
definitional reflection we separate the definition, which is incorporated in the set of
clauses, from the inference rules, which put it into practice. So, instead of different
introduction rules which define different expressions, we have a general schema that
applies to a given definition. Separating the specific definition from the inference
schema using arbitrary definitions gives us wider flexibility. We need not consider
introduction rules to be basic and other rules to be derived from them. Instead we
can speak of certain inference principles that determine the inferential meaning of a
clausal definition and which are of equal stance. There is a pair of inference principles
that put a definition into action, which are in harmony with each other, without one
of them being preferential. As we are working in a sequent-style framework, we
have inferential principles for introducing the defined constant on the right and on
the left of the turnstile, that is, in the assertion and in the assumption positions.
For simplicity we consider the case of a propositional definition D, which has no
predicates, functions, individual variables or constants, and in which the bodies of
clauses are just lists of propositional letters. Suppose D, (as above) is the definition

14We speak of structural’ implication to distinguish it from the implicational sentence connective
which may form part of a defined atom. Some remarks on this issue are made in Sect.4.2.
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of a (within D), and the B; have the form ‘b;1, ..., bj,’, as in propositional logic
programming. Then the right-introduction rules for a are

'+ b; .. ' b, B;
(-a) i o i in short o (=i<n),
and the left-introduction rule for a is
I'Bi-C B, -C
@h) T.aFC

If we talk generically about these rules, that is, without mentioning a specific a,
but just the definition D, we also write (- D) and (DF). The right introduction rule
expresses reasoning ‘along’ the clauses. Itis also called definitional closure, by which
is meant ‘closure under the definition’. The intuitive meaning of the left introduction
rule is the following: Everything that follows from every possible definiens of a,
follows from a itself. This rule is called the principle of definitional reflection, as it
reflects upon the definition as a whole. If By, ..., B, exhaust all possible conditions
to generate a according to the given definition, and if each of these conditions entails
the very same conclusion, then a itself entails this conclusion.

This principle, which gives the whole approach its name, extracts deductive con-
sequences of a from a definition in which only the defining conditions of a are given.
If the clausal definition D is viewed as an inductive definition, definitional reflection
can be viewed as being based on the extremal clause of D: Nothing else beyond the
clauses given in ID defines a. To give a very simple example, consider the following

definition:
child_of tom < anna

child_of tom <« robert

Then one instance of the principle of definitional reflection with respect to this

definition is
annal-tall robert tall

child_of tom I tall

Therefore, if we know anna I tall and robert |- tall, we can infer child_of tom - tall.
Since definitional reflection depends on the definition as a whole, taking all defini-
entia of a into account, it is non-monotonic with respect to D. If D is extended with
an additional clause
a < By

for a, then previous applications of the (D) rule may no longer remain valid. In the
present example, if we add the clause

child_of_tom < john
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we can no longer infer child_of_tom - tall, except when we also know john - tall.
Note that due to the definitional reading of clauses, which gives rise to inversion,
the sign ‘<=’ expresses more than just implication, in contradistinction to structural
implication ‘=" that may occur in the body of a clause. To do justice to this fact,
one might instead use “:-* as in PROLOG, or ‘:=" to express that we are dealing with
some sort of definitional equality.

In standard logic programming one has, on the declarative side, only what cor-
responds to definitional closure. Definitional reflection leads to powerful extensions
of logic programming (due to computation procedures based on this principle) that
lie beyond the scope of the present discussion.

4.2 Logic, Paradoxes, Partial Definitions

Introduction rules (clauses) for logically compound formulas are not distinguished
in principle from introduction rules (clauses) for atoms. The introduction rules for
conjunction and disjunction would, for example, be handled by means of clauses for
a truth predicate with conjunction and disjunction as term-forming operators:

T(pnrng) < T(p),T(q)
Dig { T(p Vv q) < T(p)
T(pvag) < T(q)

In order to define implication, we need a rule arrow in the body, which, for the whole
clause, corresponds to using a higher-level rule:

T(p — q) < (T(p)=>T(q))

This definition requires some sort of ‘background logic’. By that we mean the struc-
tural logic governing the comma and the rule arrow =, which determine how the
bodies of clauses are handled. In standard logic we have just the comma, which is
handled implicitly. In extended versions of logic programming we would have the
(iterated) rule arrow, that is, structural implication and associated principles govern-
ing it, and perhaps even structural disjunction (this is present in disjunctive logic
programming, but not needed for the applications considered here).

Itis obvious that (- IDy,,) gives us the right-introduction rules for conjunction and
disjunction or, more precisely, those for 7(A), where A is a conjunction or disjunc-
tion. Definitional reflection (ID;,g ) gives us the left-introduction rules. The clause
for T(p — q) gives us the rules for implication, where the precise formulation of
these rules depends on the exact formulation of the background logic governing =.

Definitional reflection in general provides a much wider perspective on inversion
principles than deductive logic alone. Using the definitional rule

te{x:a}l < alt/x]
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we obtain a principle of naive comprehension, which does not lead to a useless theory
in which everything is derivable, even if we allow a to be the formula x ¢ x and ¢
the term {x : x ¢ x}. A definition of the form

p <= p

yields a paraconsistent system in which both - p and - —p are derivable, without
every other formula being derivable. Formally, this means that the rule of cut

'FA A,AFB
I'A-B

is not always admissible. For special cases cut can be obtained, for example, if the
definition is stratified, which essentially means that it is well-founded. So the well-
behaviour of a definition in the case of logic, where we do have cut elimination, is
due to the fact that it obeys certain principles, which in the general case cannot be
expected to hold. This connects the proof theory of clausal definitions with theories of
paradoxes, which conceive paradoxes as based on locally correct reasoning (Prawitz
[44] (Appendix B), Tennant [68], Schroeder-Heister [62], Tranchini [71]).

For the situation that obtains here, Hallnis [28] proposed the terms ‘total’ vs.
‘partial’ in analogy with the terminology used in recursive function theory. That a
computable (i.e., partial recursive) function is total is not something required by
definition, but is a matter of (mathematical) fact, actually an undecidable matter.
Similarly, that a clausal definition yields a system that admits the elimination of
cuts is a result that may or may not hold true, but nothing that should enter the
requirements for something to be admitted as a definition. If it holds, the definition
is called ‘total’, otherwise it is properly ‘partial’.

4.3 Variables and Substitution

The idea of proof-theoretic semantics beyond logic invites consideration of powerful
inversion principles that extend the simple form of definitional reflection considered
above. Although we mentioned clauses that contained variables, we formally defined
definitional reflection only for propositional definitions of the form D,, where it
says that everything that can be inferred from each definiens can be obtained from
the definiendum of a definition. However, this is insufficient for the more general
case which is the standard case in logic programming. We show this by means of
an example. Suppose we have the following definition in which the atoms have a
predicate-argument-structure:
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child_of_tom(anna) <« daughter_of_tom(anna)

child_of_tom(robert) < son_of_tom(robert)
tall(anna) <= daughter_of_tom(anna)
tall(robert) < son_of_tom(robert)

Given our propositional rule of definitional reflection, we could just infer proposi-
tional results such as child_of_tom(anna) I tall(anna) or child_of_tom(robert) I tall
(robert). However, what we would like to infer is the principle

child_of_tom(x) F tall(x)

with free variable x, since anna and robert are the only objects for which the predicate
child_of_tom is defined, and since for them the desired principle holds.

In an even more general case, we have clauses that contain variables the instances
of which match instances of the claim we want to obtain by definitional reflection.
Consider the definition

[ p(y,a) < q()
M p(x, fl@) < q(f(x)

According to the principle of general definitional reflection, we obtain, with respect
to Dy,
pla,2)Fq(2)

The intuitive argument is as follows: Suppose p(a, z). Any, and in fact the only,
substitution instance of p(a, z) that can be obtained by the first clause is generated
by substituting a for y in the first clause, and a for z in p(a, z). We denote this
substitutionby [a/y, a/z] and call it o1. Any, and in fact the only, substitution instance
of p(a, z) that can be obtained by the second clause is generated by substituting a
for x in the second clause, and f(a) for z in p(a, z). We denote this substitution by
[a/x, f(a)/z] and call it oo. When o7 is applied to the body of the first clause, g (a)
is obtained, which is also obtained when o7 is applied to g(z). When o7 is applied
to the body of the second clause, g( f (a)) is obtained, which is also obtained when
o7 is applied to ¢(z). Therefore, we can conclude ¢ (z).

In the propositional case we could describe definitional reflection by saying that
every C that is a consequence of each defining condition is a consequence of the
definiendum a. We cannot now even identify a single formula as a definiendum, as
any formula which is a substitution instance of a head of a definitional clause is
considered to be defined. Therefore we should now say: Suppose a formula a is
given. If for each substitution instance ao that can be obtained as bo from the head
of aclause b <= C, we have that Co implies Ao for some A, then A can be inferred
from a.
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Formally, this leads to a principle of definitional reflection according to which,
for the introduction of an atom a on the left side of the turnstile, the most general
unifiers mgu(a, b) of a with the heads of all definitional clauses are considered:

{l'o,Co + Ao : 0 = mgu(a, b) for some clause b < C in D}

D+
PFo Cak A

with the proviso: The variables free in I, a = A must be different from those in the
b < C above the line. This means that we always assume that variables in clauses
are standardised apart. We call this principle the w-version of definitional reflection,
as it is in a certain way related to the w-rule in arithmetic, a point that we cannot
elaborate on here (see Schroeder-Heister [55]).

This powerful principle is typical of applications outside logic. When we consider
logical definitions such as D, we see that each formula 7' (a), where a is a compound
logical formula, determines exactly a single head b in one or two clauses (two in the
case of disjunction), such that 7' (a) is a substitution instance of b. This means that
(1) there is just matching and no unification between b and T (a), and (2) there is
just a single substitution for the main logical connective in T (a) involved due to the
strict separation between the clauses for the different logical connectives, implying
that there is no overlap between substitution instances of clauses.

The power of the w-version of definitional reflection is demonstrated, for example,
by the fact that the rules of free equality can be obtained from the definition consisting
of the single clause

D_{x=x«

For example, the transitivity of equality is derived by a single inference step as

follows:
X2 =x3Fx =x3

D_
(D= Fo X] =X, X =Xx3F X1 =3

Here we use that the substitution [x3/x1, x2/x] is an mgu of x; = x, with the head
x = x of the clause x = x < . In a similar way, all freeness axioms of Clark’s
equational theory [35] can be derived.'>

4.4 Outlook: Applications and Extensions of Definitional
Reflection

We have not discussed computational issues here. Clausal definitions give rise to
computational procedures as investigated and implemented in logic programming,

I5For further discussion see Girard [26], Schroeder-Heister [32], Eriksson [16, 17], Schroeder-
Heister [54]. Of all inversion principles mentioned in the literature, only Lorenzen’s original one
[39] comes close to the power of definitional reflection (though substantial differences remain, see
Schroeder-Heister [57]).
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and definitional reflection adds a strong component to such computation (see Hallnés
and Schroeder-Heister [31], Eriksson [17]). This computational aspect is important
to proof-theoretic semantics. We should not only be able to give a definition of a
semantically correct proof, where ‘semantically’ is understood in the sense of proof-
theoretic semantics, we should also be interested in ways to construct such proofs that
proceed according to such principles. Programming languages, theorem provers and
proof editors based on inversion principles make important contributions to this task.
Devising principles of proof construction that can be used for proof search is itself
an issue of proof-theoretic semantics that is a desideratum in the philosophically
dominated community. Theories that go beyond logic are of particular interest here,
as theorems outside pure logic are what we normally strive for in reasoning.

If we want to deal with more advanced mathematical theories, stronger closure
and reflection principles are needed. At an elementary level, clauses a < B in a
definition can be used to describe function computation in the form

F&r o ) & (X, xk)
which is supposed to express that from the arguments x1, ..., x; the value f(x,
..., Xx) is obtained, so that by means of definitional reflection f(x1, ..., xz) can be

computed. More generally, one might describe functionals ' by means of (infini-
tary) clauses the bodies of which describe the evaluation of functions f which are
arguments of F (for some hints see Hallnis [29, 30]). An instructive example is the
analysis of abstract syntax (see McDowell and Miller [41]).

There are several other approaches that deal with the atomic level proof-theo-
retically, that is, with issues beyond logic in the narrower sense. These approaches
include Negri and von Plato’s [42] proof analysis, Brotherston and Simpson’s
[2] infinite derivations, or even derivations concerning subatomic expressions (see
Wigckowski [73]), and corresponding linguistic applications, as discussed by Francez
and Dyckhoff [19] and Francez et al. [20]. Proof-theoretic semantics beyond logic
is a broad field with great potential, the surface of which, thus far, has barely been
scratched.
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