Skip to main content

Motif Correlogram for Texture Image Retrieval

  • Conference paper
  • First Online:
Intelligent Software Methodologies, Tools and Techniques (SoMeT 2015)

Abstract

In this paper we present a novel, compact and effective method for extracting texture information from an image. We denominate this method as Motif Correlogram (MC), which computes the correlation between motif pairs of the same type. The proposed method was evaluated using different metrics commonly used in image retrieval, such as ARP (Average Retrieval Precision), ARR (Average Retrieval Rate) and ANMRR (Average Normalized Retrieval Rank). Also, the proposed scheme was compared with other texture descriptors, such as Steerable FIltres, Edge Histogram Descriptor (EHD) and two Co-occurrence Matrix-based algorithms: Motif Co-Occurrence Matrix (MCM) and Directional Local Motif XoR Patterns (DLMXoRP). The performance of the proposed method was evaluated using the Kylberg Dataset. The evaluation results show the proposed texture descriptor improves the texture image retrieval performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, F., Zhang, Y.-J.: Evaluation and comparison of texture descriptors proposed in MPEG-7. J. Vis. Commun. Image R 17, 701–716 (2006)

    Article  Google Scholar 

  2. Wang, X.-Y., Yu, Y.-J., Yang, H.-Y.: An effective image retrieval scheme using color, texture and shape features. Comput. Stand. Interfaces 33, 59–68 (2011)

    Article  Google Scholar 

  3. Milind, V.L., Praveen, B., Pritesh, J.: An efective content-based image retrieval using color, texture and shape feature. In: Mohapatra, D.P., Patnaik, S. (eds.) Intelligent Computing, Networking and Informatics. AISC, vol. 243, pp. 1163–1170. Springer, India (2014)

    Chapter  Google Scholar 

  4. Park, D.K., Jeon, S.Y., Won, C.S.: Efficient use of local edge histogram descriptor. ETRI J. 24, 23–30 (2002)

    Article  MATH  Google Scholar 

  5. Jhanwar, N., Chaudhuri, S., Seetharaman, G., Zavidovique, B.: Content-based image retrieval using motif co-occurrence matrix. Image Vis. Comput. 22, 1211–1220 (2004)

    Article  Google Scholar 

  6. Vipparthi, S.K., Nagar, S.K.: Expert image retrieval system using directional local motif XoR patterns. Expert Syst. Appl. 41, 8016–8026 (2014)

    Article  MATH  Google Scholar 

  7. Huang, J., Kumar, S.R., Mitra, M., Wei-Jing, Z., Zabih, R.: Image indexing using color correlograms. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)

    Google Scholar 

  8. Manjunath, B.S., Ohm, J.-R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. on Circuit Syst. Video Technol. 24, 345–360 (2001)

    Google Scholar 

  9. Ahmed, T., Massudi, M., Husniza, H., Loay, G.: A weighted dominant color descriptor for content-based image retrieval. J. Vis. Commun. Image Represent. 24, 345–360 (2013)

    Article  Google Scholar 

  10. Kylberg, G.: The Kylberg Texture Dataset v. 1.0. Centre for Image Analysis, Swedish University of Agricultural Science and Uppsala University, External report (Blue Series) No. 35. http://www.cb.uu.se/~gustaf/texture/

  11. Zhang, D., Lu, G.: Evaluation of similarity measurement for image retrieval. In: IEEE International Conference on Neural Networks and Signal Processing, pp. 14–17 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Manuel Pérez-Meana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fierro-Radilla, A.N., Calderon-Auza, G., Nakano-Miyatake, M., Pérez-Meana, H.M. (2015). Motif Correlogram for Texture Image Retrieval. In: Fujita, H., Guizzi, G. (eds) Intelligent Software Methodologies, Tools and Techniques. SoMeT 2015. Communications in Computer and Information Science, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-319-22689-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22689-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22688-0

  • Online ISBN: 978-3-319-22689-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics