Skip to main content

Face Recognition Under Bad Illumination Conditions

  • Conference paper
  • First Online:
Intelligent Software Methodologies, Tools and Techniques (SoMeT 2015)

Abstract

Accurate face recognition in variable illumination environments has attracted the attention of the researchers in recent years, because there are many applications in which these systems must operate under uncontrolled lighting conditions. To this end, several face recognition algorithms have been proposed which include an image enhancement stage before performing the recognition task. However, although the image enhancement stage may improve the performance, it also increases the computational complexity of face recognition algorithms. Because this fact may limit their use in some practical applications, recently some algorithms have been developed that intend to provide enough robustness under variable illumination conditions without requiring an image enhancement stage. Among them, the local binary pattern and eigenphases-based schemes are two of the most successful ones. This paper presents an analysis of the recognition performance of these approaches under varying illumination conditions, with and without image enhancement preprocessing stages. Evaluation results show the robustness of both approaches when they are required to operate in illumination varying environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruiz-del-Solar, J., Quinteros, J.: Illumination compensation and normalization in eigenspace-based face recognition: a comparative study of different pre-processing approaches. Pattern Recogn. Lett. 29, 1966–1979 (2008)

    Article  MATH  Google Scholar 

  2. Ramirez-Gutierrez, K., Cruz-Perez, D., Olivares-Mercado, J., Nakano-Miyatake, M., Perez-Meana, H.: A face recognition algorithm using eigenphases and histogram equalization. Int. J. Comput. 5, 34–41 (2011)

    Google Scholar 

  3. Benitez-Garcia, G., Olivares-Mercado, J., Aguilar-Torres, G., Sanchez-Perez, G., Perez-Meana, H.: Face identification based on contrast limited adaptive histogram equalization (CLAHE). In: International Conference on Image Processing, Computer Vision and Pattern Recognition. http://www.worldacademyofscience.org/worldcomp11/ws/conferences/ipcv11

  4. Zaeri, N.: Eigenphases for corrupted images. In: Proceedings of the International Conference on Advances in Computational Tools for Engineering Applications, pp. 537–540 (2009)

    Google Scholar 

  5. Olivares-Mercado, J., Hotta, K., Takahashi, H., Nakano-Miyatake, M., Toscano-Medina, K., Perez-Meana, H.: Improving the eigenphase method for face recognition. IEICE Electron. Express 6, 1112–1117 (2009)

    Article  Google Scholar 

  6. Benitez-Garcia, G., Olivares-Mercado, J., Sanchez-Perez, G., Nakano-Miyatake, M., Perez-Meana, H.: A sub-block-based eigenphases algorithm with optimum sub-block size. Knowl.-Based Syst. 37(1), 415–426 (2012)

    Google Scholar 

  7. Olivares-Mercado, J., Sanchez-Perez, G., Nakano-Miyatake, M., Perez-Meana, H.: Feature extraction and face verification using gabor and gaussian mixture models. Adv. Artif. Intell. 4827, 769–778 (2007)

    Google Scholar 

  8. Hu, H.: Variable lighting face recognition using discrete wavelet transform. Pattern Recogn. Lett. 32, 1526–1534 (2011)

    Article  Google Scholar 

  9. Arandjelović, O., Cipolla, R.: A methodology for rapid illumination-invariant face recognition using image processing filters. Comput. Vis. Image Underst. 113(1), 159–171 (2009)

    Article  Google Scholar 

  10. Hotta, K.: Robust face recognition under partial occlusion based on support vector machine with local gaussian summation kernel. Image Vis. Comput. 26, 1490–1498 (2008)

    Article  Google Scholar 

  11. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  Google Scholar 

  12. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Xia, W., Yin, S., Ouyang, P.: A high precision feature based on lbp and gabor theory for face recognition. Sensors 13, 4499–4513 (2013)

    Article  Google Scholar 

  14. Maturana, D., Mery, D., Soto, A.: Face recognition with decision tree-based local binary patterns. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 618–629. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Yang, B., Chen, S.: A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing 120, 365–379 (2013)

    Article  Google Scholar 

  16. Marsi, S., Ramponi, G., Carrato, S.: Image contrast enhancement using recursive rational filter. In: International Workshop on Imaging Systems and Techniques, pp. 29–34 (2004)

    Google Scholar 

  17. Shlens, J.: A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100 (2014)

    Google Scholar 

  18. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of the IAPR International Conference on Computer Vision and Image Processing, pp. 582–585 (1994)

    Google Scholar 

  19. Martinez, A.: The AR face database. CVC Technical report 24 (1998)

    Google Scholar 

Download references

Acknowledgements

We thank the National Science and Technology Council (CONACYT) and the National Polytechnic Institute for the financial support for the realization of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Perez-Meana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de los Santos, D.T., Nakano-Miyatake, M., Toscano-Medina, K., Sanchez-Perez, G., Perez-Meana, H. (2015). Face Recognition Under Bad Illumination Conditions. In: Fujita, H., Guizzi, G. (eds) Intelligent Software Methodologies, Tools and Techniques. SoMeT 2015. Communications in Computer and Information Science, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-319-22689-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22689-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22688-0

  • Online ISBN: 978-3-319-22689-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics