Skip to main content

Ridgelet Methods for Linear Transport Equations

  • Conference paper
  • First Online:
Curves and Surfaces (Curves and Surfaces 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9213))

Included in the following conference series:

  • 1098 Accesses

Abstract

In this paper we present an overview of a novel method for the numerical solution of linear transport equations, which is based on ridgelets and has been introduced in [12, 16]. Such equations arise for instance in radiative transfer or in phase contrast imaging. Due to the fact that ridgelet systems are well adapted to the structure of linear transport operators, it can be shown that our scheme operates in optimal complexity, even if line singularities are present in the solution. After presenting the basic algorithm, we prove that certain operators are compressible, which is the key to obtain unconditional convergence results. Finally, we show some applications in radiative transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A result for finitely fast decay has also been obtained in [22], with \(\delta \) then depending on n.

  2. 2.

    A detailed account can be found in [12].

  3. 3.

    For colour images, see online version.

References

  1. Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E.: Ridgelets and the representation of mutilated sobolev functions. SIAM J. Math. Anal. 33(2), 347–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.: Ridgelets: theory and applications. Ph.D Thesis. Stanford University (1998)

    Google Scholar 

  4. Candès, E., Donoho, D.L.: Continuous curvelet transform: I. resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19(2), 162–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E., Donoho, D.L.: Continuous curvelet transform: II. discretization and frames. Appl. Comput. Harmon. Anal. 19(2), 198–222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E., et al.: Fast discrete curvelet transforms. Mult. Model. Simul. 5, 861–899 (2006)

    Article  MATH  Google Scholar 

  7. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp. 70(233), 27–75 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahlke, S., Fornasier, M., Raasch, T.: Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1), 27–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. In: Society for Industrial and Applied Mathematics (SIAM), vol. 61, pp. xx+357. Philadelphia, PA (1992)

    Google Scholar 

  10. DeVore, R.: Nonlinear approximation. In: Acta numerica, 1998. Acta Numer. vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  11. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Proc. 14, 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  12. Etter, S., Grohs, P., Obermeier, A.: FFRT - A Fast Finite Ridgelet Transform for Radiative Transport. In: submitted (2014)

    Google Scholar 

  13. Grella, K., Schwab, Ch.: Sparse discrete ordinates method in radiative transfer. Comput. Methods Appl. Math. 11(3), 305–326 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grohs, P.: Ridgelet-type frame decompositions for Sobolev spaces related to linear transport. J. Fourier Anal. Appl. 18(2), 309–325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grohs, P., Kutyniok, G.: Parabolic Molecules. Found. Comput. Math. 14(2), 299–337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grohs, P., Obermeier, A.: Optimal Adaptive Ridgelet Schemes for Linear Transport Equations. In: Submitted (2014)

    Google Scholar 

  17. Grohs, P., Schwab, Ch.: Sparse twisted tensor frame discretization of parametric transport operators. In: Preprint available as a SAM Report (2011), ETH Zürich (2011) http://www.sam.math.ethz.ch/sam_reports/index.php?id=2011-41

  18. Grohs, P., et al.: \(\alpha \)-Molecules. In: Submitted (2014). Preprint available as a SAM Report (2014), ETH Zürich, http://www.sam.math.ethz.ch/sam_reports/index.php?id=2014-16

  19. Kutyniok, G., Labate, D.: Shearlets: multiscale analysis for multivariate data. In: Birkhäuser (ed.) Chapter Introduction to Shearlets, pp. 1–38 (2012)

    Google Scholar 

  20. Kutyniok, G., et al.: Sparse multidimensional representation using shearlets. In: Wavelets XI(San Diego, CA), Procedings of SPIE vol. 5914, pp. 254–262 (2005)

    Google Scholar 

  21. Modest, M.F.: Radiative heat transfer. Academic press, San Diego (2013)

    Google Scholar 

  22. Obermeier, A., Grohs, P.: On the approximation of functions with line singularities by ridgelets. In: In preparation (2015)

    Google Scholar 

  23. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3), 1074–1100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author gratefully acknowledges support for this work by the Swiss National Science Foundation, Project 146356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Obermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grohs, P., Obermeier, A. (2015). Ridgelet Methods for Linear Transport Equations. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22804-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22803-7

  • Online ISBN: 978-3-319-22804-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics