Abstract
In this paper we present an overview of a novel method for the numerical solution of linear transport equations, which is based on ridgelets and has been introduced in [12, 16]. Such equations arise for instance in radiative transfer or in phase contrast imaging. Due to the fact that ridgelet systems are well adapted to the structure of linear transport operators, it can be shown that our scheme operates in optimal complexity, even if line singularities are present in the solution. After presenting the basic algorithm, we prove that certain operators are compressible, which is the key to obtain unconditional convergence results. Finally, we show some applications in radiative transport.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13(1), 39–70 (2007)
Candès, E.: Ridgelets and the representation of mutilated sobolev functions. SIAM J. Math. Anal. 33(2), 347–368 (2001)
Candès, E.: Ridgelets: theory and applications. Ph.D Thesis. Stanford University (1998)
Candès, E., Donoho, D.L.: Continuous curvelet transform: I. resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19(2), 162–197 (2005)
Candès, E., Donoho, D.L.: Continuous curvelet transform: II. discretization and frames. Appl. Comput. Harmon. Anal. 19(2), 198–222 (2005)
Candès, E., et al.: Fast discrete curvelet transforms. Mult. Model. Simul. 5, 861–899 (2006)
Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp. 70(233), 27–75 (2001)
Dahlke, S., Fornasier, M., Raasch, T.: Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1), 27–63 (2007)
Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. In: Society for Industrial and Applied Mathematics (SIAM), vol. 61, pp. xx+357. Philadelphia, PA (1992)
DeVore, R.: Nonlinear approximation. In: Acta numerica, 1998. Acta Numer. vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Proc. 14, 2091–2106 (2005)
Etter, S., Grohs, P., Obermeier, A.: FFRT - A Fast Finite Ridgelet Transform for Radiative Transport. In: submitted (2014)
Grella, K., Schwab, Ch.: Sparse discrete ordinates method in radiative transfer. Comput. Methods Appl. Math. 11(3), 305–326 (2011)
Grohs, P.: Ridgelet-type frame decompositions for Sobolev spaces related to linear transport. J. Fourier Anal. Appl. 18(2), 309–325 (2012)
Grohs, P., Kutyniok, G.: Parabolic Molecules. Found. Comput. Math. 14(2), 299–337 (2014)
Grohs, P., Obermeier, A.: Optimal Adaptive Ridgelet Schemes for Linear Transport Equations. In: Submitted (2014)
Grohs, P., Schwab, Ch.: Sparse twisted tensor frame discretization of parametric transport operators. In: Preprint available as a SAM Report (2011), ETH Zürich (2011) http://www.sam.math.ethz.ch/sam_reports/index.php?id=2011-41
Grohs, P., et al.: \(\alpha \)-Molecules. In: Submitted (2014). Preprint available as a SAM Report (2014), ETH Zürich, http://www.sam.math.ethz.ch/sam_reports/index.php?id=2014-16
Kutyniok, G., Labate, D.: Shearlets: multiscale analysis for multivariate data. In: Birkhäuser (ed.) Chapter Introduction to Shearlets, pp. 1–38 (2012)
Kutyniok, G., et al.: Sparse multidimensional representation using shearlets. In: Wavelets XI(San Diego, CA), Procedings of SPIE vol. 5914, pp. 254–262 (2005)
Modest, M.F.: Radiative heat transfer. Academic press, San Diego (2013)
Obermeier, A., Grohs, P.: On the approximation of functions with line singularities by ridgelets. In: In preparation (2015)
Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3), 1074–1100 (2003)
Acknowledgements
The second author gratefully acknowledges support for this work by the Swiss National Science Foundation, Project 146356.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Grohs, P., Obermeier, A. (2015). Ridgelet Methods for Linear Transport Equations. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-22804-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22803-7
Online ISBN: 978-3-319-22804-4
eBook Packages: Computer ScienceComputer Science (R0)