Skip to main content

Non-linear Local Polynomial Regression Multiresolution Methods Using \(\ell ^1\)-norm Minimization with Application to Signal Processing

  • Conference paper
  • First Online:
Curves and Surfaces (Curves and Surfaces 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9213))

Included in the following conference series:

  • 1080 Accesses

Abstract

Harten’s Multiresolution has been developed and used for different applications such as fast algorithms for solving linear equations or compression, denoising and inpainting signals. These schemes are based on two principal operators: decimation and prediction. The goal of this paper is to construct an accurate prediction operator that approximates the real values of the signal by a polynomial and estimates the error using \(\ell ^1\)-norm in each point. The result is a non-linear multiresolution method. The order of the operator is calculated. The stability of the schemes is ensured by using a special error control technique. Some numerical tests are performed comparing the new method with known linear and non-linear methods.

This research was partially supported by Spanish MCINN MTM 2011-22741 and MTM 2014-54388.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis whith error control for compact representation. Signal Process. 82, 587–608 (2002)

    Article  MATH  Google Scholar 

  2. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: A fully adaptive PPH multi-resolution scheme for image processing. Math. Comput. Modelling 46, 2–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amat, S., Liandrat, J.: On the stability of the pph nonlinear multiresolution. Appl. Comput. Harmon. Anal. 18(2), 198–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amat, S., Moncayo, M.: Exact error bound for the reconstruction processes using interpolating wavelets. Math. Comput. Simul. 79, 3547–3555 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aràndiga, F., Belda, A., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43(2), 158–182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aràndiga, F., Cohen, A., Yáñez, D.F.: Learning-based multiresolution schemes with application to compression of images. Signal Process. 93, 2474–2484 (2013)

    Article  Google Scholar 

  7. Aràndiga, F., Donat, R.: Nonlinear multiscale descompositions: the approach of A. Harten. Numer. Algorithm. 23, 175–216 (2000)

    Article  MATH  Google Scholar 

  8. Aràndiga, F., Donat, R.: Stability through synchronization in nonlinear multiscale transformation. SIAM J. Sci. Comput. 29, 265–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aràndiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function I: linear reconstruction technique. SIAM J. Numer. Anal. 36, 160–203 (1998)

    Article  MATH  Google Scholar 

  10. Aràndiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function II: Nonlinear reconstruction technique. SIAM J. Numer. Anal. 20, 1053–1093 (1999)

    MATH  Google Scholar 

  11. Aràndiga, F., Yáñez, D.F.: Generalized wavelets design using kernel methods. Application to signal processing. J. Comput. Appl. Math. 250, 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aràndiga, F., Yáñez, D.F.: Cell-average multiresolution based on local polynomial regression. Application to image processing. Appl. Math. Comput. 245, 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  14. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Numer. Anal. 20, 1964–1977 (1997)

    MathSciNet  Google Scholar 

  15. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Amer. Stat. Assoc. 83, 596–610 (1988)

    Article  MATH  Google Scholar 

  16. Cohen, A.: Numerical Analysis of Wavelet Methods. Springer, New York (2003)

    MATH  Google Scholar 

  17. Cohen, A., Daubechies, I., Feauveau, J.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dahmen, W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 2(4), 341–361 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Fan, J., Gijbels, I.: Local Polynomials Modelling and its Applications. Chapman and Hall, London (1996)

    Google Scholar 

  20. Getreuer, P., Meyer, F.: ENO multiresolution schemes with general discretizations. SIAM J. Numer. Anal. 46, 2953–2977 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (a tribute to M. Vidyasagar). LNCS, pp. 95–110. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software), (2009) http://stanford.edu/~boyd/cvx

  23. Harten, A.: Discrete multiresolution analysis and generalized wavelets. J. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harten, A.: Multiresolution representation of data: General framework. SIAM J. Numer. Anal. 33, 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)

    Book  MATH  Google Scholar 

  26. Loader, C.: Local Regression and Likelihook. Springer, New York (1999)

    Google Scholar 

  27. MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick (2010)

    Google Scholar 

  28. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionisio F. Yáñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aràndiga, F., Mulet, P., Yáñez, D.F. (2015). Non-linear Local Polynomial Regression Multiresolution Methods Using \(\ell ^1\)-norm Minimization with Application to Signal Processing. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22804-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22803-7

  • Online ISBN: 978-3-319-22804-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics