Abstract
In the papers [6, 7] we have established linear and quadratic bounds, in k, on the growth of the Lebesgue constants associated with the k-sections of Leja sequences on the unit disc \(\mathcal{U}\) and \(\mathfrak {R}\)-Leja sequences obtained from the latter by projection into \([-1,1]\). In this paper, we improve these bounds and derive sub-linear and sub-quadratic bounds. The main novelty is the introduction of a “quadratic” Lebesgue function for Leja sequences on \(\mathcal{U}\) which exploits perfectly the binary structure of such sequences and can be sharply bounded. This yields new bounds on the Lebesgue constants of such sequences, that are almost of order \(\sqrt{k}\) when k has a sparse binary expansion. It also yields an improvement on the Lebesgue constants associated with \(\mathfrak {R}\)-Leja sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bialas-Ciez, L., Calvi, J.P.: Pseudo Leja sequences. Ann. Mat. Pura Appl. 191, 53–75 (2012)
Bernstein, S.: Sûr la limitation des valeurs d’un polynôme \(P_n(x)\) de degré n sûr tout un segment par ses valeurs en \(n + 1\) points du segment. Isv. Akad. Nauk SSSR 7, 1025–1050 (1931)
Calvi, J.P., Phung, V.M.: On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation. J. Approximation Theor. 163(5), 608–622 (2011)
Calvi, J.P., Phung, V.M.: Lagrange interpolation at real projections of Leja sequences for the unit disk. Proc. Am. Math. Soc. 140(12), 4271–4284 (2012)
Chkifa, A., Cohen, A., Passaggia, P.Y., Peter, J.: A comparative study between kriging and adaptive sparse tensor-product methods for multi-dimensional approximation problems in aerodynamics design. ESAIM Proc. Surv. 48, 248–261 (2015)
Chkifa, M.A.: On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection. J. Approximation Theor. 166, 176–200 (2013)
Cohen, A., Chkifa, M.A.: On the stability of polynomial interpolation using hierarchical sampling. In: Sampling Theory, a Renaissance, Birkhaeuser (2015, to appear)
Chkifa, M.A.: Méthodes polynomiales parcimonieuses en grande dimension: application aux EDP paramétriques. Ph.D. thesis, Laboratoire Jacques Louis Lions (2014)
Chkifa, A., Cohen, A., Schwab, C.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14, 601–633 (2013)
Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)
Gunzburger, M.D., Webster, C.G., Guannan, Z.: Stochastic finite element methods for partial differential equations with random input data. Acta Numerica 23, 521–650 (2014)
Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, New York (1963)
Dzjadyk, V.K., Ivanov, V.V.: On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points. Anal. Math. 9–11, 85–97 (1983)
Irigoyen, A.: A uniform bound for the Lagrange polynomials of Leja points for the unit disk. http://arxiv.org/pdf/1411.5527.pdf
Devore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chkifa, M.A. (2015). New Bounds on the Lebesgue Constants of Leja Sequences on the Unit Disc and on \(\mathfrak {R}\)-Leja Sequences. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2014. Lecture Notes in Computer Science(), vol 9213. Springer, Cham. https://doi.org/10.1007/978-3-319-22804-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-22804-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22803-7
Online ISBN: 978-3-319-22804-4
eBook Packages: Computer ScienceComputer Science (R0)