Skip to main content

A Compliant Multi-finger Grasp Approach Control Strategy Based on the Virtual Spring Framework

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9245))

Included in the following conference series:

  • 4265 Accesses

Abstract

This paper presents an adaptive compliant multi-finger grasp approach control strategy based on based on a new interpretation of the virtual spatial spring framework, to improve the grasp performance for target objects with position errors. An n-finger virtual spatial spring frame is proposed to achieve the adaptive compliant grasp control. Two-finger grasp control based on a single virtual spring is tackled, and then extended to multi-finger grasp control. Virtual springs for self-collision avoidance among digits are constructed to form the complete adaptive compliant grasp control law. With the virtual-spring based adaptive compliant grasp approach control strategy, the first robot finger to experience unexpected impact remains in contact with the object, while the rest of the fingers are continuously, adaptively driven toward re-adjusted grasping positions by the virtual springs without the need for on-line replanning. Experimental results demonstrate effectiveness of the virtual-spring based grasp controller, and significantly larger position errors of the target object can be accommodated with the proposed adaptive compliant grasp control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K.: Automatic grasp planning using shape primitives. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1824–1829 (2003)

    Google Scholar 

  2. Lii, N.Y., Chen, Z., Roa, M.A., Maier, A., Pleintinger, B., Borst, C.: Toward a task space framework for gesture commanded telemanipulation. In: Proceedings of IEEE International Symposium on Robot and Human Interactive Communication, pp. 925–932. IEEE (2012)

    Google Scholar 

  3. Takahashi, T., Tsuboi, T., Kishida, T., Kawanami, Y., Shimizu, S., Iribe, M., Fukushima, T., Fujita, M.: Adaptive grasping by multi fingered hand with tactile sensor based on robust force and position control. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 264–271 (2008)

    Google Scholar 

  4. Hsiao, K., Chitta, S., Ciocarlie, M., Jones, E.G.: Contact-reactive grasping of objects with partial shape information. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 1228–1235 (2010)

    Google Scholar 

  5. Chalon, M., Reinecke, J., Pfanne, M.: Online in-hand object localization. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 2977–2984 (2013)

    Google Scholar 

  6. Hogan, N.: Impedance control-An approach to manipulation. I-Theory. II-Implementation. III-Applications. ASME Transactions on Dynamic Systems, Measurement, and Control 107 (1985)

    Google Scholar 

  7. Khatib, O.: Inertial properties in robotic manipulation: An object-level framework. The International Journal of Robotics Research 14(1), 19–36 (1995)

    Article  Google Scholar 

  8. Fasse, E., Broenink, J.: A spatial impedance controller for robotic manipulation. IEEE Transactions on Robotics and Automation 13(4), 546–556 (1997)

    Article  Google Scholar 

  9. Wimböck, T., Ott, C., Albu-Schäffer, A., Hirzinger, G.: Comparison of object-level grasp controllers for dynamic dexterous manipulation. The International Journal of Robotics Research 31(1), 3–23 (2012)

    Article  Google Scholar 

  10. Stramigioli, S.: Modeling and IPC control of interactive mechanical systems: a coordinate-free approach, vol. 266. Springer, Germany (2001)

    Google Scholar 

  11. Birglen, L., Gosselin, C., Laliberté, T.: Underactuated robotic hands, vol. 40. Springer (2008)

    Google Scholar 

  12. Ciocarlie, M., Hicks, F.M., Stanford, S.: Kinetic and dimensional optimization for a tendon-driven gripper. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2751–2758. IEEE (2013)

    Google Scholar 

  13. Tincani, V., Catalano, M.G., Farnioli, E., Garabini, M., Grioli, G., Fantoni, G., Bicchi, A.: Velvet fingers: a dexterous gripper with active surfaces. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 1257–1263 (2012)

    Google Scholar 

  14. Chen, Z., Lii, N.Y., Wimböck, T., Fan, S., Jin, M., Borst, C., Liu, H.: Experimental study on impedance control for the five-finger dexterous robot hand DLR-HIT II. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2010, pp. 5867–5874. IEEE, Taipei (2010)

    Google Scholar 

  15. Liu, H., Wu, K., Meusel, P., Seitz, N., Hirzinger, G., Jin, M., Liu, Y., Fan, S., Lan, T., Chen, Z.: Multisensory five-finger dexterous hand: the DLR/HIT Hand II. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 3692–3697 (2008)

    Google Scholar 

  16. Chen, Z., Lii, N.Y., Wimböck, T., Fan, S., Liu, H., Albu-Schäffer, A.: Experimental analysis on spatial and cartesian impedance control for the dexterous DLR/HIT II hand. International Journal of Robotics and Automation 29(1) (2014)

    Google Scholar 

  17. Roa, M., Hertkorn, K., Borst, C., Hirzinger, G.: Reachable independent contact regions for precision grasps. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5337–5343. IEEE, Shanghai (2011)

    Google Scholar 

  18. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A passivity based Cartesian impedance controller for flexible joint robots-Part II: full state feedback, impedance design and experiments. In: Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 2666–2672 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaopeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, Z., Ott, C., Lii, N.Y. (2015). A Compliant Multi-finger Grasp Approach Control Strategy Based on the Virtual Spring Framework. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22876-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22875-4

  • Online ISBN: 978-3-319-22876-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics