Abstract
Cardiac ablation therapy is an effective minimally invasive treatment of cardiac arrhythmias. The procedure is delicate and complex in nature requiring particular sections of the heart to be ablated. When operated by an experienced electrophysiologist, the procedure normally takes 2 to 3 hours. It is often conducted under fluoroscopic X-ray guidance and longer procedure times can increase the radiation burden of both the operator and patient. Earlier, we had proposed a robot-assisted tendon-guided catheter that can be navigated using radiation-free MRI imaging. In this paper, we propose a tension-feedback mechanism that provides vital control over its guiding tendons. We describe how it can be achieved using tension sensing and demonstrate using experiments and finite element simulations that feedback based on accurate tension sensing is plausible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tunay, I.: Position control of cathters using magnetic fields. In: Proceedings of the IEEE International Conference on Mechatronics (2004)
Baim, D.S.: Grossman’s Cardica Catheterization, Angiography, and Intervention, p. 992. Williams & Wilkins, Baltimore (2005)
Ataollahi, A., Karim, R., Soleiman Fallah, A., Rhode, K., Razavi, R., Seneviratne, L., Schaeffter, T., Althoefer, K.: 3-DOF MR-Compatible Multi-Segment Cardiac Catheter Steering Mechanism. IEEE Transactions on Biomedical Engineering (2013) (preprint online)
Natale, A.: Atrial fibrillation in 2012: Advances in catheter-ablation treatment of AF. Nature Reviews Cardiology 10(2), 63–64 (2013)
Picano, E., et al.: Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure. BMC Cancer 2(1), 157 (2012)
National Council on Radiation Protection and Measurements Limitation of Exposure to Ionizing Radiation. National Council on Radiation Protection and Measurements: No 116, Bethesda (1993)
Khoshnam, M., Patel, R.V.: Pseudo-Rigid-Body 3R model for a steerable ablation catheter. In: IEEE International Conference on Robotics and Automation (ICRA) (May 2013)
Kesner, S.B., Howe, R.: Position Control of Motion Compensation Cardiac Catheters. IEEE Transactions on Robotics 27(6), December 2011
Kettler, D.T., Plowes, R.D., Novotny, P.M., Vasilyev, N.V., del Nido, P.J., Howe, R.D.: An active motion compensation instrument for beating heart mitral valve surgery. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1290–1295 (October/November 2007)
Guo, S., Wang, P., Guo, J., Wei, W., Ji, Y., Wang, Y.: A novel master-slave robotic catheter system for vascular interventional surgery. In: IEEE International Conference on Mechatronics and Automation (August 2013)
Amigo rmote catheter systme. http://www.catheterrobotics.com/product-main.htm
How CorPath Robotic Angioplasty Works. http://www.corindus.com/about-corpath/how-corpath-works
Biosense Webster CS uni-Directional Catheter. https://www.biosensewebster.com/products/non-navigational/uni-directional-catheter.aspx
Sensei Robotic System. http://www.hansenmedical.com/us/en/cardiac-arrhythmia/artisan-extend-catheter/product-overview
Arujuna, A., Karim, R., Zarinabad, N., Gill, J., Rhode, K, Schaeffter, T., Wright, M., Rinaldi, C.A., Cooklin, M., Razavi, R., O’Neill, M.D., Gill, J.S.: A randomized prospective mechanistic cardiac magnetic resonance study correlating catheter stability, late gadolinium enhancement and 3 year clinical outcomes in robotically assisted vs. standard catheter ablation. Europace (February, 2015)
Ullah, W., Hunter, R.J., Haldar, S., Ailsa Mclean, R.N., Dhinoja, M., Sporton, S., Earley, M.J., Lorgat, F., Wong, T., Schiling, R.J.: Comparison of Robotic and Manual Persistent AF Ablation Using Catheter Contact Force Sensing: An International Multicenter Registry Study. Pacing and Clinical Electrophysiology 37(11), 1427–1435 (2014)
Liu, H., Noonan, D.P., Althoefer, K., Seneviratne, L.D.: Rolling mechanical imaging: a novel approach for soft tissue modelling and identification during minimally invasive surgery. In: 2008 IEEE International Conference on Robotics and Automation (ICRA), pp. 846–850, Pasadena, CA (2008)
Karim, R., Mohiaddin, R., Rueckert, D.: Left atrium pulmonary veins: segmentation and quantification for planning atrial fibrillation ablation. In: SPIE Medical Imaging 2009 (2009)
Karim, R.: Surface flattening of the human left atrium and proof-of-concept clinical applications. Computerized Medical Imaging and Graphics 38(4) (2014)
Polygerinos, P., Ataollahi, A., Schaeffter, T., Razavi, R., Seneviratne, L.D., Althoefer, K.: MRI-compatible intensity-modulated force sensor for cardiac catheterization procedures. IEEE Transactions on Biomedical Engineering 58(3), 721–726 (2011)
Liu, H., Puangmali, P., Zbyszewski, D., Elhage, O., Dasgupta, P., Dai, J.S., Seneviratne, L.D., Althoefer, K.: An Indentation Depth-force Sensing Wheeled Probe for Abnormality Identification during Minimally Invasive Surgery. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, H 224(6), 751–763 (2010)
Althoefer, K., Zbyszewski, D., Liu, H., Puangmali, P., Seneviratne, L.D., Challacombe, B., Dasgupta, P., Murphy, D.: Air-Cushion force sensitive probe for soft tissue investigation during minimally invasive surgery. In: IEEE Conference on Sensors, pp. 41–46, Lecce, Italy (2008)
Liu, H., Li, J., Poon, Q., Seneviratne, L.D., Althoefer, K.: Miniaturized force indentation-depth sensor for tissue abnormality identification. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3654–3659 (May 2010)
Searle, T.C., Althoefer, K., Seneviratne, L.D., Liu, H.: An optical curvature sensor for flexible manipulators. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4400–4405 (2013)
Noh, Y., Sareh, S., Back, J., Würdemann, H., Ranzani, T., Secco, E., Faragasso, A., Liu, H., Althoefer, K.: A three-axial body force sensor for flexible manipulators. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6388–6393 (2014)
Gao, X., Zheng-Jin F.: Design study of an adaptive Fuzzy-PD controller for pneumatic servo system. Control Engineering Practice, January 2004
Fuzzy PID Control of a Flexible-Joint Robot Arm with Uncertainties from Time-Varying Loads. IEEE Transactions of Control Systems Technology 6(3), May 1997
Back, J., et al.: Control a contact sensing finger for surface haptic exploration. In: 2014 IEEE International Conference on Robotics and Automation, ICRA 2014 (2014)
Liu, H., Nguyen, K.C., Perdereau, V., Back, J., Bimbo, J., Godden, M., Seneviratne, L.D., Althoefer, K.: Finger Contact Sensing and the Application in Dexterous Hand Manipulation. Autonomous Robots 39(1), 25–41 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Back, J., Karim, R., Noh, Y., Rhode, K., Althoefer, K., Liu, H. (2015). Tension Sensing for a Linear Actuated Catheter Robot. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-22876-1_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22875-4
Online ISBN: 978-3-319-22876-1
eBook Packages: Computer ScienceComputer Science (R0)