Skip to main content

Testing the Generation of Speed-Dependent Gait Trajectories to Control a 6DoF Overground Exoskeleton

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9245))

Abstract

Nowadays wearable rehabilitation exoskeletons are one of the most studied gait rehabilitation tool from a technological point of view. Current devices use prerecorded healthy gait patterns. This leads to potentially non-natural imposed gait patterns, and to solve this issue, we propose the use of regression-based methods to reconstruct speed dependent angular trajectories. Results suggest that the proposed method can lead to a more natural gait. Consequently, a naive user may more easily learn to walk under the presence of a robot guidance.

G. Asín-Prieto— This study has been funded by grant from the European Commission, within the Seventh Framework Programme (IFP7-ICT-2013-10-611695: BioMot - Smart Wearable Robots with Bioinspired Sensory-Motor Skills).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esquenazi, A., Talaty, M., Packel, A., Saulino, M.: The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation 91(11), 911–921 (2012)

    Article  Google Scholar 

  2. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(1), 24–31 (2004)

    Article  Google Scholar 

  3. Moreno, J.C., Rocón de Lima, E., Ruíz, A.F., Brunetti, F.J., Pons, J.L.: Design and implementation of an inertial measurement unit for control of artificial limbs: application on leg orthoses. Sensors and Actuators B: Chemical 118(1), 333–337 (2006)

    Google Scholar 

  4. Saito, Y., Kikuchi, K., Negoto, H., Oshima, T., Haneyoshi, T.: Development of externally powered lower limb orthosis with bilateral-servo actuator. In: 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 394–399. IEEE (2005)

    Google Scholar 

  5. Rex: Rex bionics. step into the future (2015). http://www.rexbionics.com/

  6. Ekso: Ekso bionics. for the human endeavor (2015). http://intl.eksobionics.com/

  7. IHMC: Nasa-institute for human and machine cognition x1 mina exoskeleton (2014). http://robots.ihmc.us/x1-mina-exoskeleton/

  8. Sankai, Y.: HAL: hybrid assistive limb based on cybernics. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research. STAR, vol. 66, pp. 25–34. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Yan, T., Cempini, M., Oddo, C.M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems 64, 120–136 (2015)

    Article  Google Scholar 

  10. Koopman, B., Van Asseldonk, E., Van der Kooij, H.: Speed-dependent reference joint trajectory generation for robotic gait support. Journal of Biomechanics 47(6), 1447–1458 (2014)

    Article  Google Scholar 

  11. Hanlon, M., Anderson, R.: Prediction methods to account for the effect of gait speed on lower limb angular kinematics. Gait & Posture 24(3), 280–287 (2006)

    Article  Google Scholar 

  12. Lelas, J.L., Merriman, G.J., Riley, P.O., Kerrigan, D.C.: Predicting peak kinematic and kinetic parameters from gait speed. Gait & Posture 17(2), 106–112 (2003)

    Article  Google Scholar 

  13. Kirtley, C., Whittle, M.W., Jefferson, R.: Influence of walking speed on gait parameters. Journal of Biomedical Engineering 7(4), 282–288 (1985)

    Article  Google Scholar 

  14. Bortole, M., del Ama, A., Rocón de Lima, E., Moreno, J.C., Brunetti, F., Pons, J.L.: A robotic exoskeleton for overground gait rehabilitation. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3356–3361. IEEE (2013)

    Google Scholar 

  15. Bortole, M., Pons, J.L.: Development of a exoskeleton for lower limb rehabilitation. In: Converging Clinical and Engineering Research on Neurorehabilitation, pp. 85–90. Springer (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Asín-Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Asín-Prieto, G. et al. (2015). Testing the Generation of Speed-Dependent Gait Trajectories to Control a 6DoF Overground Exoskeleton. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22876-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22875-4

  • Online ISBN: 978-3-319-22876-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics